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MD Simulations: from PDB to Dynamics

structure/model simulation analysis

Molecular simulations as a tool for protein structure analysis

X-ray structure: average structure at 100 K in crystal

MD simulations: dynamics at 300 K in ~cellular environment

Challenge: to relate structural dynamics to biological function



Overview

Challenges: from structural genomics & systems biology
Advances in hardware: clusters, Grid computing & HPC
Biology-driven simulations: structure-function relationships 
of proteins & more complex systems
Simulation databases & pipelines
BioSimGrid project (www.biosimgrid.org) 
IntBioSim: multi-level simulations
National Grid Service (www.ngs.ac.uk) experiments



Three Key Directions

All three aspects – need HPC

E-science issues – high-throughput & data integration

breadth – comparative 
simulations
cf. structural genomics

depth – improved 
models of interactions
cf. physical chemistry

complexity – multi-
component systems
cf. systems biology



Complex Systems: MD Simulations of Biomolecules

water, ions

minimum system

50,000 to 100,000 atoms

proteins & phospholipids

e.g. potassium channel

environment

cell interior

biologyDescribe the forces on all atoms: F = -dU(x)/dx
Integrate: F = ma (a few million times…)
Result: positions of all atoms for ~10 ns
Experimental (static) structure → in vivo dynamics
The challenge – to relate dynamics to function



Molecular Dynamics Simulations of Biomolecules

X-ray (or NMR) experiments

protein motions

static
(average)
structure

MD simulations

MD simulations of dynamics of 
biological molecules (proteins, DNA, 
membranes)

Energy functions for MD

Solvation & long range interactions

Case studies:

protein folding

protein dynamics & large systems



Potential Energy Functions for MD

Classical energy functions (no 
QM, i.e. “ball & springs” model)

bonding interactions via 
simplified (harmonic) functions

atoms treated as van der Waals
spheres with single point 
charges

Large systems – upto 106 atoms

several packages - CHARMM, 
GROMACS, GROMOS, 
AMBER, NAMD

E = EBONDED + ENON-BONDED

EBONDED = EBONDS + EANGLES + ETORSIONS

ENON-BONDED = EVAN DER WAALS + 
EELECTROSTATICS

Each term – simple function (e.g. quadratic)
But … large number of pairwise interactions



Problems of a Finite System Size

Restriction to relatively small 
systems e.g. 10x10x10 nm3 = ca. 
3x104 atoms

Finite system size introduces 
“boundary” problems

Use of periodic boundary conditions 
to mimic an infinite system

Long-range electrostatic effects are 
computationally expensive - use of 
either a cut-off or Ewald summation

Need for solvation - large numbers 
of water molecules

Timescales – 10 ns upwards (to ca. 
1 µs)



Simulation & Analysis

New approaches – on line visualisation & interactive “steering” of simulations

Calculate forces on each atom

Update position of each atom after 
timestep δt e.g. δt = 1 fs (= 10-15s)

Save atomic coordinates & energies 
every e.g. 1 ps ( = 10-12 s) to give a 
trajectory

Off-line analysis

visualisation
(movies)

sample structures
(snapshots)

quantitative analyses
e.g. structural drift vs. time
e.g. fluctuations vs. residue



Computational Resources

Conventional supercomputers -
research centres or universities 
e.g. HPCx (www.hpcx.ac.uk)
Essential for very large scale 
simulations
Fast communication between 
CPUs
Code scaling issues

PC (“beowulf”) clusters running Linux
Individual research groups
From small & hand-built (e.g. 16 nodes) 
to large & professional (e.g. 256 nodes)
Communication between CPUs via 
conventional network technology



Parallelisation of Simulations

Parallelization of codes – efficient partition of system onto CPUs

Problem of long range interactions (FFT parallelization)

GRID
internet

Cluster
ethernet

HPC
shared memory

BlueGene
custom architecture

Inter-CPU communication speed



Reality Checks

How good are the forcefields?

Sampling – need for longer simulation times

Case studies:

peptide folding – approaching NMR accuracy

K channels – improving on X-ray resolution



Trpcage Folding: A 20-mer Peptide

Time (ns)

energy vs. time

RMSD vs. time

All-Atom Structure Prediction and Folding Simulations of a Stable Protein
Simmerling et al. (2002) JACS 124:11258



Trpcage: Experiment vs. Theory

Only a very small “protein” – but successful

Need to extend to larger & more complex systems

Simulated (blue) vs. experiment (grey)

Good agreement (within experimental error)



X-ray (2.0 Å)
MacKinnon et al. (2001)

MD simulations
Shrivastava & Sansom (2000)

MD vs. X-Ray: A Reality Check



Towards HT MD

synchrotron

BioSimGRID
(data)

novel 
biology

compute GRID

Simulation pipeline

QA tools & automated deposition



Comparative Simulations

22 scorpion toxins (bind to K channels)
Toxins have the same fold
10 ns MD run for each toxin
Dynamic profile for a simple fold
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Using the GRID

Evaluation using the NGS (www.ngs.ac.uk)

run simulation
(0.5 ns segments)

check: energy, 
temperature & 
RMSD ‘on the fly’

e-mail user re: 
simulation 
status

stop job if simulation 
unstable, or

if ok, resubmit for a 
further 0.5 ns

iterate until 
simulation is 
complete

integrate with 
biosimGRID for 
storage and 
analyses

SHIDY- Shigella
dysenteriae
SALTY- Salmonella 
typhimurium
ENTAE- Enterobacter
aerogenes
SERMA- Serratia
marcescens
HAEIN- Haemophilus
influenzae



Managing MD Data: BioSimGRID

www.biosimgrid.org
Distributed database environment
Software tools for interrogation and data-mining
Generic analysis tools 
Annotation of simulation data
Collaboration: Oxford, Southampton, Bristol, London, Nottingham, York



table trajectory:
one entry for
each trajectory

table coordinate: {x, y, z}
one entry for
each atom in each residue in 
each frame in each trajectory

table atom: 
one entry for
each atom in each residue in
each trajectory

table residue: 
one entry for
each residue in each trajectory

table frame: 
one entry for
each frame in each trajectory

dictionary tablesmetadata tables

Database Design: Simplified



BioSimGrid Workflow



Back to Chemistry…

Ions and water in the channel – MD on >10 ns timescale reveals ion permeation 
Domene & Sansom (2003) Biophys J 85:2787

Ab initio calculations for accurate energetics Guidoni & Carloni (2002) BBA 1563:1

channel & membrane

ions & water 
in the filter electronic 

polarisation



QM

drug binding

protein motions

drug diffusion

Future Directions: Multiscale Biomolecular Simulations

Membrane bound enzymes – major drug targets (cf. ibruprofen, anti-depressants, 
endocannabinoids); gated access to active site coupled to membrane fluctuations
Complex multi-scale problem: QM/MM; ligand binding; membrane/protein 
fluctuations; diffusive motion of substrates/drugs in multiple phases
Need for integrated simulations on GRID-enabled HPC resources

Bristol

Southampton

Oxford

London



Computational Challenges

Need to integrate HPC, cluster & database resources

Collaboration: Oxford, Southampton, Bristol, London, Manchester

IntBioSim

HPCx

Linux
cluster

BioSimGRID database
www.biosimgrid.org



Towards Systems Biology

Aims: in silico knock outs and/or drug treatments

Need to integrate rigorously if to deliver accurate & 
hence biomedically useful results

Problem: how to link the different levels of description

Noble (2002) Nature Rev. 
Mol. Cell.Biol. 3:460

molecular

cellular

organism



From Structure Towards Function

HT modelling & simulation
Channel & transporter model databases

Coarse-grained simulations

Physiological behaviour
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