Finding Regulatory Signals in Genomes

The Biological Problem

Different Kinds of Signals

Promotors

Enhancers

Splicing Signals

Different Organisms

Information Beyond the sequences

Data - known/unknown signal

Aligned

Unaligned

The Computational Problem Measures of Performance Quality Performance of Different Methods

Regulation in Eukaryotes

•Promotor

- •Transcription Factors TF
- •Transcription Factor binding Sites TFBS
- •Cis-regulatory modules CRM
- •Transcription Start Site TSS
- •TATA boxes
- •CG richness
- •Phylogenetic Footprinting
- •Combinatorial Interaction
- •Enhancers

Wasserman and Sandelin (2004) 'Applied Bioinformatics for the Identification of Regulatory Elements' Nature Review Genetics 5.4.276

Regulatory Protein-DNA Complexes

I. Cro an	d Repressor fa	mily			
llmb*	3,4	Repressor	Phage λ	1.8	-AATACCACTGGCGGTGATATTATAT-CACCGCCAGTGGTAT-
l Ili	A,B	Repressor mutant	Phage λ	2.1	-AATACCACTGGCGGTGATATTATAT-CACCGCCAGTGGTAT-
lper	L,R	Repressor	Phage 434	2.5	AAGTACAGTTTTTTTTG-TATTATACAAGAAAAACTGTACT
Irpe	L,R	Repressor	Phage 434	2.5	-TATACAATGTATCTTG-TTTGACAAACAAGATACATTGTAT-
2orl	L,R	Repressor	Phage 434	2.5	AAGTACAAACTTTCTTG-TATTATACAAGAAAGTTTGTACT
3cro	L,R	Cro	Phage 434	2.5	AAGTACAAACTTTCTTG-TATTATACAAGAAAGTTTGTACT
6cro	A	Cro	Phage λ	3.0	AAGTACAAACTTTCTTG-TATTATA-CAAGAAAGTTTGTACT
3orc	A	Cro	Phage λ	3.0	AAGTACAAACTTTCTTG-TATTATACAAGAAAGTTTGTACT

Luscome et al.(2000) An overview of the structure of protein-DNA complexes Genome Biology 1.1.1-37

1. Cro and Repressor (1Imb)

•Databases with the 3-D structure of combined DNA -Protein

•Data bases with known promotors

Moses et al.(2003) "Position specific variation in the rate fo evolution of transcription binding sites" BMC Evolutionary Biology 3.19-

Weight Matrices, Sequence Logos

Corrected probabilities of observing a given nucleotide can be calculated using equation 1.	ca Site 1	G	A	С	С	A	A	A	т	A	A	G	G	С	A
	Site 2	G	A	С	с	A	A	A	т	A	A	G	G	с	A
$f_{b,i}+s(b)$	Site 3	т		A	C	т	A	т	A	A	A	A	G	G	A
Corrected probability calculation: $p(b,t) = \frac{p(b,t)}{N + N}$ (1)	Site 4	т		A	c	т	A	т	A	A	A	A	G	G	A
$N + \sum s(b)$	Site 5	T	G	C .	c	A	A	A	A	G	T	G	G	T	C
$b' \in \{A, C, G, T\}$	Site 5	C	~ ~	A .	6	-	A .	-	2	1	-	9	G	G	0
	Sito 8	C	- A	ĉ	c	T	T	2	č	1	T		G	G	c
$f_{\rm counts}$ of base hin position is N - number of sites: $t(h_{\rm c})$ - corrected probability of base hin position is	OILE 0		- <u>-</u>		4	<u>-</u>	6	7 '	8	<u> </u>	10	44	12	19	14
f_{bi} = counts of base of in position $g(v)$ = number of sites, $p(v, p)$ = corrected probability of base of in position $g(v)$ = $g(b)$ = pseudocount function	Source binding sites														
	b	-	-							-		-	-	-	
		в	R	м	C	W	A	W	н	R	W	G	G	в	м
A position weight matrix (PWM) is constructed by dividing the nucleotide probabilities in (1) by expected background							Cons	ensus	s sequ	lence					
probabilities and converting the values to a log-scale (see equation 2).	c Pe	osition	freque	ency m	atrix (F	PFM)									
		1	2	3	4	5	6	7	8	9	10	11	12	13	14
2 (h i)	A	0	4	4	0	3	7	4	3	5	4	2	0	0	4
$PWM \text{ conversion:} \qquad W_{h,i} = \log_2 \frac{P(0,i)}{2} \tag{2}$	C	3	0	4	8	0	0	0	з	0	0	0	0	2	4
$b, b, b, c \in p(b)$	G	2	з	0	0	0	0	0	0	1	0	6	8	5	0
	т	з	1	0	0	5	1	4	2	2	4	0	0	1	0
	-				(50.6.0										
$p(b) =$ background probability of base b; $p(b,i) =$ corrected probability of base b in position f; $W_{i,i} =$ PWM vaue of base		osition	weigh	it matri	X (PW	™)			_		_				
his position i	A	-1.93	0.79	0.79	-1.93	0.45	1.50	0.79	0.45	1.07	0.79	0.00	-1.93	-1.93	0.79
	C	0.45	-1.93	0.79	1.68	-1.93	-1.93 -	-1.93	0.45	-1.93	-1.93	-1.93	-1.93	0.00	0.79
	G	0.00	0.45	-1.93	-1.93	-1.93	-1.93 -	-1.93	-1.93	0.66	-1.93	1.30	1.68	1.07	-1.93
The quantitative PWM score for a putative site is the sum of the PWM values for each nucleotide in the site (see equation 3)		0.15	0.66	-1.93	-1.90	1.07	0.66	0.79	0.00	0.00	0.79	-1.95	-1.95	-0.66	-1.90
	e Si	te sco	ring												
W		0.45	-0.66	0.79	1.68	0.45	-0.66	0.79	0.45	-0.66	0.79	0.00	1.68	-0.66	0.79
Evaluation of sequences: $S = \sum W_{l,i}$ (3)		т	т	А	C	Α	т	Α	A	G	т	A	G	т	С
i=1		$\Sigma = 5$	5.23, 7	8% of	maxim	num									
	2	-													
l = the nucleotide in position <i>i</i> in an input sequence; $S =$ PWM score of a sequence; $w =$ width of the PWM															
	f				Π										
					••										
Probability values (1) can be used to determine the total information content (in bits) in each position (see equation 4).							Λ								
	Ш.	1		0		┳	· / ·	т			T				0
$D = 2 + \sum_{i=1}^{n} b_{ii} c_{ii} c_{ii}$			_							Λ				0	
Information content calculation: $D_i = 2 + \sum_{b} p_{b,i} \log_2 p_{b,i}$ (4)		_	-А	X				Α.		A	Ā				X
v		Ċ	G	Δ	V	Δ	4	A	X	-	Α	Δ		C	A
D = information content in position is $p(h_i)$ = corrected probability of base him position i	0									G					
$D_i = \inf_{i} \inf_{i} \inf_{i} \inf_{j} \inf_{i} \inf_{j} \inf_{i} \inf_{j} \inf_{i} \inf_{j} \inf_{j} \inf_{i} \inf_{i} \inf_{i} \inf_{j} \inf_{i} \inf_{i} \inf_{i} \inf_{j} \inf_{i} i} i} \inf_{i} \inf_{i} \inf_{i} \inf_{i} i} i} \inf_{i} \inf_{i} \inf_{i} \inf_{i} i} i$		1	2	3	4	5	6	7 Pos	8 sition	9	10	11	12	13	14

Very high frequency of false positives. A model for binding of MyoD will yield 10⁶ binding sites, while only 10³ might be real.

Wasserman and Sandelin (2004) 'Applied Bioinformatics for the Identification of Regulatory Elements' Nature Review Genetics 5.4.276

Motifs in Biological Sequences

1990 Lawrence & Reilly "An Expectation Maximisation (EM) Algorithm for the identification and Characterization of Common Sites in Unaligned Biopolymer Sequences Proteins 7.41-51.
1992 Cardon and Stormo Expectation Maximisation Algorithm for Identifying Protein-binding sites with variable lengths from Unaligned DNA Fragments L.Mol.Biol. 223.159-170
1993 Lawrence... Liu "Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment" Science 262, 208-214.

$$\begin{split} \Theta &= (\theta_{1,A}, \dots, \theta_{w,T}) \text{ probability of different bases in the window} \\ A &= (a_1, \dots, a_K) - \text{positions of the windows} \\ \theta_0 &= (\theta_A, \dots, \theta_T) - \text{background frequencies of nucleotides.} \\ p(R \mid \theta_0, \Theta, A) &= \theta_0^{h(R_{\{A\}^c})} \prod_{j=1}^w \theta_j^{h(R_{A+j-1})} = \theta_0^{h(R)} \prod_{j=1}^w \left(\frac{\theta_j}{\theta_0}\right)^{h(R_{A+j-1})} \end{split}$$

Priors A has uniform prior

 Θ_i has Dirichlet(N₀ α) prior – α base frequency in genome. N₀ is pseudocounts

The Gibbs Sampler

 $\mathbf{x}^{(t)} = (x_1^{(t)}, \dots, x_d^{(t)})$ for iteration t. At iteration t + 1

For i=1,..,d: Draw $x_i^{(t+1)}$ from conditional distribution $\pi(.|x_{[-i]}^{(t)})$ and leave remaining components unchanged, i.e. $x_{[-i]}^{(t+1)} = x_{[-i]}^{(t)}$

Both random & systematic scan algorithms leaves the true distribution invariant.

$$\pi(x_i^{t+1} | x_{[-i]}^t) \times \pi(x_{[-i]}^t) = \pi(x_{[-i]}^t, x_i^{t+1})$$

An example:

Target Distribution is
$$x = (x_1, x_2)$$
 is $N \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right\}$ distributed.
The conditional distributions are then: $x_2^{t+1} | x_1^{t+1} \sim N \{ \rho x_1^{t+1}, (1-\rho)^2 \}, x_1^{t+1} | x_2^{t+1} \sim N \{ \rho x_2^t, (1-\rho)^2 \},$

The approximating distribution after

t steps of a systematic GS will be:

$$\begin{pmatrix} x_1^t \\ x_2^t \end{pmatrix} \sim N\{ \begin{pmatrix} \rho^{2t-1}x_2^0 \\ \rho^{2t}x_2^0 \end{pmatrix}, \begin{pmatrix} 1-\rho^{4t-2} & \rho-\rho^{4t-1} \\ \rho-\rho^{4t-1} & 1-\rho^{4t} \end{pmatrix} \}$$

The Gibbs sampler

From : Lawrence, C. et al. (1993) Detecting Subtle Sequence Signals: A Geibbs Sampler approach to Multiple Alignment. Science 262.208-

The Gibbs sampler: example

Sigma-37	223	TIDLTY IQNK	SOKETODILGISONHVSR	LORKAVKKLR	240	A25944	
Spollic	94	REGLOLKKEK	TUREIAKELGISRSYVSR	LEKRALMKNF	111	A28627	
NahA	22	VVENQLLVDR	RV9TTAENLGLTQPAV5N	ALKRURTSLO	39	A32837	
Antennapedia	326	FHENRYLTER	RRIEIAHALCLTERQIKI	WFONREMKNK	343	A23450	
NERC (Brady.)	449	LTAALAATRG	NGIRAADLLGLNRNTERK	KIRDLDIQVY	466	B26499	
DicA	22	TRYREGOLKH	TORSLAKALKISHVSVSO	WERGDSEPTG	39	B24328	(BVECDA)
MerD	5	MMAY	TVERLALDAGVSVHIVRD	YLLRGLLRFV	22	C29010	
Fis	73	LEMVNQYTRG	NOTRALIMIGINRGTLER	KLKKYGNN	90	A32142	(DNECFS)
MAT al	99	FRREGSLASK	EREEVAKKCGITPLQVRV	WP INKRMASK	116	A90983	(JEEV1)
Lambda cîî	25	SALLNKIAML	GTERTAEAVGVDKSQISR	WKROWIPKFS	42	A03579	(QCBP2L)
Crp (CAP)	169	THPDOMQIRI	TRUEIGQIVGCSRETVGR	ILKMLEDQNL	186	A03553	(QRECC)
Lambda Cro	15	ITLKDYANRF	GOTRTARDLGVYQSAINK	AIHAGRKIFL	32	A03577	(RCBPL)
P22 Cro	12	YKKDVIDHFG	TORAVAKALGISDAAVSO	WREVIPERDA	29	A25867	(RGBP22)
AraC	196	ISOHLADSNF	DIASVAQHVCLSPSRLSH	LFROQLGISV	213	A03554	(RGECA)
Fur	196	FSPREFRLTM	TRGDIGNYLGLTVETISR	LLGRFORSGM	213	A03552	(RGECF)
HtpR	252	ARWLDEDNKS	TLOELADRYGVSAERVRO	LEKNAMKKLR	269	A00700	(RGECf()
NtrC (K.a.)	444	LTTALRHTOG	HEQEAARLLOWGRNTLTR	REFERENCE	461	A03564	(RGRBCP]
CytR	11	MRAKEQETAA	TMEDVALKAEVSTATVSR	ALANPORVSQ	28	A24963	(RPECCT)
DeoR	23	LOELFRSDKL	HLKDAAALLGVSEMTIRR	DLINNHSAPVV	40	A24076	(RPECDO)
GalR	э	MA	TIRDVARLAGVSVATVSR	VINNSPKASE	20	A03559	(RPECG)
Laci	- 5	MKPV	TLYUVAEYAGVSYQTVSR	VVNQASHVSA	22	A03558	(RPECL)
TetR	26	LINEVGIEGL	TTRELACELGVEOPTLYW	HVKNKRALLD	43	A03576	(RPECTN)
TrpR	67	IVEELLROEM	SORELKNELGAGIATITR	GENELKAAPV	84	A03568	(RPECM)
NICA	495	LIAALERAGW	VQAKAARLLGMTPRQVAY	RIQIMDITMP	512	502513	
SpailG	205	RFGLVGEEEK	TOKDVADMMGISQSYISA	LEKRIIKRLR	222	307337	
Pin	160	QAGRLIAAGT	PRORVAILYDVGVSTLYK	TEBAGOR	177	407959	
Purr	. 3	MA	TIKDVARRANVSTTIVSH	VINKTRFVAE	20	S08477	
EbgR	3	MA	TLEDIALEAGVSLATVSR	VLNDDPTLNV	20	\$09205	
LexA	27	DHISQTCMPP	TRACINGREGERSMANE	ehlkalarng	44	S11945	
P22 cI	25	SSILNRIAIR	GORRVADALGINESGISR	WEGDPIPEMG	42	B25867	[Z1BPC2]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Arç	94	222	265	137	9	9	137	137	9	9	9	52	222	94	94	9	265	606
Lys	9	133	442	380	9	71	380	194	9	133	9	9	71	9	9	9	71	256
Glu	53	9	96	401	9	9	140	140	9	9	9	53	140	140	9	9	9	53
Asp	67	9	9	473	9	\$	299	125	9	67	9	67	67	9	9	9	9	67
G11	9	500	224	9	9	Ą	224	9	9	9	9	9	278	63	276	9	9	170
H1s	240	9	· 9	9	9	9	125	125	9	9	9	9	125	125	125	9	9	240
Asn	168	9	9	9	9	9	168	89	9	89	9	248	9	168	69	9	89	- 69
Ser	117	9	117	117	9	Ŕ	9	a	9	Я	9	619	63	387	63	9	819	9
Gly	151	9	56	9	9	151	9	9	9	1141	9	151	9	56	9	9	56	9
Ala	-9	9	112	43	181	901	43	181	215	9	43	9	43	181	112	- 41	78	9
Thr	915	130	130	9	251	9	9	9	9	9	ģ	311	130	70	655	و- آ	130	. 9
Pro	76	9	9	9	9	g	9	9	9	g	9	9	210	210	9	9	9.	9
Cvs	9	, e	ġ	ģ	ģ	ģ	9	é	295	581	295	9	- 9	- 9	ē	9	. 9	ē
Val	58	107	9	. 9	500	ė	9	ė	156	9	598	ē	205	58	ē	746		58
Les	9	121	9	9	149	9	93	149	458	9	149	9	37	37	9	177		9
Ile	. j	166	114	61	323	ē	114	166	9	ġ	427	Q	61	ġ	61	427	ĥ	61
Met	9	104	9		9		é	198	198	é	104	9	9	198	9	4	9	9
Tyr	ą	4	136	9	. 0	¢.	q	262	2.62	Q.	9	136	136	4	262	q	262	136
Phe	á	ģ		ē	é	é	ģ	- 9	- 9	ģ	108	- 4	9	á	- ° -	á	Ĩ,	- 4
Ттр	9	à	é	ġ	9	ŝ	9	9	é	2	366	ė	2	è	è	à	ŝ	366

From : Lawrence, C. et al.(1993) Detecting Subtle Sequence Signals: A Gibbs Sampler approach to Multiple Alignment. Science 262.208-

Natural Extensions to Basic Model I

Multiple Pattern Occurances in the same sequences:

Liu, J. `The collapsed Gibbs sampler with applications to a gene regulation problem," Journal of the American Statistical Association 89 958-966.

Prior: any position *i* has a small probability *p* to start a binding site:

 $A = (a_1, ..., a_k)$ $P(A) \approx p_0^k (1 - p_0)^{N-k}$ (with nonoverlapping constraints)

Composite Patterns:

BioOptimizer: the Bayesian Scoring Function Approach to Motif Discovery Bioinformatics

Natural Extensions to Basic Model II

Correlated in Nucleotide Occurrence in Motif:

Modeling within-motif dependence for transcription factor binding site predictions. *Bioinformatics*, 6, 909-916.

Insertion-Deletion

BALSA: Bayesian algorithm for local sequence alignment Nucl. Acids Res., 30 1268-77.

Combining Signals and other Data

Expresssion and Motif Regression:

Integrating Motif Discovery and Expression Analysis Proc.Natl.Acad.Sci. 100.3339-44

- 1.Rank genes by E=log₂(expression fold change)
- 2. Find "many" (hundreds) candidate motifs
- 3. For each motif pattern m, compute the vector S_m of matching scores for genes with the pattern
- 4.Regress E on S_m $Y_g = \alpha + \beta_m S_{mg} + \varepsilon_g$

ChIP-on-chip - 1-2 kb information on protein/DNA interaction:

An Algorithm for Finding Protein-DNA Interaction Sites with Applications to Chromatin Immunoprecipitation Microarray Experiments Nature Biotechnology, 20, 835-39

Protein binding in neighborhood **Coding regions**

Modified from Liu

The Expectation-Maximization Algorithm (EM)

Aim: Maximizing Likelihood function in presence of missing data.

 $\log P_{\Theta}(x, y)$, x is observed, y is missing and Θ is the parameter.

E – step : calculates expected loglikelihood averaging over the unobserved data $E[logP_{\Theta}(x|y)]$

M – step: Maximize $E[logP_{\Theta}(x|y)]$ as a function of Θ .

Each E+M step will not decrease the likelihood, E+M steps are continued until little change in likelihood function.

MEME- Multiple EM for Motif Elicitation

 $Z_{i,j} = 1$ if a motif starts at j'th position in i'th sequence, otherwise 0.

Motif nucleotide distribution: M[p,q], where p - position, q-nucleotide.

Background distribution B[q], λ is probability that a $Z_{i,j} = 1$

Find M,B, λ , Z that maximize Pr (X, Z | M, B, λ) Expectation Maximization to find a local maximum Iteration t:

Expectation-step: $Z^{(t)} = E(Z | X, (M, B, \lambda)^{(t)})$

Maximization-step: Find $(M, B, \lambda)^{(t+1)}$ that maximizes $Pr(X, Z^{(t)} | (M, B, \lambda)^{(t+1)})$

Phylogenetic Footprinting (homologous detection)

Term originated in 1988 in Tagle et al. Blanchette et al.: For unaligned sequences related by phylogenetic tree, find all segments of length k with a history costing less than d. Motif loss an option.

$$D_{i}^{begin} = \min\{D_{i,\Delta}^{begin} + d(i,\Delta)\}$$
$$D_{i}^{signal,0} = \min\{D_{i,\Delta}^{b} + d(i,\Delta)\}$$
$$D_{i}^{signal,j+1} = \min\{D_{i,\Delta}^{signal,j} + Kd(i,\Delta)\}$$

 $D_i^{end} = \min\{D_{i\Lambda}^{end} + d(i,\Delta)\}$

. . .

(Homologous + Non-homologous) detection

Related genes - similar expression

Combine above approaches: Mixed genes - similar expression

Wang and Stormo (2003) "Combining phylogenetic data with co-regulated genes to identify regulatory motifs" Bioinformatics 19.18.2369-80

Rate of Molecular Evolution versus estimated Selective Deceleration

Summary

The Biological Problem **Different Kinds of Signals Promotors** Enhancers **Splicing Signals Different Organisms** Information Beyond the sequences Data - known/unknown signal Aligned Unaligned The Computational Problem Measures of Performance Quality Performance of Different Methods

References I

- J Amer "Bayesians Models for multiple local sequence alignment" Statist.Assoc. 90, 1156-1170
- J Amer "*The collapsed Gibbs sampler with applications to a gene regulation problem*," Journal of the American Statistical Association 89 958-966
- Bailey, T. L. and C. Elkan (1994). "*Fitting a mixture model by expectation maximization to discover motifs in biopolymers.*" Proc Int Conf Intell Syst Mol Biol 2: 28-36.
- Boffelli, Nobrega and Rubin (2004) "Comparative genomics at the Vertebrate Extremes" Nature Review Genetics 5.6.456-
- Blanchette, M, B.Schwikowski and M.Tompa (2002) "Algorithms for Phylogenetic Footprinting" J. Comp.Biol.9.2.211-
- Blanchette and Tompa (2003) "FootPrinter: a program designed for phylogenetic footprinting" NAR 31.13.3840-
- D.Che, S Jensen L.Cai "BEST: Binding-site estimation suite of tools ." Bioinformatics, 21, 2209-11.
- E Conlon "Integrating Sequence Motif Discovery and Microarray Analysis " Proc.Natl.Acad.Sci. 100.3339-44
- Chuzhanova et al.(2002) "The Evolution of Vertebrate b-globin promotor." Evolution 56.2.224-232
- Dermitzakis, E. T., A. Reymond, et al. (2003). "*Evolutionary Discrimination of Mammalian Conserved Non-Genic Sequences (CNGs).*" Science.
- Fickett and Hartzegiorgiou (1997) "Eukaryotic Promotor Recognition" Genome Research 7.861-
- Gribskov, M., McLachlan, A.D., and Eisenberg, D., "*Profile analysis: detection of distantly related proteins* ". Proceedings of the National Academy of Sciences 84, 4355-4358, 1987
- Halpern and Bruno (1998) "Evolutionary Distances for Protein-Coding Sequences" MBE 15.7.910-
- M.Gupta "Statistical models for biological sequence motif discovery " Case Studies in Bayesian Statistics VI, 2002. Springer
- M Gupta "De novo cis-regulatory module elicitation for eukaryotic genomes. " Proc Nat'l Acad Sci USA, 102, 7079-84.
- M Gupta "Discovery of conserved sequence patterns using a stochastic dictionary model." J. Amer. Statist. Assoc., 98, 55-66.
- H.Huang M.J.Kao X. Zhou WH Wong "*Identification of transcription factor binding sites using local Markov models.*" J. Computational Biology
- P. Hong XS Liu WH Wong "A Boosting Approach for Motif Modeling Using ChIP-chip Data. " Bioinformatics, 21, 2636-43.
- S. Jensen "BioOptimizer: The Bayesian Scoring Function Approach to Motif Discovery " Bioinformatics
- S. Jensen L.Shen " Combining Phylogenetic Motif Discovery and Motif Clustering to Predict Co-Regulated Genes. " Bioinformatics In
- Lawrence, C. et al.(1993) " Detecting Subtle Sequence Signals." A Gibbs Sampler approach to Multiple Alignment. Science 262.208-

References II

- CE Lawrence "Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment" Science 262, 208-214.
- CE Lawrence et al "Computational Discovery of Gene Regulatory Binding Motifs: A Bayesian Perspective." Statistical Science, 19, 188-204
- JS Liu "A Gibbs sampler for the detection of subtle motifs in multiple sequences" Proc. 27th Hawaii International Conference on System
- JS Liu et al "Unified Gibbs Method for Biological Sequence Analysis" Proc. ASA Biometrics Section, 194-199.
- X Liu et al "*Bioprospector: Discovering Conserved DNA motifs in upstream regulatory regions.*" Proceedings of the Pacific Symposium on Biocomputing (PSB)
- XS Liu DL Brutlag "An Algorithm for Finding Protein-DNA Interaction Sites with Applications to Chromatin
- Lenhard, B., A. Sandelin, et al. (2003). "Identification of conserved regulatory elements by comparative genome analysis." J Biol 2(2): 13.
- Loots, G. G., I. Ovcharenko, et al. (2002). "Vista for comparative sequence-based discovery of functional transcription factor binding sites." Genome Res 12(5): 832-9.
- •Luscome et al.(2000) An overview of the structure of protein-DNA complexes Genome Biology 1.1.1-37
- Marchal et al.(2003) "Genome Specific higher order background models to improve motif detection" Trends in Genetics 11.2.61-
- LA McCue et al "Phylogenetic footprinting of transcription factor binding sites in proteobacterial genomes " Nucleic Acids Research, 29,774-782
- Moses et al.(2003) "Position specific variation in the rate of evolution of transcription binding sites" BMC Evolutionary Biology 3.19-
- Pennachio and Rubin (2001) "Genomic Strategies in Identifying Mammalian Regulatory Sequences" Nature Review Genetics 2.2.100-109
- Christoph D. Schmid, Viviane Praz, Mauro Delorenzi, Rouaïda Périer, and Philipp Bucher "*The Eukaryotic Promoter Database EPD: the impact of in silico primer extension*" Nucl. Acids. Res. 2004 32: D82-D85.
- Stormo, G. (2000) "DNA binding sites: representation and discovery" Bioinformatics 16.16-23.
- Struhl, K. (1999). "Fundamentally different logic of gene regulation in eukaryotes and prokaryotes." Cell 98(1): 1-4.
- Wasserman and Sandelin (2004) "Applied Bioinformatics for the Identification of Regulatory Elements" Nature Review Genetics 5.4.276
- Wang and Stormo (2003) "Combining phylogenetic data with co-regulated genes to identify regulatory motifs" Bioinformatics 19.18.2369-80
- Wray, G. A., M. W. Hahn, et al. (2003). "The evolution of transcriptional regulation in eukaryotes." Mol Biol Evol 20(9): 1377-419.
- B.M Webb C.E. Lawrence " BALSA: Bayesian algorithm for local sequence alignment " Nucl. Acids Res., 30 1268-77.
- SZ Qin et al "Identification of co-regulated genes through Bayesian clustering of predicted regulatory binding sites " Nature Biotechnology 21, 435-39.
- Qing Zhou et al"*Modeling within-motif dependence for transcription factor binding site predictions.*" Bioinformatics, 6, 909-916. Sciences, 245-Press
- "Immunoprecipitation Microarray Experiments" Nature Biotechnology, 20, 835-39