•Bioinformatics and Computational Biology: History and Biological Background (JH) 10.10 •The Parsimony criterion GKN 13.10

•Stochastic Models of Sequence Evolution GKN 17.10 •The Likelihood criterion GKN 20.10 •Tut: 9-10 11=12 (Friday)

•Trees in phylogenetics and population genetics GKN 24.10 •Estimating phylogenies and genealogies I GKN 27.10 •Tut: 9-10 11-12 (Friday)

•Estimating phylogenies and genealogies II GKN 31.10 •Estimating phylogenies and genealogies III 3.11 •Tut: 9-10 11-12 (Friday)

•Alignment Algorithms I (Optimisation) (JH) 7.11 •Alignment Algorithms II (Statistical Inference) (JH) 10.11 •Tut: 9-10 11-12 (Friday)

•Finding Signals in Sequences (JH) 14.11 •Stochastic Grammars and their Biological Applications: Hidden Markov Models (JH) 17.10 •Tut: 9-10 11-12 (Friday)

•Stochastic Grammars and their Biological Applications: Context Free Grammars (JH) 21.11 •RNA molecules and their analysis (JH) 24.11 •Tut: 9-10 11-12 (Friday)

Open Problems in Bioinformatics and Computational Biology I (JH) 28.11
 Possibly: Evolving Grammars, Pedigrees from Genomes
 Open Problems in Bioinformatics and Computational Biology II (GKN) 1.12
 Possibly: The phylogeny of language: traits and dates, What can FIV sequences tell us about their host cat population?
 Tut: 9-10 11-12 (Friday)

Bioinformatics and Computational Biology: History & Biological Background

Early History up to 1953

1838 Schwann and Schleiden Cell Theory

1859 Charles Darwin publishes Origin of Species

1865 Mendel discovers basic laws of inheritance (largely ignored)

1869 Miescher Discovers DNA

1900 Mendels laws rediscovered.

1944 Avery shows DNA contains genetic information

1951 Corey & Pauling Secondary structure elements of a protein.

1953 Watson & Crick proposes DNA structure and states

Proteins

Proteins: a string of amino acids. Often folds up in a well defined 3 dimensional structure. Has enzymatic, structural and regulatory functions.

Schedule

DNA & RNA

An Example: t-RNA

From Paul Higgs

The Central Dogma

History up to 1953-66

Promoter Gene

- **1955** Sanger first protein sequence Bovine Insulin
- 1957 Kendrew structure of Whale Myoglobin
- 1958 Crick, Goldschmidt,.... Central Dogma
- **1958** First quantitative method for phylogeny reconstruction (UGPMA - Sokal and Michener)
- **1959** Operon Models proposed (Jakob and Monod)
- **1966** Genetic Code Determined
- 1967 First RNA sequencing

The Genetic Code

Genetic Code: Mapping from 3nucleotides (codons) to amino acids (20) + stop codon. This 64-->21 mapping creates the distinction silent/replacement substitution.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTT	Phe	TCT	Ser	TAT	Tyr	TGT	Cys
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTC	Phe	TCC	Ser	TAC	Tyr	TGC	Cys
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	TTA	Leu	TCA	Ser	TAA	!!!	TGA	!!!
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	TTG	Leu	TCG	Ser	TAG	!!!	TGG	Trp
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTT	Leu	CCT	Pro	CAT	His	CGT	Arg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTC	Leu	CCT	\mathbf{Pro}	CAC	His	CGC	Arg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CTA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
ATT Ile ACT Th AAT Asn AGT Ser ATC Ile ACC Thr AAC Asn AGC Ser ATA Ile ACC Thr AAA Lys AGA Arg ATG Met ACG Thr AAA Lys AGA Arg GTG Met ACG Thr AAG Lys AGG Arg GTT Val GCC Ala GAT Asp GGC Gly GTC Val GCC Ala GAC Asp GCC Gly GTA Val GCA Ala GAA Glu GGC Gly GTG Val GCG Ala GAA Glu GGA Glu GTG Val GCC Ala GAA Glu GGG Gly	CTG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
ATC Ie ACC Th AAC Asn AGC Ser ATA Ile ACA Thr AAA Lys AGA Arg ATG Met ACG Thr AAG Lys AGA Arg GTG Met ACG Thr AAG Lys AGG Arg GTT Val GCT Ala GAT Asp GGT Gl GTC Val GCC Ala GAC Asp GCC Gly GTA Val GCA Ala GAA Glu GGC Gly GTA Val GCA Ala GAA Glu GGC Gly GTA Val GCG Ala GAA Glu GGA Glu GTG Val GCG Ala GAA Glu GGG Gly	ATT	Ile	ACT	Thr	AAT	Asn	AGT	Ser
ATA Ile ACA Th AAA Lys AGA Arg ATG Med ACG Thr AAG Lys AGG Arg GTT Val GCT Ala GAT Asp GCT Gly GTC Val GCC Ala GAC Asp GCC Gly GTC Val GCC Ala GAC Asp GCC Gly GTA Val GCA Ala GAA Glu GGA Gly GTG Val GCG Ala GAA Glu GGG Gly GTG Val GCG Ala GAA Glu GGG Gly	ATC	Ile	ACC	Thr	AAC	Asn	AGC	Ser
ATG Met ACG Th AAG Lys AGG Arg GTT Val GCT Ala GAT Asp GCT Gly GTC Val GCC Ala GAC Asp GCC Gly GTC Val GCA Ala GAA Glu GGA Gly GTA Val GCG Ala GAA Glu GGA Gly GTG Val GCG Ala GAA Glu GGG Gly	ATA	Ile	ACA	Thr	AAA	Lys	AGA	Arg
GTT Val GCT Ala GAT Asp GGT Gly GTC Val GCC Ala GAC Asp GGC Gly GTA Val GCA Ala GAA Glu GGA Gly GTG Val GCG Ala GAA Glu GGA Gly GTG Val GCG Ala GAG Glu GGG Gly	ATG	Met	ACG	Thr	AAG	Lys	AGG	Arg
GTCValGCCAlaGACAspGGCGlyGTAValGCAAlaGAAGluGGAGlyGTGValGCGAlaGAGGluGGGGly	GTT	Val	GCT	Ala	GAT	Asp	GGT	Gly
GTAValGCAAlaGAAGluGGAGlyGTGValGCGAlaGAGGluGGGGly	GTC	Val	GCC	Ala	GAC	Asp	GGC	Gly
GTG Val GCG Ala GAG Glu GGG Gly	GTA	Val	GCA	Ala	GAA	Glu	GGA	Gly
	GTG	Val	GCG	Ala	GAG	Glu	GGG	Gly

Substitutions	Number	Percent
Total in all codons	549	100
Synonymous	134	25
Nonsynonymous	415	75
Missense	392	71
Nonsense	23	4

Ser	Thr	Glu	Met	Cys	Leu	Met	Gly	Gly
TCA	ACT	GAG	ATG	TGT	TTA	ATG	GGG	GGA
*	*	*	*	*	*		*	**
TCG	ACA	GGG	ATA	TAT	CTA	ATG	GGT	ATA
Ser	Thr	Gly	Ile	Tyr	Leu	Met	Gly	Ile

History 1966-80

- **1969-70** Temin + Baltimore Reverse Transcriptase
- 1970 Needleman-Wunch algorithm for pairwise alignment
- **1971-73** Hartigan-Fitch-Sankoff algorithm for assigning nucleotides to inner nodes on a tree.
- 1976/79 First viral genome MS2/\$\$
- 1977/8 Sharp/Roberts Introns
- **1979** Alternative Splicing
- **1980** Mitochondrial Genome (16.569bp) and the discovery of alternative codes

Strings and Comparing Strings

1970 Needleman-Wunch algorithm for pairwise alignment for maximizing similarity

1972 Sellers-Sankoff algorithm for pairwise alignment for minimizing distance (Parsimony)

				40	32	22
Initial condition: D _{0,0} =0. D) _{i,j} := D(s1[1:i],	s2[1:j])	т			
$D = \min (D + d) (e1[i]) e^{2[i]}$;]) D + a D	لمهد	-	30	22	12
$D_{i,j} = \min\{D_{i-1,j-1} + u(s_1[1], s_2], \dots, s_{i-1,j-1}\}$	$J_{j}, D_{i,j-1} \neq g, D$	i-1,j ™g∫	G			
				20	12	2
Alignment:	CTAGG]	т			
I=2 v=5) g=10	i v		_	10	2	10
Cost 17	TT-GT		т	0	10	20
ι		L		Ŭ	~ 10	_ 20

14 9 17 4 12 22 12 22 32 20 30 40 50 30 40 G Α G

1973-5 Sankoff algorithm for multiple alignment for minimizing distance (Parsimony) and finding phylogeny simultaneously

Genes, Gene Structure & Alternative Splicing

Presently estimated Gene Number: 24.000, Average Gene Size: 27 kb
The largest gene: Dystrophin 2.4 Mb - 0.6% coding – 16 hours to transcribe.
The shortest gene: tRNA^{TYR} 100% coding
Largest exon: ApoB exon 26 is 7.6 kb Smallest: <10bp
Average exon number: 9 Largest exon number: Titin 363 Smallest: 1
Largest intron: WWOX intron 8 is 800 kb Smallest: 10s of bp
Largest polypeptide: Titin 38.138 smallest: tens – small hormones.
Intronless Genes: mitochondrial genes, many RNA genes, Interferons, Histones,...

Cartegni,L. et al.(2002) "Listening to Silence and understanding nonsense: Exonic mutations that affect splicing" Nature Reviews Genetics 3.4.285-, HMG p291-294

History 1980-95

1981 Felsenstein Proposes algorithm to calculate probability of observed nucleotides on leaves on a tree.

1981-83 Griffiths, Hudson The Ancestral Recombination Graph.

1987/89 First biological use of Hidden Markov Model (HMM) (Lander and Green, Churchill)

1991 Thorne, Kishino and Felsenstein proposes statistical model for pairwise alignment.

1994 First biological use of stochastic context free grammar (Haussler)

ccagtcg Homology: The existence of a common ancestor (for instance for 2 sequences) cagtct ccggtcg Phylogeny **Pedigree:** Only finding common ancestors. Only one ancestor. **Ancestral Recombination Graph – the ARG**

i. Finding common ancestors. ii. A sequence encounters Recombinations iii. A "point" ARG is a phylogeny

Enumerating Trees: Unrooted & valency 3

Recursion: $T_n = (2n-5) T_{n-1}$

Initialisation: $T_1 = T_2 = T_3 = 1$

(2n-5)!	4	5	6	7	8	9	10	15	20]
$\prod_{j=3}^{n} (2j-3) = \frac{1}{(n-2)!2^{n-2}}$	3	15	105	945	10345	1.4 10 ⁵	2.0 106	7.9 10 ¹²	2.2 1020	

History 1995-2005

- 1995 First prokaryotic genome – H. influenzae
- **1996** First unicellular eukaryotic genome - Yeast
- 1998 The first multi-cellular eukaryotic genome – C.elegans
- Drosophila melanogaster, Arabidopsis thaliana 2000
- Human Genome 2001
- 2002 **Mouse Genome**
- 2005 **Chimp Genome**

Genealogical Structures

Molecular Evolution and Gene Finding: Two HMMs

AGTGGTACCATTTAATGCG	P _{coding} {ATG>GTG} or
AGTGGTACTATTTAGTGCG	P _{non-coding} {ATG>GTG}

Three Questions for Hidden Structures.

What is the probability of the data? What is the most probable "hidden" configuration? What is the probability of specific "hidden" state?

Training: Given a set of instances, find parameters making them probable if they were independent.

HMM/Stochastic Regular Grammar

$0_1 \quad 0_2 \ 0_3 \quad 0_4 \ 0_5 \quad 0_6 \ 0_7 \ 0_8 \ 0_9 \quad 0_{10}$

SCFG - Stochastic Context Free Grammars

•Bioinformatics and Computational Biology: History and Biological Background (JH) •The Parsimony criterion GKN

•Stochastic Models of Sequence Evolution GKN •The Likelihood criterion GKN

•Trees in phylogenetics and population genetics GKN •Estimating phylogenies and genealogies I GKN

•Estimating phylogenies and genealogies II GKN •Estimating phylogenies and genealogies III GKN

•Alignment Algorithms I (Optimisation) (JH) •Alignment Algorithms II (Statistical Inference) (JH)

•Finding Signals in Sequences (JH) •Stochastic Grammars and their Biological Applications: Hidden Markov Models (JH)

•Stochastic Grammars and their Biological Applications: Context Free Grammars (JH) •RNA molecules and their analysis (JH)

•Open Problems in Bioinformatics and Computational Biology I (JH)

• Possibly: Evolving Grammars, Pedigrees from Genomes

•Open Problems in Bioinformatics and Computational Biology II (GKN)

Possibly: The phylogeny of language: traits and dates, What can FIV sequences tell us about their host cat population?