-Trees in phylogenetics and population genetics GKN 24.10
Estimating phylogenies and genealogies I GKN 27.10
-Tut: 9-10 11-12 (Friday)
Estimating phylogenies and genealogies II GKN 31.10
Estimating phylogenies and genealogies III 3.11
Tut: 9-10 11-12 (Friday)
Alignment Algorithms I (Optimisation) (JH) 7.11
Alignment Algorithms II (Statistical Inference) (JH) 10.11 Tut: 9-10 11-12 (Friday)

Finding Signals in Sequences (JH) 14.11
Stochastic Grammars and their Biological Applications: Hidden Markov Models (JH) 17.10
Tut: 9-10 11-12 (Friday)
Stochastic Grammars and their Biological Applications: Context Free Grammars (JH) 21.11 NA molecules and their analysis (JH) 24.1 Tut: 9-10 11-12 (Friday)

Open Problems in Bioinformatics and Computational Biology I (JH) 28.11
Possibly: Evolving Grammars, Pedigrees from Genomes
-Open Problems in Bioinformatics and Computational Biology II (GKN) 1.12
ossibly: The phylogeny of language: traits and dates, What can FIV sequences tell us about their host cat population
Tut: 9-10 11-12 (Friday)

Proteins

Proteins: a string of amino acids. Often folds up in a well defined 3 dimensional structure. Has enzymatic, structural and regulatory functions.

Bioinformatics and Computational Biology: History \& Biological Background
Early History up to 1953

1838 Schwann and Schleiden Cell Theory

1859 Charles Darwin publishes Origin of Species
1865 Mendel discovers basic laws of inheritance (largely ignored)
1869 Miescher Discovers DNA
1900 Mendels laws rediscovered.
1944 Avery shows DNA contains genetic information
1951 Corey \& Pauling Secondary structure elements of a protein.
1953 Watson \& Crick proposes DNA structure and states

DNA \& RNA

DNA: The Information carrier in the genetic material. Usually double helix.
RNA: messenger tape from DNA to protein, ${ }^{\text {pпоsphali }}$ regulatory, enzymatic and structural roles as well. More labile than DNA

An Example: t-RNA

History up to 1953-66

From Paul Higgs
\qquad
1955 Sanger first protein sequence - Bovine Insulin

1957 Kendrew structure of Whale Myoglobin

1958 Crick, Goldschmidt,.... Central Dogma

1958 First quantitative method for phylogeny reconstruction (UGPMA - Sokal and Michener)

1959 Operon Models proposed (Jakob and Monod)

1966 Genetic Code Determined

1967 First RNA sequencing

The Genetic Code

Genetic Code: Mapping from 3nucleotides (codons) to amino acids (20) + stop codon. This 64-->21 mapping creates the distinction silent/replacement substitution.

Substitutions Number Percent
Total in all codons 549
Synonymous $134 \quad 25$
$\begin{array}{ll}\text { Nonsynonymous } 415 & 75\end{array}$

Missense	392	71
Nonsense	23	4

TTT	Phe	TCT	Ser	TAT	Tyr	TGT	Cys
TTC	Phe	TCC	Ser	TAC	Tyr	TGC	Cys
TTA	Leu	TCA	Ser	TAA	!!	TGA	11
TTG	Leu	TCG	Ser	TAG	!!	TGG	Trp
CTT	Leu	CCT	Pro	CAT	His	CGT	Arg
CTC	Leu	CCT	Pro	CAC	His	CGC	Arg
CTA	Leu	CCA	Pro	CAA	Gln	CGA	Arg
CTG	Leu	CCG	Pro	CAG	Gln	CGG	Arg
ATT	Ile	ACT	Thr	AAT	Asn	AGT	Ser
ATC	Ile	ACC	Thr	AAC	Asn	AGC	Ser
ATA	Ile	ACA	Thr	AAA	Lys	AGA	Arg
ATG	Met	ACG	Thr	AAG	Lys	AGG	Arg
GTT	Val	GCT	Ala	GAT	Asp	GGT	Gly
GTC	Val	GCC	Ala	GAC	Asp	GGC	Gly
GTA	Val	GCA	Ala	GAA	Glu	GGA	Gly
GTG	Val	GCG	Ala	GAG	Glu	GGG	Gly

Ser Thr glu Met Cys Leu Met gly gly tCA ACT GAG atg tgt tra atg ggg gga tCg aca ggg ata tat cta atg ggt ata Ser Thr gly ile tyr leu met gly Ile

History 1966-80

1969-70 Temin + Baltimore Reverse Transcriptase

1970 Needleman-Wunch algorithm for pairwise alignment
1971-73 Hartigan-Fitch-Sankoff algorithm for assigning nucleotides to inner nodes on a tree.

1976/79 First viral genome - MS2/ $\phi \mathbf{X 1 7 4}$

1977/8 Sharp/Roberts Introns
1979 Alternative Splicing
1980 Mitochondrial Genome (16.569bp) and the discovery of alternative codes

Strings and Comparing Strings

1970 Needleman-Wunch algorithm for pairwise alignment for maximizing similarity

1972 Sellers-Sankoff algorithm for pairwise alignment for minimizing distance (Parsimony)

| | | 40 | 32 | 22 | 14 | 9 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1973-5 Sankoff algorithm for multiple alignment for minimizing distance (Parsimony) and finding phylogeny simultaneously

Genes, Gene Structure \& Alternative Splicing
-Presently estimated Gene Number: 24.000, Average Gene Size: 27 kb
-The largest gene: Dystrophin $2.4 \mathrm{Mb}-0.6 \%$ coding - 16 hours to transcribe
-The shortest gene: tRNA ${ }^{\text {TYR }} 100 \%$ coding
Largest exon: ApoB exon 26 is 7.6 kb Smallest: <10bp
Average exon number: 9 Largest exon number: Titin 363 Smallest: 1
-Largest intron: WWOX intron 8 is $800 \mathrm{~kb} \quad$ Smallest: 10 s of bp
Largest polypeptide: Titin 38.138 smallest: tens - small hormones
-Intronless Genes: mitochondrial genes, many RNA genes, Interferons, Histones,.
b \qquad

1. A challenge to automated annotation
2. How widespread is it?
3. Is it always functional?
4. How does it evolve?
\square Carsituluve exon $\square \square$ Atemative spliced exon

History 1980-95

1981 Felsenstein Proposes algorithm to calculate probability of observed nucleotides on leaves on a tree.

1981-83 Griffiths, Hudson The Ancestral Recombination Graph.
1987/89 First biological use of Hidden Markov Model (HMM)
(Lander and Green, Churchill)
1991 Thorne, Kishino and Felsenstein proposes statistical model for pairwise alignment.

1994 First biological use of stochastic context free grammar (Haussler)

Genealogical Structures

Homology:
The existence of a common ancestor (for instance for 2 sequences)

Phylogeny

$$
\begin{aligned}
& \text { Only finding common } \\
& \text { ancestors. Only one } \\
& \text { ancestor. }
\end{aligned}
$$

```
Pedigree:
```


Ancestral Recombination Graph - the ARG

i. Finding common ancestors.
ii. A sequence encounters Recombinations
iii. A "point" ARG is a phylogeny

Time slices

History 1995-2005
1995 First prokaryotic genome - H. influenzae
1996 First unicellular eukaryotic genome - Yeast
The first multi-cellular eukaryotic genome - C.elegans
Drosophila melanogaster, Arabidopsis thaliana
Human Genome

Mouse Genome

Chimp Genome

Recursion: $T_{n}=(2 n-5) T_{n-1}$
Initialisation: $T_{1}=T_{2}=T_{3}=1$

$\prod_{j=3}^{n-1}(2 j-3)=\frac{(2 n-5)!}{(n-2)!2^{n-2}}$| 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 15 | 105 | 945 | 10345 | 1.41^{5} | 2.010^{6} | 7.910^{12} | 2.210^{20} |

Three Questions for Hidden Structures.

What is the probability of the data?
What is the most probable "hidden" configuration?
What is the probability of specific "hidden" state?
Training: Given a set of instances, find parameters making them probable if they were independent.

HMM/Stochastic Regular Grammar

	0_{1}	0_{2}	0_{3}	0_{4}	0_{5}	0_{6}	0_{7}	0_{8}	0_{9}	0_{10}
	\circ	\circ								
H_{1}	\circ									
H_{2}	\circ									
H_{3}	\circ	$P_{O_{5}}^{H_{5}=2}=P\left(O_{5} \mid H_{5}=2\right) \sum_{H_{4}=j} P_{O_{4}}^{H_{4}=j} p_{j, 2}$								

> SCFG - Stochastic Context Free Grammars

Molecular Evolution and Gene Finding: Two HMMs

$$
\begin{array}{ll}
\text { AGTGGTACCATTTAATGCG. . . . } & P_{\text {coding }}\{A T G-->G T G\} \text { or } \\
\text { AGTGGTACTATTTAGTGCG. . . . } & P_{\text {non-coding }}\{A T G-->G T G\}
\end{array}
$$

-Bioinformatics and Computational Biology: History and Biological Background (JH) -The Parsimony criterion GKN
-Stochastic Models of Sequence Evolution GKN -The Likelihood criterion GKN
-Trees in phylogenetics and population genetics GKN
-Estimating phylogenies and genealogies I GKN
-Estimating phylogenies and genealogies II GKN
-Estimating phylogenies and genealogies III GKN
-Alignment Algorithms I (Optimisation) (JH)
-Alignment Algorithms II (Statistical Inference) (JH)
-Finding Signals in Sequences (JH)
-Stochastic Grammars and their Biological Applications: Hidden Markov Models (JH)
-Stochastic Grammars and their Biological Applications: Context Free Grammars (JH) \cdot RNA molecules and their analysis (JH)
-Open Problems in Bioinformatics and Computational Biology I (JH)

- Possibly: Evolving Grammars, Pedigrees from Genomes
-Open Problems in Bioinformatics and Computational Biology II (GKN)
Possibly: The phylogeny of language: traits and dates, What can FIV sequences tell us about their host cat population?

