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Abstract

We give a new, simple construction of the α-stable tree for α ∈ (1, 2]. We obtain it as
the closure of an increasing sequence of R-trees inductively built by gluing together
line-segments one by one. The lengths of these line-segments are related to the
the increments of an increasing R+-valued Markov chain. For α = 2, we recover
Aldous’ line-breaking construction of the Brownian continuum random tree based on
an inhomogeneous Poisson process.
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Introduction

The stable trees were introduced by Duquesne and Le Gall [20, 21], building on
earlier work of Le Gall and Le Jan [35]. These trees are intimately related to continuous
state branching processes, fragmentation and coalescence processes, and appear as
scaling limits of various models of trees and graphs. More precisely, they form a family
of random compact R-trees

(Tα, α ∈ (1, 2])

which represent the genealogies of the continuous-state branching processes with
branching mechanism λ 7→ cλα for α ∈ (1, 2] (where the choice of the constant c fixes the
normalization of the tree of index α). As such, they constitute all of the possible scaling
limits of Galton–Watson trees whose offspring distributions have mean 1 and lie in the
domain of attraction of a stable law of parameter α ∈ (1, 2], conditioned to have a fixed
total progeny n. In particular, by well-known theorems of Aldous [6] and Duquesne [18],
if the offspring distribution (pk)k≥0 of the Galton–Watson tree has mean 1 and variance
σ2 ∈ (0,∞) then, writing TGW

n for the conditioned tree, we obtain

TGW
n√
n

(d)−→ 1

σ
√

2
· T2, (0.1)
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as n→∞, in the sense of the Gromov-Hausdorff distance. The tree T2 is
√

2 times the
Brownian continuum random tree (CRT) of Aldous [4, 5, 6], which has also been shown
to be the scaling limit of various other natural classes of trees [27, 39, 42], graphs and
maps [3, 10, 12, 16, 32]. If, on the other hand, pk ∼ Ck−1−α as k → ∞ for α ∈ (1, 2),
then

TGW
n

n1−1/α

(d)−→
(

α− 1

CΓ(2− α)

)1/α

α1/α−1 · Tα, (0.2)

as n→∞, again in the Gromov-Hausdorff sense. We have chosen a somewhat unusual
normalization of our trees in order to streamline the presentation of our results; for
α ∈ (1, 2], our Tα is α times the standard α-stable tree of Duquesne and Le Gall (which
had for branching mechanism λ 7→ λα). Let us briefly recall the formalism used here: an
R-tree is a metric space (T , d) such that for every pair of points x, y ∈ T , there exists
an isometry ϕx,y : [0, d(x, y)]→ T such that ϕx,y(0) = x, ϕx,y(d(x, y)) = y, and the image
of this isometry is the unique continuous injective path from x to y. In this paper, we
always consider rooted R-trees (by simply distinguishing a vertex) and we identify two
R-trees when there exists a root-preserving isometry between them. Abusing notation
slightly, we will also use (T , d) to represent an isometry class. The set of compact rooted
(isometry classes of) R-trees is then endowed with the Gromov-Hausdorff distance, which
makes it Polish. We refer to [11, 25, 33] for the details and for more background on this
topic. We will often use the notation T instead of (T , d), the distance being implicit. We
will then write a · T for the tree (T , ad).

In the last few years, the geometric and fractal aspects of stable trees have been
studied in great detail: Hausdorff and packing dimensions and measures [21, 22, 19, 26];
spectral dimension [13]; spinal decompositions and invariance under uniform re-rooting
[29, 23]; fragmentation into subtrees [40, 41]; and embeddings of stable trees into
each other [14]. The stable trees are also related to Beta-coalescents [1, 9]; intervene
in the description of other scaling limits of random maps [34, 43, 36]; and have dual
graphs, called the stable looptrees [17], which also appear as scaling limits of natural
combinatorial models.

We now proceed to introduce our new construction. In order to do so, we recall that
the stable tree Tα is naturally endowed with a uniform probability measure µα, which
is supported on its set of leaves [21]. This measure can be obtained by considering
the empirical measure on the vertices of TGW

n in (0.1) and (0.2): we then have the
joint convergence of these measured rescaled conditioned Galton-Watson trees to the
measured tree (Tα, µα).

In general, the tree Tα may be viewed in several equivalent ways. We may also think
of it as the R-tree coded by an excursion of the so-called stable height process which, in
the case of the Brownian CRT, is simply a (constant multiple of a) standard Brownian
excursion. For α ∈ (1, 2), the stable height process is a rather complicated random
process; see [20] for this perspective, which we will not consider further here. Another
way to define Tα is via its random finite-dimensional distributions, which describe the
joint distribution as p varies of the subtrees of Tα spanned by the root and p uniformly-
chosen leaves. More precisely, conditionally on (Tα, µα), let (Xi, i ≥ 1) be leaves sampled
independently according to the measure µα. Let

Tα,p := ∪0≤i,j≤p[[Xi, Xj ]] (0.3)

be the subtree of Tα spanned by the root X0 and the p leaves X1, . . . , Xp, for p ≥ 1 (here,
[[Xi, Xj ]] denotes the geodesic line-segment between Xi and Xj). It turns out that the
sample of leaves (Xi, i ≥ 1) is dense in Tα. Therefore, we can almost surely recover Tα
as the completion of the increasing union ∪p≥1Tα,p. In particular, the laws of the trees
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(Tα,p, p ≥ 1) are sufficient to specify the law of Tα. It is this last perspective which we
will pursue in this paper.

In the case of the Brownian CRT, the subtrees spanned by the root and p leaves
chosen independently at random have a particularly beautiful description, due to Al-
dous [4], in terms of a Poisson line-breaking construction. We give a somewhat informal
presentation for ease of comprehension; this can be readily turned into a formal metric
space construction. Consider an inhomogeneous Poisson process on R+ of intensity
measure tdt. Let R0 = 0 and let R1, R2, . . . be the locations of the points of the process in
increasing order. For k ≥ 1, let Sk = Rk −Rk−1. Now proceed to build trees (Tp, p ≥ 1)

as follows.

Aldous’ line-breaking construction

• T1 consists of a closed line-segment of length S1 (rooted at one end).

• For p ≥ 2, take a closed line-segment of length Sp and glue it onto Tp−1

at a point chosen uniformly (i.e. according to the normalized Lebesgue
measure on Tp−1) at random.

This yields a nested sequence of rooted R-trees (Tp, p ≥ 1) which have the same joint
distribution as

(
1√
2
· T2,p, p ≥ 1

)
and which thus leads to a version of 1√

2
· T2.

The purpose of this paper is to show that there exists an analogous line-breaking
construction of the α-stable tree for a general α ∈ (1, 2). This construction is necessarily a
little more complex, since it also glues segments to branch-points. We refer to Duquesne
and Winkel [24] and Le Jan [37] for other tree-growth procedures yielding stable trees,
via consistent Bernoulli percolation on Galton-Watson trees with edge-lengths in [24]
and via erasing small parts of the tree near the leaves in [37]. Marchal [38] gives an
algorithm which generates a sequence of rooted discrete trees (T̃p)p≥1 which has the
same distribution as the sequence of the combinatorial shapes of the subtrees Tα,p of
Tα, p ≥ 1. We will recover Marchal’s algorithm as an aspect of ours. The novelty of our
approach is that we will construct an increasing sequence of trees (Tp, p ≥ 1) having the
same distribution as (Tα,p, p ≥ 1) directly.

Other models of R-trees built by line-breaking have been studied in the literature. We
mention, in particular, the inhomogeneous continuum random trees of Aldous and Pitman
[7] and the random trees constructed by aggregation of Curien and Haas [15] (see also
Amini, Devroye, Griffiths and Olver [8]), which generalize the above construction of
Aldous by replacing the sequence (Sp, p ≥ 1) by any sequence of positive numbers.

The rest of this paper is structured as follows. In Section 1, we first introduce some of
the main distributional ingredients of our construction, before defining a Markov chain
on R+ which plays the analogous role to Aldous’ inhomogeneous Poisson process. We
then give two versions of our line-breaking construction, and shed new light on several
distributional properties of the tree Tα. In Section 2, we state and prove various results
concerning generalized Mittag-Leffler and Dirichlet distributions, which play a key part
in our proofs. The proofs of the results in Section 1 may then be found in Section 3. We
conclude the paper in Section 4 with complements and connections to various known
results in the literature.

1 Main result

In order to fix notation, we briefly recall the definitions of some basic distributions
which we will use in the rest of the paper. The Gamma distribution with parameters
γ > 0 and λ > 0 has density

λγ

Γ(γ)
xγ−1e−λx
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with respect to the Lebesgue measure on (0,∞). Since we will always take λ = 1 in
the following, we will write Gamma(γ) for this distribution. For a, b > 0, the Beta(a, b)

distribution has density
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1

with respect to the Lebesgue measure on (0, 1). For parameters a1, a2, . . . , an > 0, the
Dirichlet distribution Dir(a1, a2, . . . , an) has density

Γ(
∑n
i=1 ai)∏n

i=1 Γ(ai)

n∏
j=1

x
aj−1
i

with respect to the Lebesgue measure on {(x1, . . . , xn) ∈ [0, 1]n :
∑n
i=1 xi = 1}.

1.1 The generalized Mittag-Leffler distribution

Let us now introduce the generalized Mittag-Leffler distribution, which will play an
important part in the sequel. For β ∈ (0, 1), let σβ be a stable random variable having
Laplace transform

E
[
e−λσβ

]
= exp(−λβ), λ ≥ 0. (1.1)

Following Pitman [45], for 0 < β < 1, θ > −β, we say that a random variable M has the
generalized Mittag-Leffler distribution ML(β, θ) if, for all suitable test functions f ,

E [f(M)] = Cβ,θE
[
σ−θβ f

(
σ−ββ

)]
, (1.2)

where Cβ,θ is the appropriate normalizing constant. (The distribution ML(β, 0) is the
Mittag-Leffler distribution with parameter β, where the name derives from the fact
that the moment generating function of this distribution is the usual Mittag-Leffler
function. Note that there are two distributions referred to by this name: the other has
the Mittag-Leffler function implicated in the definition of its cumulative distribution
function rather than its moment generating function; see, for example, Pillai [44].)

Let gβ be the density of σ−ββ , so that ML(β, θ) has density

gβ,θ(t) =
Γ(θ + 1)

Γ(θ/β + 1)
tθ/βgβ(t), t ≥ 0.

See Section 0.5 of Pitman [45] for an expression for gβ, but note that it has a simple
form only when β = 1/2, in which case,

g1/2(t) =
1√
π

exp(−t2/4), t ≥ 0.

This entails that ML(1/2, p− 1/2) has density

g1/2,p−1/2(t) =
1

22p−1Γ(p)
t2p−1 exp(−t2/4), t ≥ 0,

and shows, in particular, that ML(1/2, p − 1/2) = 2
√

Gamma(p) (with a slight abuse of
notation).

1.2 A Markov chain

A key element in our line-breaking construction is an increasing R+-valued Markov
chain (Mp, p ≥ 1), which will play a role similar to that of the inhomogeneous Poisson
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process in the Brownian case. The process (Mp, p ≥ 1) has two principal properties.
Firstly, for each p ≥ 1, we have

Mp ∼ ML (1− 1/α, p− 1/α) .

Secondly, for p ≥ 1, the backward transition from Mp+1 to Mp is given by

Mp = Mp+1 · βp, (1.3)

where βp is independent of Mp+1 and

βp ∼ Beta

(
(p+ 1)α− 2

α− 1
,

1

α− 1

)
. (1.4)

Given that it is Markovian, these two properties completely characterize the distribution
of the process (Mp, p ≥ 1). It remains to check that such a Markov chain (Mp, p ≥ 1)

indeed exists. We do so in the following lemma, which will be proved in Section 2.1.

Lemma 1.1. (i) Let β1, β2, . . . be independent random variables such that βp has the
Beta distribution (1.4). Then, there exists a random variable M1 ∼ ML(1− 1/α, 1− 1/α)

such that

α

α− 1
e−1/αn1/α

n−1∏
i=1

βi
a.s.−→
n→∞

M1.

Moreover, for p ≥ 2,

Mp :=
M1

β1 . . . βp−1
(1.5)

has ML(1− 1/α, p− 1/α) distribution, independently of β1, . . . , βp−1.
(ii) The process (Mp, p ≥ 1) is a time-homogeneous Markov chain with transition

density from state m to state m′ given by

p(m,m′) =
(m′ −m)

2−α
α−1m′g1−1/α(m′)

αΓ( α
α−1 )g1−1/α(m)

, m′ ≥ m. (1.6)

We observe that either equation (1.5) or equation (1.6) could have served as our
definition of the process (Mp, p ≥ 1). In Section 4, we will explain why generalized
Mittag-Leffler distributions arise in our line-breaking construction. We now check that
this process really is the analogue of (a constant times) the inhomogeneous Poisson
process in Aldous’ construction.

Lemma 1.2. For α = 2, Mp, p ≥ 1 are the points, in increasing order, of an inhomoge-
neous Poisson process on R+ of intensity tdt/2.

Proof. It suffices to show that M2
p/4, p ≥ 1 are the points of a standard Poisson process

on R+. From the expression (1.6) for the transition probabilities and the fact that
g1/2(t) = π−1/2 exp(−t2/4), we immediately see that M2

p+1 −M2
p is independent of M2

p

and has density proportional to exp(−s/4).

1.3 Line-breaking construction

Rooted trees with edge-lengths. Henceforth, we will mainly work with rooted (finite)
discrete trees with edge-lengths. We think of such an object as being defined by (1)
its combinatorial structure, which is a finite connected acyclic (unlabelled) graph with
no vertices of degree 2 and a distinguished vertex called the root, and (2) a sequence
of lengths (positive real numbers) indexed by the set of edges of the combinatorial
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structure. We will call the combinatorial structure of a tree with edge-lengths its shape.
Note that our trees with edge-lengths and their shapes are unordered.

Such a tree with edge-lengths can naturally be turned into an R-tree by viewing its
edges as line-segments. Reciprocally, it is obvious that any compact rooted R-tree with a
finite number of leaves and a root of degree 1 can be seen as a tree with edge-lengths as
defined above, in a unique manner. In the following, we will use these two formalisms
interchangeably.
Two (equivalent) line-breaking algorithms. We now use the Markov chain
(Mp, p ≥ 1) to construct an increasing sequence of rooted trees with edge-lengths
(Tp, p ≥ 1). For all p ≥ 1, Tp will be a tree with p leaves. We let Tp denote its shape and |Tp|
its number of non-root vertices. Finally, we will let Lp denote the total length of Tp, that is
the sum of the lengths of its edges. Observe that the distribution Beta(1, (2− α)/(α− 1))

converges weakly to a point mass at 1 as α ↑ 2. We will, therefore, use the convention
that B ∼ Beta(1, 0) means B = 1 almost surely.

Line-breaking construction of a stable tree (I)

• Start with M1 and set L1 = M1. Let T1 be the tree consisting of a closed
line-segment of length L1 (rooted at one end).

• For p ≥ 1, given Tp:

1. Let B ∼ Beta(1, 2−α
α−1 ) be independent of everything we have already

constructed. We will glue a new branch (i.e. a closed line-segment)
of length (Mp+1 −Mp) ·B onto Tp, at a point to be specified.

2. In order to find where to glue the new branch, we first select either
the set of edges of Tp, with probability Lp/Mp, or the set of vertices
of Tp, with the complementary probability.

3. If we select the edges in 2., glue the new branch at a point chosen
according to the normalized Lebesgue measure on Tp.

4. If we select the vertices in 2., pick a vertex at random in such a way
that a vertex of degree d ≥ 3 is chosen with probability

d− 1− α
pα− 1− |Tp|(α− 1)

,

(Note that vertices of degree 1 or 2 cannot be selected.) Then glue
the new branch to the selected vertex.

Remark 1.3. In the case α = 2, we recover the line-breaking construction of Aldous (up
to a constant scaling factor), since then B ≡ 1, hence Lp = Mp, and the new branch is
always glued uniformly at random to the pre-existing tree. (In particular, no vertices of
degree exceeding 3 are ever created.)

Remark 1.4. When 1 < α < 2 and p ≥ 2, it is not hard to check that |Tp|(α− 1) < pα− 1,
since |Tp| ≤ 3 + 2(p− 2), and then inductively on p ≥ 2 we have∑

d≥3

(d− 1− α)#{vertices of degree d in Tp} = pα− 1− |Tp|(α− 1).

Hence, the process whereby we select vertices is well-defined.

Note that in this algorithm the total length Lp+1 of Tp+1 is implicitly given by

Lp+1 = Lp + (Mp+1 −Mp) ·B,

where B is the Beta random variable introduced in step 1. Also implicit in this construc-
tion is a random weight Mp − Lp which, once renormalized by Mp, gives the probability
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of picking the set of vertices of Tp rather than its set of edges. It is also possible to think
of assigning individual random weights to each of the vertices of Tp in such a way that
they sum to Mp − Lp and the relative weight of a vertex gives the probability that it
is picked. This is the second version of our algorithm. In contrast to the first version,
the new branch is now attached to a vertex selected with a probability proportional
to its weight rather than just depending on its degree. In the following, we denote by
{W (p)

v , v ∈ Ip} the weights of the internal vertices of Tp, where Ip denotes this set of
internal vertices.

Line-breaking construction of a stable tree (II)

• Start with M1 and set L1 = M1. Let T1 be the tree consisting of a closed
line-segment of length L1 (rooted at one end).

• For p ≥ 1, given Tp:

1. Let B ∼ Beta(1, 2−α
α−1 ) be independent of everything we have already

constructed. We will glue a new branch of length (Mp+1 −Mp) · B
onto Tp, at a position to be specified.

2. In order to find where to glue the new branch, select the set of
edges of Tp with probability Lp/Mp, or the internal vertex v ∈ Ip with

probability W (p)
v /Mp.

3. If we selected the edges in 2., then glue the new branch at a point
chosen according to the normalized Lebesgue measure on Tp and
assign the new internal vertex weight (Mp+1 −Mp) · (1−B).

4. If we selected the internal vertex v in 2., glue the new branch to it
and add (Mp+1 −Mp) · (1−B) to its weight, i.e. set

W (p+1)
v := W (p)

v + (Mp+1 −Mp) · (1−B).

Note that the sum of the elements of {W (p)
v , v ∈ Ip} is indeed Mp − Lp. In Section 3,

we will prove that the increasing sequences of trees built from these two algorithms have
the same distributions. Now recall that (Tα,p, p ≥ 1) denotes the increasing sequence of
finite-dimensional marginals of Tα, as defined in (0.3). Our main result is the following.

Theorem 1.5. The sequences of trees (Tp, p ≥ 1) and (Tα,p, p ≥ 1) have the same distri-
bution. As a consequence, a version of the stable tree Tα is obtained as the completion
of the union ∪p≥1Tp.

This theorem will be proved in Section 3.
In the next proposition, we use intermediate results established in the proof of

this theorem to elucidate the distributions of the lengths in Tα,p (in both unconditional
and conditional versions). Parts of these results can be either deduced from work of
Duquesne and Le Gall [20] (see Theorem 3.1 and Proposition 3.6 below) or other work
on stable trees (see Section 4). In the following, we write Tα,p for the tree-shape of Tα,p.
Proposition 1.6. (i) Let t be a discrete rooted tree with p ≥ 2 leaves. Then, conditionally
on Tα,p = t, the sequence of edge-lengths of Tα,p is distributed as

Mp ·B|t| · (D1, . . . , D|t|),

these three random variables being independent, with Mp ∼ ML(1− 1/α, p− 1/α),
B|t| ∼ Beta

(
|t|, pα−1

α−1 − |t|
)

and (D1, . . . , D|t|) ∼ Dir(1, . . . , 1).
(ii) The total length of the tree Tα,p, conditionally on |Tα,p| = q, has the same distribu-

tion as
Mp ·Bq
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where Mp ∼ ML(1− 1/α, p− 1/α) and Bq ∼ Beta
(
q, pα−1

α−1 − q
)

are independent.

(iii) The total length of the tree Tα,p has the same distribution as

Mp ·

p−1∏
j=1

βj +

p−1∑
i=1

Bi(1− βi)
p−1∏
j=i+1

βj

 (1.7)

where all of the random variables in this expression are independent, B1, . . . , Bp−1 are
distributed as Beta(1, 2−α

α−1 ) and the βi, i ≥ 1 are those defined in (1.4).

(Note that we use the convention that the sum over the empty set is 0, whereas the
product over the empty set is 1).

We conclude this section with some observations about our two algorithms.

Remark 1.7. The edge-lengths and weights W (p) of Tp, all divided by Mp, are indepen-
dent of (Mp,Mp+1, . . .). Consequently, the chain (Mp,Mp+1, . . .) is independent of the
shapes T1, . . . , Tp+1 (this follows from both Algorithms (I) and (II)). This observation will
be useful later. Furthermore, using Lemma 1.1, we note that the probability of selecting
the set of edges has an almost sure limit:

Lp
Mp

a.s.−→
p→∞

E[B] = α− 1.

This can be seen by applying the strong law of large numbers for weighted averages (for
example, Theorem 3 of [30]).

Finally, we note that there exists a very easy line-breaking construction of a randomly
rescaled version of the stable tree Tα, in the sense that the process used to break the
half-line R+ is very simple. Indeed, let X1 be a leaf of Tα sampled according to µα and
let ht(X1) denote its distance to the root. Then introduce

T norm
α :=

1

ht(X1)
· Tα

and consider the increasing process (Mp, p ≥ 1) defined by M1 = 1 and

Mp = (β1 . . . βp−1)−1,

for p ≥ 2, where the sequence of independent Beta random variables (βp, p ≥ 1) is that
introduced in Lemma 1.1.

Corollary 1.8. If we run version (I) or (II) of the line-breaking algorithm with the
sequence (Mp, p ≥ 1) instead of (Mp, p ≥ 1), we obtain a sequence of trees (T p, p ≥ 1)

such that the completion of the increasing union ∪p≥1T p is distributed as T norm
α .

2 Distributional relationships

In this section we gather some elementary but useful results on generalized Mittag-
Leffler and Dirichlet distributions. In particular, we prove Lemma 1.1.

2.1 More on the generalized Mittag-Leffler distribution

Let 0 < β < 1 and θ > −β, recall the definition of the generalized Mittag-Leffler
ML(β, θ) distribution given in (1.2). From Pitman [45], ML(β, θ) has kth moment

Γ(θ)Γ(θ/β + k)

Γ(θ/β)Γ(θ + kβ)
=

Γ(θ + 1)Γ(θ/β + k + 1)

Γ(θ/β + 1)Γ(θ + kβ + 1)
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and the collection of moments for k ∈ N uniquely characterizes this distribution. Using
this fact, and observing that the Beta(a, b) distribution has qth moment

Γ(a+ b)Γ(a+ q)

Γ(a)Γ(a+ b+ q)

for q ≥ 0, the distributional relationship implied by (1.3) is immediate. The consideration
of moments also gives a straightforward proof of the following useful characterization.

Lemma 2.1. Suppose that G ∼ Gamma(θ) and M are independent. Then M ∼ ML(β, θ)

if and only if GβM ∼ Gamma(θ/β).

We will now prove Lemma 1.1.

Proof of Lemma 1.1. (i) We first observe that if

Xn :=
Γ(n+ 1− 1/α)Γ(2− 2/α)

Γ(2− 1/α)Γ(n+ 1− 2/α)

n−1∏
i=1

βi

then (Xn, n ≥ 1) is a non-negative martingale of mean 1 in its natural filtration. Indeed,
the process (Xn)n≥1 is clearly integrable, we have X1 = 1 and, by standard properties of
the gamma function, for n ≥ 1,

Xn+1 =
n+ 1− 1/α

n+ 1− 2/α
βnXn.

If Fn = σ(Xm : 1 ≤ m ≤ n) then

E [Xn+1|Fn] =
n+ 1− 1/α

n+ 1− 2/α
E [βn]Xn = Xn.

It follows from the martingale convergence theorem that Xn → X∞ almost surely as
n→∞, for some random variable X∞. By Stirling’s approximation,

Γ(n+ 1− 1/α)

Γ(n+ 1− 2/α)
∼ e−1/αn1/α

in the sense that the ratio of the left- and right-hand sides converges to 1 as n → ∞.
Hence,

Γ(2− 2/α)

Γ(2− 1/α)
e−1/αn1/α

n−1∏
i=1

βi → X∞

almost surely, as n→∞. For k ≥ 2, we have

E
[
Xk
n

]
=

(
Γ(n+ 1− 1/α)Γ(2− 2/α)

Γ(2− 1/α)Γ(n+ 1− 2/α)

)k n−1∏
i=1

Γ
(

(i+1)α−1
α−1

)
Γ
(

(i+1)α−2
α−1 + k

)
Γ
(

(i+1)α−2
α−1

)
Γ
(

(i+1)α−1
α−1 + k

)
=

Γ(1− 1/α)k!

Γ((k + 1)(1− 1/α))

(
Γ(2− 2/α)

Γ(1− 1/α)

)k

×
(

Γ(n+ 1− 1/α)

(1− 1/α)Γ(n+ 1− 2/α)

)k Γ
(
nα−1
α−1

)
Γ(n− 1/α+ k(1− 1/α))

Γ
(
nα−1
α−1 + k

)
Γ(n− 1/α)

,

where, for the second equality, we have used the relation Γ(a+ 1) = aΓ(a) and then that
much of the product telescopes. Thus, by another application of Stirling’s approximation,

E
[
Xk
n

]
−→
n→∞

Γ(1− 1/α)k!

Γ((k + 1)(1− 1/α))

(
Γ(2− 2/α)

Γ(1− 1/α)

)k
.
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Hence, (Xn, n ≥ 1) is bounded in Lk for any k ≥ 1 and so Xn also converges in Lk.
Moreover,

E

[(
Γ(1− 1/α)

Γ(2− 2/α)
X∞

)k]
=

Γ(1− 1/α)k!

Γ((k + 1)(1− 1/α)
,

and so M1 := Γ(1−1/α)
Γ(2−2/α)X∞ ∼ ML(1− 1/α, 1− 1/α). It follows that

α

α− 1
e−1/αn1/α

n−1∏
i=1

βi →M1

almost surely, as required.
To conclude, we observe that Mp := M1

∏p−1
i=1 β

−1
i is the almost sure limit of

α

α− 1
e−1/αn1/α

n−1∏
i=p

βi

and is, therefore, independent of
∏p−1
i=1 βi. Its distribution follows straightforwardly by

considering moments.
(ii) The Markov property follows from the fact that the distribution of Mp+1 = β−1

p ·Mp

conditional on M1, . . . ,Mp is the same as that of β−1
p ·Mp conditional on Mp, β1, . . . , βp−1.

This is, in turn, the same as the distribution of β−1
p ·Mp conditional on Mp, since βp is

independent of β1, . . . , βp−1.
For p ≥ 1, Mp+1 has density

Γ(p+ 2− 1/α)

Γ
(
α(p+1)−1
α−1 + 1

) (m′)
α(p+1)−1
α−1 g1−1/α(m′)

and βp has density

Γ
(
α(p+1)−1
α−1

)
Γ
(
α(p+1)−2
α−1

)
Γ
(

1
α−1

) tαp−1
α−1 (1− t)

2−α
α−1 .

We have Mp = Mp+1βp, so let m = m′t and change variables from (t,m′) to (m,m′); the
Jacobian of this transformation is 1/m′. It follows that the joint distribution of Mp and
Mp+1 is

Γ (p+ 1− 1/α)

Γ
(
αp−1
α−1 + 1

)
αΓ
(

α
α−1

)mαp−1
α−1 (m′ −m)

2−α
α−1m′g1−1/α(m′).

Hence, the conditional distribution of Mp+1 given Mp = m is equal to

p(m,m′) =
(m′ −m)

2−α
α−1m′g1−1/α(m′)

αΓ
(

α
α−1

)
g1−1/α(m)

.

2.2 Dirichlet distributions

We now recall a standard construction of the Dirichlet distribution, Dir(a1, . . . , an) for
a1, a2, . . . , an > 0. Let

Γai ∼ Gamma(ai)

be independent for 1 ≤ i ≤ n. Then,(
Γa1∑n
i=1 Γai

, . . . ,
Γan∑n
i=1 Γai

)
∼ Dir(a1, . . . , an) and

n∑
i=1

Γai ∼ Gamma

(
n∑
i=1

ai

)
, (2.1)
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independently. This is the main ingredient needed in the four following lemmas, which
will be fundamental to the proof of Theorem 1.5. Henceforth, Γa will always denote a
Gamma(a) random variable.

Note first that it is easy to see from (2.1) that if (D1, . . . , Dn) ∼ Dir(a1, . . . , an), then

(D1 +D2, D3, . . . , Dn) ∼ Dir(a1 + a2, a3, . . . , an).

We state a standard result which appears as Lemma 17 of [2].

Lemma 2.2. Suppose that (D1, D2, . . . , Dn) ∼ Dir(a1, a2, . . . , an). Let I be the index of a
size-biased pick from amongst the co-ordinates: in other words,

P (I = i|D1, D2, . . . , Dn) = Di,

for 1 ≤ i ≤ n. Then
P (I = i) =

ai
a1 + a2 + . . .+ an

for 1 ≤ i ≤ n and, conditionally on I = i,

(D1, D2, . . . , Dn) ∼ Dir(a1, . . . , ai−1, ai + 1, ai+1, . . . , an).

The next lemma follows straightforwardly from (2.1).

Lemma 2.3. Suppose that (D1, D2, . . . , Dn) ∼ Dir(a1, a2, . . . , an). Then, for 1 ≤ p ≤ n−1,

(D1, . . . , Dp) = Bp · (D̃1, . . . , D̃p),

where Bp ∼ Beta
(∑p

i=1 ai,
∑n
i=p+1 ai

)
and (D̃1, . . . , D̃p) ∼ Dir(a1, . . . , ap) are indepen-

dent.

The proofs of the two following lemmas are very similar. We only develop the first
one.

Lemma 2.4. Consider two integers p, k ≥ 1 such that p+ 1 ≤ k ≤ 2p− 1 and a strictly
positive sequence (a1, . . . , ak−p) such that

k−p∑
i=1

ai =
(p+ 1)α− 2

α− 1
− k.

Consider independent random variables B ∼ Beta
(
1, 2−α

α−1

)
, Bp ∼ Beta

(
(p+1)α−2
α−1 , 1

α−1

)
and

(D1, . . . , Dk, Dk+1, . . . , D2k−p) ∼ Dir
(

1, . . . , 1︸ ︷︷ ︸
k

, a1, . . . , ak−p
)
.

Then, for any 1 ≤ i∗ ≤ k − p, the random vector

Bp ·

(
D1, . . . , Dk,

(1−Bp)B
Bp

, Dk+1, . . . , Dk+i∗−1, Dk+i∗ +
(1−Bp)(1−B)

Bp
, Dk+i∗+1, . . . , D2k−p

)
is distributed as

Dir

(
1, . . . , 1︸ ︷︷ ︸
k+1

, a1, . . . , ai∗−1, ai∗ +
2− α
α− 1

, ai∗+1, . . . , ak−p

)
.

Proof. We use the construction of Dirichlet and Beta random variables via independent
Gamma random variables. Let Γ

(i)
1 , 0 ≤ i ≤ k, Γaj , 1 ≤ j ≤ k− p and Γ 2−α

α−1
be independent

Gamma random variables and note that, without loss of generality, we may assume that

B =
Γ

(0)
1

Γ
(0)
1 + Γ 2−α

α−1

, Bp =

∑k
i=1 Γ

(i)
1 +

∑k−p
i=1 Γai∑k

i=1 Γ
(i)
1 +

∑k−p
i=1 Γai + Γ

(0)
1 + Γ 2−α

α−1

,
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and

Dj =
Γ

(j)
1∑k

i=1 Γ
(i)
1 +

∑k−p
i=1 Γai

, 1 ≤ j ≤ k, Dj =
Γaj−k∑k

i=1 Γ
(i)
1 +

∑k−p
i=1 Γai

, k+1 ≤ j ≤ 2k−p.

Let Γtotal =
∑k
i=1 Γ

(i)
1 +

∑k−p
i=1 Γai + Γ

(0)
1 + Γ 2−α

α−1
. This entails that

Bp ·Dj =
Γ

(j)
1

Γtotal
, 1 ≤ j ≤ k, Bp ·Dj =

Γaj−k
Γtotal

, k + 1 ≤ j ≤ 2k − p

and that

(1−Bp) ·B =
Γ

(0)
1

Γtotal
, Bp ·Dk+i∗ + (1−Bp) · (1−B) =

Γai∗ + Γ 2−α
α−1

Γtotal
.

The result follows.

The next result is proved similarly.

Lemma 2.5. Consider two integers p, k ≥ 1 such that p ≤ k ≤ 2p − 1 and a strictly
positive sequence (a1, . . . , ak−p) such that

k−p∑
i=1

ai =
pα− 1

α− 1
− k,

with the convention that this sequence is empty if k = p. Consider independent random

variables B ∼ Beta
(

1, 2−α
α−1

)
, Bp ∼ Beta

(
(p+1)α−2
α−1 , 1

α−1

)
, U ∼ U(0, 1) and

(D1, D2, . . . , Dk, Dk+1, . . . , D2k−p) ∼ Dir
(
2, 1, . . . , 1, a1, . . . , ak−p

)
.

Then

Bp ·
(
D1U,D1(1− U), D2, . . . , Dk,

(1−Bp)B
Bp

, Dk+1, . . . , D2k−p,
(1−Bp)(1−B)

Bp

)
is distributed as

Dir

(
1, . . . , 1︸ ︷︷ ︸
k+2

, a1, . . . , ak−p,
2− α
α− 1

)
.

3 Edge-lengths, weights and shapes

The role of this section is to prove Theorem 1.5 for 1 < α < 2. In order to do this,
we will first compute the joint distribution of the sequences of lengths and weights
appearing in version (II) of the algorithm. In particular, we will use this to check that
the two versions of the algorithm are equivalent (Section 3.1). It will also entail that the
distributions of the sequences of edge-lengths given the shape of the tree are the same
for Tp and Tα,p (Section 3.2). Then we will check that the sequence of shapes of Tp, p ≥ 1

and of Tα,p, p ≥ 1 are also identically distributed (Section 3.3), which will lead us to the
identity in distribution of (Tp, p ≥ 1) and (Tα,p, p ≥ 1) (Section 3.4).

We begin by recalling a result of Duquesne and Le Gall [20] on the marginal distri-
bution of the tree Tα,p. To that end, write L(α,p)

e for the length of the edge e ∈ E(Tα,p),
where E(Tα,p) denotes the set of edges of Tα,p. For every vertex v of Tα,p, write dv for
its degree. We reformulate part of Theorem 3.3.3 of [20] (adjusted to take into account
the fact that our α-stable tree is unordered and a factor α bigger than theirs). For
convenience, we will sometimes use the notation v ∈ t to denote a vertex v of a discrete
tree t, thereby identifying t and its vertex-set.
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Theorem 3.1 (Duquesne and Le Gall). Let α ∈ (1, 2) and p ≥ 1. Consider the law of Tα,p.
If t is a rooted discrete tree with p labelled leaves then

P (Tα,p = t) =

∏
v∈t:dv≥3(α− 1)(2− α) . . . (dv − 1− α)

(α− 1)(2α− 1) . . . ((p− 1)α− 1)
. (3.1)

Now fix t and let ei(t), 1 ≤ i ≤ |t| denote the sequence of its edges labelled arbitrarily.

Conditionally on Tα,p = t, the edge-lengths
(
L

(α,p)
ei(t)

, 1 ≤ i ≤ |t|
)

have joint density

Γ(p− 1/α)

Γ(p− (1− 1/α)|t| − 1/α)

∫ 1

0

up−1−(1−1/α)|t|−1/αq1−1/α

 |t|∑
i=1

`ei(t), 1− u

du,

where q1−1/α(s, ·) is the density of sα/(α−1)σ1−1/α, as defined in (1.1).

Note that the distribution of the lengths, conditional on Tα,p = t, does not depend on
the labelling of the edges of t i.e. the lengths are exchangeable. For this reason, we will
simply write (

L(α,p)
e , e ∈ E(Tα,p)

)
to denote this sequence.

3.1 Edge-lengths and weights of Tp
For the moment, we focus our attention on the sequence of trees (Tp, p ≥ 1) built

according to version (II) of our algorithm. Our goal is to find the joint distribution of the
edge-lengths in the tree Tp and the weights on its internal vertices {W (p)

v , v ∈ Ip}, given
its shape Tp.

To do this, we must choose canonical labellings. We start with the edge-lengths, and
proceed recursively as follows. Firstly, we set L(1)

1 = M1. Then, given the vector

L(p) =
(
L

(p)
1 , . . . , L

(p)
|Tp|

)
of edge-lengths of Tp, denote the length of the new edge added at step p+ 1 by L(p+1)

|Tp+1|.

• If the new edge is added at internal vertex, note that |Tp+1| = |Tp| + 1. Set

L
(p+1)
j = L

(p)
j for 1 ≤ i ≤ |Tp|.

• If the new edge is added to a point along an edge, we get |Tp+1| = |Tp|+ 2. If the

edge chosen has length L
(p)
i , then this edge is split into two whose lengths are

labelled L(p+1)
i and L(p+1)

|Tp|+1 (with the rule that L(p+1)
i denotes the length of the edge

closest to the root). The lengths of the other edges are unchanged, in the sense
that L(p+1)

j = L
(p)
j for 1 ≤ j ≤ |Tp|, j 6= i.

By iterating p, this defines the vector L(p) (of length |Tp|) of edge-lengths of Tp, for all

p ≥ 1. Of course, we get Lp =
∑|Tp|
i=1 L

(p)
i . We choose to put the elements of {W (p)

v , v ∈ Ip}
in order of appearance of the internal vertices in the construction of Tp. Let W (p) denote
this ordered sequence of length |Tp| − p. We denote by d1, . . . , d|Tp|−p the degrees of
these internal vertices with the same ordering. The following result is the key point in
our construction.

Proposition 3.2. For p ≥ 2, conditionally on the shapes T1, . . . , Tp, we have(
L(p),W (p)

)
= Mp ·

(
Z

(p)
1 , Z

(p)
2 , . . . , Z

(p)
2|Tp|−p

)
,
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where Mp ∼ ML(1− 1/α, p− 1/α),

Z(p) :=
(
Z

(p)
1 , Z

(p)
2 , . . . , Z

(p)
2|Tp|−p

)
∼ Dir

(
1, . . . , 1︸ ︷︷ ︸
|Tp|

,
d1 − 1− α
α− 1

, . . . ,
d|Tp|−p − 1− α

α− 1

)

and Z(p) is independent of (Mp,Mp+1, . . .).

Note that the Dirichlet distribution depends on (T1, . . . , Tp) only through Tp. In
particular the distribution of the rescaled vector of weights W (p)/Mp only depends on
the degrees of the vertices of Tp.

Proof. The fact that Mp still has a ML(1− 1/α, p− 1/α) distribution after conditioning
on T1, . . . , Tp is an immediate consequence of Remark 1.7.

For the rest of the proof, we proceed by induction on p ≥ 2. For p = 2, we have
|Tp| = 3 and, independently of the Markov chain M , independent random variables

U ∼ U(0, 1) and B ∼ Beta(1, (2 − α)/(1 − α)) such that L(2)
1 = M1U , L(2)

2 = M1(1 − U),

L
(2)
3 = (M2 −M1)B and W (2)

1 = (M2 −M1)(1−B). Then,(
L

(2)
1 , L

(2)
2 , L

(2)
3 ,W

(2)
1

)
= M2 ·

(
β1U, β1(1− U), (1− β1)B, (1− β1)(1−B)

)
,

where the vector in parentheses on the right-hand side is independent of (M2,M3, . . .).
By Lemma 2.5 (for k = p = 1), this vector is distributed as Dir(1, 1, 1, (2 − α)/(α − 1)).

Hence the distribution of (L
(2)
1 , L

(2)
3 , L

(2)
3 ,W

(2)
1 ) is as claimed (conditionally on the shapes

of T1, T2, since these are deterministic).

Now suppose that the statement of the proposition holds for some integer p ≥ 2.
Then, conditionally on T1, . . . , Tp+1, there are two cases, depending on whether we obtain
Tp+1 from Tp by adding the new edge at a vertex or an edge. We note that additionally
conditioning on Tp+1 will change the distribution of Z(p), but not the fact that it is
independent of (Mp,Mp+1, . . .), by Remark 1.7.

Suppose first that the new edge has been added at an internal vertex (in which case,
|Tp+1| = |Tp|+1), say with degree di∗ . By Lemma 2.2, this has the effect of increasing the
parameter corresponding to the vertex in the Dirichlet distribution by 1. So, conditionally
on this additional event, the distribution of Z(p) is now

Dir

(
1, . . . , 1︸ ︷︷ ︸
|Tp|

, d1−1−α
α−1 , . . . ,

di∗−1−1−α
α−1 , di∗−1−α

α−1 + 1,
di∗+1−1−α

α−1 , . . . ,
d|Tp|−p−1−α

α−1

)
.

Moreover, by definition,(
L

(p+1)
1 , . . . , L

(p+1)
|Tp+1|,W

(p+1)
1 , . . . ,W

(p+1)
|Tp+1|−p+1

)
=
(
MpZ

(p)
1 , . . . ,MpZ

(p)
|Tp|, (Mp+1 −Mp)B,MpZ

(p)
|Tp|+1, . . . ,MpZ

(p)
|Tp|+i∗−1,

MpZ
(p)
|Tp|+i∗ + (Mp+1 −Mp)(1−B),MpZ

(p)
|Tp|+i∗+1, . . . , ,MpZ

(p)
2|Tp|−p

)
= Mp+1 · βp ·

(
Z

(p)
1 , . . . , Z

(p)
|Tp|,

(1− βp)B
βp

, Z
(p)
|Tp|+1, . . . , Z

(p)
|Tp|+i∗−1,

Z
(p)
|Tp|+i∗ +

(1− βp)(1−B)

βp
, Z

(p)
|Tp|+i∗+1, . . . , Z

(p)
2|Tp|−p

)
for some random variable B ∼ Beta(1, (2−α)/(α−1)) which is independent of everything
else. Recall that the vector Z(p) is independent of βp = Mp/Mp+1. Hence, by Lemma 2.4,
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we have

Z(p+1) := βp ·
(
Z

(p)
1 , . . . , Z

(p)
|Tp|,

(1− βp)B
βp

, Z
(p)
|Tp|+1, . . . , Z

(p)
|Tp|+i∗−1,

Z
(p)
|Tp|+i∗ +

(1− βp)(1−B)

βp
, Z

(p)
|Tp|+i∗+1, . . . , Z

(p)
2|Tp|−p

)
,

which is distributed as

Dir
(

1, . . . , 1︸ ︷︷ ︸
|Tp+1|

,
d1 − 1− α
α− 1

, . . . ,
di∗−1 − 1− α

α− 1
,
di∗ − 1− α
α− 1

+ 1 +
2− α
α− 1

, . . . ,
d|Tp|−p − 1− α

α− 1

)
.

This is the required distribution, since di∗+α−1+2−α = di∗+1, which is indeed the de-
gree of the selected vertex in Tp+1. Moreover, Z(p+1) is independent of (Mp+1,Mp+2, . . .)

conditionally on (T1, . . . , Tp+1), since Z(p), βp, B and (T1, . . . , Tp+1) are independent of
(Mp+1,Mp+2, . . .).

Suppose now that we pass from Tp to Tp+1 by gluing the new edge to an existing

one, say the edge with length L(p)
i (so that |Tp+1| = |Tp|+ 2). Then, conditionally on this

additional event, the distribution of Z(p) is now

Dir

(
1, . . . , 1︸ ︷︷ ︸
i−1

, 2, 1, . . . , 1︸ ︷︷ ︸
|Tp|−i

,
d1 − 1− α
α− 1

, . . . ,
d|Tp|−p − 1− α

α− 1

)
,

by Lemma 2.2. Then, for some random variables U ∼ U(0, 1) and B ∼ Beta(1, (2−α)/(α−
1)) independent of everything else,(

L
(p+1)
1 , . . . , L

(p+1)
|Tp+1|,W

(p+1)
1 , . . . ,W

(p+1)
|Tp+1|−(p+1)

)
=
(
MpZ

(p)
1 , . . . ,MpZ

(p)
i−1,MpZ

(p)
i U,MpZ

(p)
i+1, . . . ,MpZ

(p)
|Tp|,MpZ

(p)
i (1− U),

(Mp+1 −Mp)B,MpZ
(p)
|Tp|+1, . . .MpZ

(p)
2|Tp|−p, (Mp+1 −Mp)(1−B)

)
= Mp+1 · βp ·

(
Z

(p)
1 , . . . , Z

(p)
i−1, Z

(p)
i U,Z

(p)
i+1, . . . , Z

(p)
|Tp|, Z

(p)
i (1− U),

(1− βp)B
βp

, Z
(p)
|Tp|+1, . . .MpZ

(p)
2|Tp|−p,

(1− βp)(1−B)

βp

)
=: Mp+1 · Z(p+1).

The vector Z(p) is independent of βp, U and B and so, by Lemma 2.5 and exchangeability,
the distribution of Z(p+1) is

Dir

(
1, . . . , 1︸ ︷︷ ︸
|Tp|+2

,
d1 − 1− α
α− 1

, . . . ,
d|Tp|−p − 1− α

α− 1
,

2− α
α− 1

)
,

as required, since |Tp+1| = |Tp|+ 2 and the degree in Tp+1 of the new vertex is 3. Finally,
Z(p+1) is independent of (Mp+1,Mp+2, . . .) conditionally on (T1, . . . , Tp+1), since Z(p), βp,
B, U and (T1, . . . , Tp+1) are independent of (Mp+1,Mp+2, . . .).

Corollary 3.3. For p ≥ 2, conditionally on the shapes T1, . . . , Tp, we have(
L

(p)
1 , . . . , L

(p)
|Tp|,Mp − Lp

)
= Mp ·

(
Z̃

(p)
1 , Z̃

(p)
2 , . . . , Z̃

(p)
|Tp|+1

)
,

where

Z̃(p) :=
(
Z̃

(p)
1 , Z̃

(p)
2 , . . . , Z̃

(p)
|Tp|+1

)
∼ Dir

(
1, . . . , 1︸ ︷︷ ︸
|Tp|

,
pα− 1

α− 1
− |Tp|

)
,

Z(p) is independent of (Mp,Mp+1, . . .) and Mp ∼ ML(1− 1/α, p− 1/α).
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This follows from Remark 1.4, the fact that
∑
v∈IpW

(p)
v = Mp − Lp and the additive

property of the Dirichlet distribution mentioned at the beginning of Section 2. Note that
a consequence of this result is that the distribution of the sequence of lengths of Tp,
given its shape Tp, is exchangeable and depends only on |Tp|. In particular it does not
depend on how the lengths were labelled.

In a similar manner, the following corollary is a consequence of Proposition 3.2 and
Lemma 2.3.

Corollary 3.4. For p ≥ 2, conditionally on the shapes T1, . . . , Tp, we have(
Lp,W

(p)
)

= Mp ·
(
Pp, (1− Pp) ·

(
Ẑ

(p)
1 , Ẑ

(p)
2 , . . . , Ẑ

(p)
|Tp|−p

))
,

where

Pp ∼ Beta

(
|Tp|,

pα− 1− |Tp|(α− 1)

α− 1

)
and (

Ẑ
(p)
1 , Ẑ

(p)
2 , . . . , Ẑ

(p)
|Tp|−p

)
∼ Dir

(
d1 − 1− α
α− 1

, . . . ,
d|Tp|−p − 1− α

α− 1

)
are mutually independent and independent of (Mp,Mp+1, . . .).

Finally, we turn to the equivalence of the two versions of our construction.

Proposition 3.5. The sequences of trees with edge-lengths generated by versions (I)
and (II) of our construction have the same law.

Proof. Consider the sequence ((Tp, (L
(p)
1 , . . . , L

(p)
|Tp|), {W

(p)
v , v ∈ Ip}), p ≥ 1) generated

by version (II) of our construction. This sequence evolves in a Markovian manner (as
detailed above). It suffices to show that the transition probabilities for the shape and
lengths are as given in version (I) if we average over the vertex weights. So fix p ≥ 1

and a tree-shape tp, and consider the (p+ 1)th step of the construction, conditional on

Tp = tp with vertex degrees dv, v ∈ tp, (L
(p)
1 , . . . , L

(p)
|tp|) = (`1, . . . , `|tp|) and Mp = mp. The

new length is generated in the same way in both algorithms, and it is clear that when we
choose to glue the new branch to a pre-existing edge, we do the same in both versions of
the construction. So suppose instead that we choose to glue the new branch to one of the
vertices of tp, an event which occurs with probability (mp− `p)/mp in either construction.
In version (II), conditionally on this event, we pick the vertex v ∈ tp with probability

W
(p)
v /

∑
w∈tp

W
(p)
w . But by Corollary 3.4, still conditionally on the event that the new

branch will be attached to a vertex, the distribution of

1∑
v∈tp

W
(p)
v

(W (p)
v , v ∈ tp)

is Dirichlet with parameters
(
dv−1−α
α−1 , v ∈ tp

)
. But then by Lemma 2.2, we see that

when we average over the normalized weights, we pick vertex v ∈ tp with probability
dv−1−α

pα−1−|tp|(α−1) , as in version (I). The result follows.

3.2 Identification of edge-lengths given the shape

As observed in the previous section, the sequences of trees obtained in versions
(I) and (II) of the algorithm have the same distribution. From now on, we denote this
sequence by (Tp, p ≥ 1), without specifying whether it is obtained using the first or
second version of the algorithm, and similarly for the sequence of shapes (Tp, p ≥ 1).
Also, as observed in Corollary 3.3, the sequence of lengths of Tp given Tp is exchangeable.
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To be consistent with the notation for the lengths of Tα,p, we can (and will) therefore use
the notation

L(p) =
(
L(p)
e , e ∈ E(Tp)

)
to denote the sequence of edge-lengths of Tp.
Proposition 3.6. Let t be a discrete rooted tree with p ≥ 2 leaves. Then, the sequence
of lengths

(
L

(p)
e , e ∈ E(Tp)

)
of Tp conditional on Tp = t and the sequence of lengths(

L
(α,p)
e , e ∈ E(Tα,p)

)
of Tα,p conditional on Tα,p = t have the same distribution, which is

that of

Mp ·B|t| · (D1, . . . , D|t|),

where the three random variables are independent, and Mp ∼ ML(1 − 1/α, p − 1/α),
B|t| ∼ Beta

(
|t|, pα−1

α−1 − |t|
)

and (D1, . . . , D|t|) ∼ Dir(1, . . . , 1).

Proof. For Tp, this is an immediate consequence of Corollary 3.3 and Lemma 2.3. For
Tα,p, we use Theorem 3.1. Conditionally on Tα,p = t, the joint density of the edge-lengths

depends on (L
(α,p)
e , e ∈ E(t)) only through

∑
e∈E(t) L

(α,p)
e , where E(t) designs the set of

edges of t. This entails that the random vector

1∑
e∈E(t) L

(α,p)
e

(L(α,p)
e , e ∈ E(t))

has Dir(1, 1, . . . , 1) distribution and is independent of
∑
e∈E(t) L

(α,p)
e . Moreover,∑

e∈E(t) L
(α,p)
e has density

1

Γ(|t|)
Γ(p− 1/α)

Γ(p− (1− 1/α)|t| − 1/α)
x|t|−1

∫ 1

0

up−(1−1/α)|t|−1/α−1q1−1/α(x, 1− u)du.

Mimicking the proof of Lemma 4 in [40], we have that, for k ≥ 1,∫ ∞
0

x|t|+k−1q1−1/α(x, 1− u)dx =
Γ(|t|+ k)

Γ((|t|+ k)(1− 1/α))
(1− u)(|t|+k)(1−1/α)−1

and so

E

( ∑
v∈E(Tα,p)

L(α,p)
e

)k∣∣∣∣∣Tα,p = t


=

Γ(p− 1/α)Γ(|t|+ k)α−k

Γ(|t|)

∫ 1

0

up−(1−1/α)|t|−1/α−1(1− u)(|t|+k)(1−1/α)−1

Γ(p− (1− 1/α)|t| − 1/α)Γ((|t|+ k)(1− 1/α))
du

=
Γ(p− 1/α)Γ(|t|+ k)α−k

Γ(|t|)Γ(k(1− 1/α) + p− 1/α)

= E
[
Bk|t|

]
E
[
Mk
p

]
.

The result follows.

3.3 Identification of shapes

We will now observe that our construction is intimately related to earlier work of
Marchal. Using (3.1) in Theorem 3.1, Marchal [38] gives an algorithm which generates a
sequence of rooted discrete trees (T̃p)p≥1 having the same distribution as the sequence
of shapes (Tα,p, p ≥ 1).
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Marchal’s algorithm

• Start from a tree T̃1 consisting of the root joined by a single edge to
another vertex labelled 1.

• For p ≥ 1, assign the edges of T̃p weight α − 1 and any vertex of degree
d ≥ 3 weight d− 1− α. Assign weight 0 to vertices of degree 1 or 2.

1. Pick an edge or a vertex with probability proportional to its weight.
2. If an edge was chosen in 1., split the edge into two with a new vertex

in the middle and add an edge from that vertex to a new leaf, labelled
p+ 1.

3. If a vertex was chosen in 1., create a new edge from the vertex to a
leaf labelled p+ 1.

The case α = 2 of this algorithm generates a uniform random binary rooted tree with
p labelled leaves, and is due to Rémy [46]. In [38], Marchal proved that p1/α−1T̃p → Tα in
the sense of convergence of random finite dimensional distributions; this was improved
to convergence in probability for the Gromov-Hausdorff distance in [28] and then to
almost sure convergence in [14]. It is not hard to see (by induction on p) that the total
weight on the edges and vertices of T̃p is pα− 1.

Proposition 3.7. The sequence of shapes of trees (Tp, p ≥ 1) follows Marchal’s algo-
rithm. As a consequence, (Tp, p ≥ 1) and (Tα,p, p ≥ 1) have the same distribution.

Proof. We use the first version of the line-breaking construction. Given T1, . . . , Tp, the

new edge will be attached to the edge of length L(p)
e with probability

L
(p)
e

Mp

and to a given internal vertex of degree d ≥ 3 with probability

Mp − Lp
Mp

× d− 1− α
pα− 1− |Tp|(α− 1)

.

Applying Corollary 3.3 and Lemma 2.2, we get that, given the shapes of trees T1, . . . , Tp,
the new edge is attached to a given edge with probability

α− 1

pα− 1

and is attached to a given vertex of degree d ≥ 3 with probability

pα− 1− |Tp|(α− 1)

pα− 1
× d− 1− α
pα− 1− |Tp|(α− 1)

=
d− 1− α
pα− 1

.

3.4 Proofs of the main results

Proof of Theorem 1.5. As an immediate consequence of Propositions 3.6 and 3.7, we see
that the trees Tp and Tα,p have the same distribution, for all p ≥ 1. It remains to check
that the joint distributions are the same. In order to do this, we introduce an auxiliary
labelling: label the leaves of each of these trees by order of appearance (i.e. the leaf we
remove from Tp+1 to obtain Tp is labelled p+ 1; similarly for Tα,p+1 and Tα,p). We denote
by T lab

p , T lab
α,p , T lab

p and T lab
α,p the resulting labelled trees, with and without edge-lengths

respectively, for p ≥ 1. By Proposition 3.7, we see that T lab
p and T lab

α,p have the same
distribution. Since, moreover, the distribution of the lengths does not depend on the
labelling, by Proposition 3.6, we see that T lab

p and T lab
α,p have the same distribution. But,
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removing the leaf p and the adjacent edge in T lab
p , we obtain T lab

p−1 and similarly for the
stable marginals. Iterating this leaf-deletion process, we finally obtain(

T1, . . . , Tp
) (d)

=
(
Tα,1, . . . , Tα,p

)
,

for all p ≥ 1.

Proof of Proposition 1.6. (i) is part of Proposition 3.6. Summing the lengths, we imme-
diately get (ii). Finally, we get from the algorithmic construction of Tp that its total
length is distributed as (1.7), from which we deduce (iii), since Tα,p and Tp have the same
distribution.

4 Complements and connections

The main goal of this section is to explain the presence of generalized Mittag-Leffler
distributions in our line-breaking construction.

4.1 The Mittag-Leffler and Poisson-Dirichlet distributions

The generalized Mittag-Leffler distributions arise naturally in the context of urn
models. Let β ∈ (0, 1) and θ > 0. Consider a generalized Pólya urn scheme, where we
have two colours, black and white. Suppose that we pick each colour with probability
proportional to the total weight of that colour in the urn. If we pick black, add 1/β to
the black weight. If we pick white, add 1/β − 1 to the black weight and 1 to the white
weight. Start from 0 weight on black and θ/β weight on white and let Yn be the weight
of white at step n. Then by Theorem 1.3(v) of Janson [31],

n−βYn →W a.s. as n→∞,

where W ∼ ML(β, θ). (Janson states this as a convergence in distribution but it is
straightforward to see by an argument using the martingale convergence theorem that
the convergence must be almost sure; see Theorem 1.7 of [31] for the characterization
of the limit W via its moments.)

Consider now the Poisson-Dirichlet distribution PD(β, θ) defined as follows. For i ≥ 1,
let Bi ∼ Beta(1− β, θ + iβ) independently. Now let

Pj = Bj

j−1∏
i=1

(1−Bi)

and let (P ↓i )i≥1 be the sequence (Pi)i≥1 ranked in decreasing order. Then (P ↓i )i≥1 has
the PD(β, θ) distribution. It then turns out that the so-called β-diversity, W , defined to
be the following almost sure limit,

W := Γ(1− β) lim
i→∞

i(P ↓i )β ,

has the ML(β, θ) distribution. A connection to the generalized Pólya urn can be made
via the Chinese restaurant process construction (see [45]) of an exchangeable random
partition of N having PD(β, θ) asymptotic frequencies. There, if the number of tables
occupied by the first n customers is Kn, the β-diversity also arises as the almost sure
limit

W = lim
n→∞

n−βKn.

Indeed, the number of tables (plus 1 − θ/β, but this difference vanishes in the limit)
evolves precisely according to the generalized Pólya urn discussed above.

This means that we can think of results about ML(β, θ) as results about PD(β, θ) and
vice versa.
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4.2 Masses and lengths in the stable trees

The natural scaling relation for the α-stable tree states that if we rescale the total
mass by x ∈ R+, we must rescale distances by x1−1/α. The self-similarity of the tree
means that there are various natural ways to split it into subtrees such that the subtrees
are randomly rescaled independent stable trees (see Miermont [40, 41] for the first work
on this topic). One way to do this is using the spinal partitions studied by Haas, Pitman
and Winkel [29]. Consider the path between the root and a uniformly-chosen point (the
spine). If we remove all of the points of degree 1 or 2 from this path, we split the tree
into a forest where each tree has infinite degree at its root. The masses of these trees
form a random partition. If we keep them in the order they arise along the branch, we
obtain the coarse spinal interval partition; if we rank them instead in decreasing order,
we obtain the coarse spinal mass partition. If we remove the whole path between the
root and our uniformly-chosen point, we obtain a finer partition of mass which, when
put in decreasing order, is called the fine spinal mass partition. We reproduce parts of
Corollary 10 of [29] which describe the distributions of these partitions.

Theorem 4.1 (Haas, Pitman & Winkel). Let α ∈ (1, 2). The following statements hold for
the α-stable tree Tα.

1. The distribution of the coarse spinal mass partition of Tα is PD(1− 1/α, 1− 1/α).

2. The coarse spinal interval partition is exchangeable. Its (1− 1/α)-diversity has the
ML(1− 1/α, 1− 1/α) distribution and has the same distribution as the length of the
spine.

3. The fine spinal mass partition is obtained from the coarse spinal mass partition by
fragmenting every block with an independent PD(1/α, 1/α− 1) random partition
and then putting the blocks in decreasing order.

4. The (unconditional) distribution of the fine spinal mass partition is PD(1/α, 1−1/α).

5. Given that the fine spinal mass partition of Tα is (m1,m2, . . .), the corresponding
collection of subtrees obtained by removing the spine has the same distribution
as (m

1−1/α
1 T (1),m

1−1/α
2 T (2), . . .), where T (1), T (2), . . . are independent copies of the

α-stable tree.

Notice that we should interpret the (1− 1/α)-diversity of the Poisson-Dirichlet par-
titions involved here as lengths in the tree. In a moment, we will use Theorem 4.1 to
go into more detail about the relationships between lengths and masses in Tα. Before
we do so, it will be useful to prove another distributional relationship for Dirichlet and
Mittag-Leffler random variables.

Proposition 4.2. Let β ∈ (0, 1) and θ > 0. For n ≥ 2, let θ1, θ2, . . . , θn > 0 and such that∑n
i=1 θi = θ. Let M ∼ ML(β, θ) and (Z1, Z2, . . . , Zn) ∼ Dir

(
θ1
β , . . . ,

θn
β

)
independently.

Let (X1, X2, . . . , Xn) ∼ Dir(θ1, θ2, . . . , θn) and M (1),M (2), . . . ,M (n) be independent ran-
dom variables, where M (i) ∼ ML(β, θi) for 1 ≤ i ≤ n. Then

M · (Z1, Z2, . . . , Zn)
(d)
=
(
Xβ

1M
(1), Xβ

2M
(2), . . . , Xβ

nM
(n)
)
.

Proof. By (2.1), we may take

(X1, X2, . . . , Xn) =
1∑n

i=1 Γθi
(Γθ1 , . . . ,Γθn) ,

and the normalized vector is independent of

Γθ :=

n∑
i=1

Γθi ∼ Gamma(θ).
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By Lemma 2.1,

Γβθ ·
(
Xβ

1M
(1), Xβ

2M
(2), . . . , Xβ

nM
(n)
)

(d)
=
(

Γ̃θ1/β , . . . , Γ̃θn/β

)
,

where the right-hand side is composed of independent Gamma random variables with
the given parameters. But then

(
Γ̃θ1/β , . . . , Γ̃θn/β

)
=

(
n∑
i=1

Γ̃θi/β

)
· 1∑n

i=1 Γ̃θi/β

(
Γ̃θ1/β , . . . , Γ̃θn/β

)
(d)
= Γβθ ·M ·

1∑n
i=1 Γ̃θi/β

(
Γ̃θ1/β , . . . , Γ̃θn/β

)
(d)
= Γβθ ·M · Z,

where the three factors on the right-hand side are independent. But then considering
moments and applying the Cramér-Wold theorem, we can remove the factor Γβθ on both
sides of this identity in law to get the desired result.

Note that this immediately yields a different representation for the joint distribution
of the lengths and weights of the tree Tp given in Proposition 3.2.

We also observe the standard fact about Poisson-Dirichlet distributions that a size-
biased pick from amongst the blocks of a PD(β, θ) partition has Beta(1 − β, β + θ)

distribution. We will now use these ingredients to give a sketch of a quite different proof
that the edge-lengths in the stable tree have the same distribution as those generated by
our construction. (This is part of Proposition 3.6.)

Proposition 4.3. Conditionally on the shapes Tα,1, . . . , Tα,p, we have that the lengths

L(α,p) = (L
(α,p)
e , e ∈ E(Tα,p)) (with an arbitrary labelling) have joint distribution

L(α,p) (d)
= Mp ·

(
Z

(p)
1 , Z

(p)
2 , . . . , Z

(p)
|Tα,p|

)
,

where Mp ∼ ML(1− 1/α, p− 1/α) andZ(p)
1 , . . . , Z

(p)
|Tα,p|, 1−

|Tα,p|∑
i=1

Z
(p)
i

 ∼ Dir

(
1, . . . , 1,

pα− 1

α− 1
− |Tα,p|

)

are independent.

Sketch proof. When we pick a first uniform leaf, clearly we simply pick out the spine,
which has length distributed as ML(1 − 1/α, 1 − 1/α). Consider what happens at the
second step of the line-breaking construction: we need to add the part of the tree
which links a second uniform leaf to the spine. When we pick this leaf, we select
one of the subtrees which branch off the spine (in the coarse sense) in a size-biased
manner (i.e. we pick a subtree of mass m with probability m). So we pick a size-biased
block from the coarse spinal partition. Since by Theorem 4.1 the coarse spinal mass
partition is exchangeable, this subtree sits at a uniform position amongst the subtrees
branching off the spine. Moreover, the coarse spinal mass partition is distributed as
PD(1− 1/α, 1− 1/α), and so the masses X1 and X2 of the collections of subtrees above
and below the picked subtree along the spine and the mass at the vertex are such that
(X1, X2, 1 − X1 − X2) ∼ Dir(1 − 1/α, 1 − 1/α, 1/α). Moreover, if we split the tree by
removing the picked subtree entirely, we get two α-independent stable trees, rescaled to
have total masses X1 and X2 respectively. It follows that

M
(d)
= X

1−1/α
1 M (1) +X

1−1/α
2 M (2), (4.1)
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where M (1),M (2) are independent ML(1− 1/α, 1− 1/α) random variables, independent
of (X1, X2).

The subtree branching off the spine at our chosen vertex is, of course, composed of
infinitely many subtrees (in the sense of the fine spinal partition). Since the one we are
interested in contains a vertex picked according to the mass measure, it sits inside a
size-biased one of these trees. To get the masses of these subtrees, Theorem 4.1 says
that we need to split the mass at our vertex with an independent PD(1/α, 1/α − 1). A
size-biased block, B∗, from this has law Beta(1− 1/α, 2/α− 1). So the relevant subtree
is an independent stable tree, randomly rescaled to have mass X3 := (1−X1 −X2)B∗

and lengths rescaled by X1−1/α
3 . So the branch leading to our uniform vertex has length

X
1−1/α
3 M (3)

where M (3) has ML(1− 1/α, 1− 1/α) distribution, independently of everything else. Let
X4 = (1−X1−X2)(1−B∗). Then (X1, X2, X3, X4) ∼ Dir(1−1/α, 1−1/α, 1−1/α, 2/α−1)

and
(X

1−1/α
1 M (1), X

1−1/α
2 M (2), X

1−1/α
3 M (3))

represents the lengths of the three edges present in the tree spanned by two uniform
points and the root. By Proposition 4.2, L(α,2) does indeed have the claimed law. The
laws of L(α,p) may be determined in a similar manner.

Remark 4.4. One aspect of this viewpoint remains mysterious to us: if we let M (4) ∼
ML(1− 1/α, 2/α− 1) then

(X
1−1/α
1 M (1), X

1−1/α
2 M (2), X

1−1/α
3 M (3), X

1−1/α
4 M (4))

has the same distribution as the three lengths and the node weight after a single step of
version (II) of our construction. What (if anything) is the correct interpretation of the
random variable M (4) in the tree? The ML(1− 1/α, 2/α− 1) distribution does not appear
to be connected to the remaining parts of the fine spinal mass partition at the chosen
vertex, which are distributed as a scaled copy of PD(1/α, 2/α − 1). Is there a sensible
way to associate a notion of “length” with the vertex?

Remark 4.5. Proposition 4.3 can equally be proved by considering the scaling limits of
distances between pairs of points in Marchal’s algorithm and using asymptotic results
on generalized Pólya urns. This gives an alternative explanation for the presence of
generalized Mittag-Leffler distributions.

Remark 4.6. The self-similarity of the stable trees is not immediately obvious from our
constructions. However, we believe that it could be proved using the analogue of the
arguments presented in Section 6 of [2] for the Brownian CRT. We do not pursue this
further here.
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