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Recap from last week

We consider the Erdős-Rényi random graph G (n, p) with p in the
critical window, i.e. p = 1/n + λn−4/3. In this parameter range,
the largest components are of size Θ(n2/3).



Aldous (1997) describes the limit of the sequence of component
sizes and surpluses:
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d→ ((C1,C2, . . .), (S1,S2, . . .))

as n→∞. These limits are obtained from

W λ(t) = W (t) + λt − t2/2,

a Brownian motion with parabolic drift, which is then reflected at
its minimum, and a rate one Poisson point process in the plane.
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We aim to understand the structure of the limiting components.

In order to do this, we pick out a well-chosen spanning tree and
then put in the surplus edges.

In the limit, these spanning trees converge to CRT’s coded by the
excursions of Aldous’ limit process. We call these tilted excursions
and tilted trees. The surplus edges become vertex-identifications,
whose locations are coded by the locations of the Poisson points
under the excursion.
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Tilted excursions

An excursion ẽ(x) of Aldous’ limit process, conditioned to have
length x , has a distribution specified by

E
[
f
(
ẽ(x)

)]
=

E
[
f
(
e(x)

)
exp

(∫ x
0 e(x)(u)du

)]
E
[
exp

(∫ x
0 e(x)(u)du

)] ,

where f is any suitable test-function and e(x) is a Brownian
excursion of length x .



Vertex identifications

A point at (x , y) identifies the vertex v at height h(x) with the
vertex at distance y along the path from the root to v .



Convergence result

Let Cn
1 , Cn

2 , . . . be the sequence of components of G (n, p) in
decreasing order of size, considered as metric spaces with the
graph distance.

Theorem. As n→∞,

n−1/3(Cn
1 , Cn

2 , . . .)
d→ (C1, C2, . . .),

where C1, C2, . . . is the sequence of metric spaces corresponding to
the excursions of Aldous’ marked limit process in decreasing order
of length.

Here, convergence is with respect to the metric

d(A,B) :=

( ∞∑
i=1

dGH(Ai ,Bi )
4

)1/4

.



Via a depth-first exploration of a component, we define the
depth-first tree.
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The edges which make no difference to the depth-first exploration
are called permitted.



Depth-first exploration

Step 0: initialization
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Current: 1 Alive: none Dead: none X (0) = 0.



Depth-first exploration

Step 1
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Current: 5 Alive: 7, 10 Dead: 1 X (1) = 2.



Depth-first exploration

Step 2
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Current: 2 Alive: 9, 7, 10 Dead: 1, 5 X (2) = 3.



Depth-first exploration

Step 3
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Current: 3 Alive: 9, 7, 10 Dead: 1, 5, 2 X (3) = 3.



Depth-first exploration

Step 4
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Current: 9 Alive: 7, 10 Dead: 1, 5, 2, 3 X (4) = 2.



Depth-first exploration

Step 5

6

8

4

1

5 7

2 9

3

10

Current: 7 Alive: 10 Dead: 1, 5, 2, 3, 9 X (5) = 1.



Depth-first exploration

Step 6
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Current: 10 Alive: none Dead: 1, 5, 2, 3, 9, 7 X (6) = 0.



Depth-first exploration

Step 7
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Current: 8 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10 X (7) = 0.



Depth-first exploration

Step 8
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Current: 4 Alive: 6 Dead: 1, 5, 2, 3, 9, 7, 10, 8 X (8) = 1.



Depth-first exploration

Step 9
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Current: 6 Alive: none Dead: 1, 5, 2, 3, 9, 7, 10, 8, 4
X (9) = 0.



The number of permitted edges for a labelled tree T is

a(T ) :=
m−1∑
k=0

X (k),

where (X (k), 0 ≤ k ≤ m − 1) is the depth-first walk of T .

The set of connected graphs with label-set [m] := {1, 2, . . . ,m}
can be partitioned by depth-first tree.
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Recipe for creating a connected graph on [m]

Create a connected graph G̃p
m as follows.

I Pick a random labelled tree T̃ p
m such that

P
(
T̃ p

m = T
)
∝ (1− p)−a(T ), T ∈ T[m].

I Add each of the a(T̃ p
m) permitted edges to T̃ p

m independently
with probability p.
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Recipe for creating a connected graph on [m]

Lemma. G̃p
m has the same distribution as Gp

m, a component of
G (n, p) conditioned to have vertex-set [m].

Proof. For a connected graph G on [m] which has T (G ) = T and
surplus s,

P
(
G̃p

m = G
)
∝ (1− p)−a(T )ps(1− p)a(T )−s = (p/(1− p))s .

Likewise, by the definition of G (n, p),

P (Gp
m = G ) ∝ P (G (m, p) = G )

= pm+s−1(1− p)( m
2 )−(m+s−1) ∝ (p/(1− p))s .

�



Recipe for creating a connected graph on [m]

Lemma. G̃p
m has the same distribution as Gp

m, a component of
G (n, p) conditioned to have vertex-set [m].

Proof. For a connected graph G on [m] which has T (G ) = T and
surplus s,

P
(
G̃p

m = G
)
∝ (1− p)−a(T )ps(1− p)a(T )−s = (p/(1− p))s .

Likewise, by the definition of G (n, p),

P (Gp
m = G ) ∝ P (G (m, p) = G )

= pm+s−1(1− p)( m
2 )−(m+s−1) ∝ (p/(1− p))s .

�



Recipe for creating a connected graph on [m]

Lemma. G̃p
m has the same distribution as Gp

m, a component of
G (n, p) conditioned to have vertex-set [m].

Proof. For a connected graph G on [m] which has T (G ) = T and
surplus s,

P
(
G̃p

m = G
)
∝ (1− p)−a(T )ps(1− p)a(T )−s = (p/(1− p))s .

Likewise, by the definition of G (n, p),

P (Gp
m = G ) ∝ P (G (m, p) = G )

= pm+s−1(1− p)( m
2 )−(m+s−1) ∝ (p/(1− p))s .

�



Taking limits

So we need to prove that

I the tree T̃ p
m converges to a CRT coded by a tilted excursion;

I the locations of the surplus edges converge to the locations in
our limiting picture.

We will deal with the tree first. For simplicity, we will take
p = m−3/2; the general case is similar.



Part 1: Convergence of the tree

Write X̃m for the depth-first walk associated with T̃ p
m, thought of

as a càdlàg function [0,m]→ R+. Then

a
(
T̃ p

m

)
=

∫ m

0
X̃m(u)du.

Recall that Tm is a uniform random tree on [m] and that Xm is its
depth-first walk. Then

(m−1/2Xm(mt), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).
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Part 1: Convergence of the tree

Now use the change of measure to get from X̃m to Xm: for any
bounded continuous function f ,

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
=

E
[
f
(
m−1/2Xm(mt), 0 ≤ t ≤ 1

)
(1− p)−

R m
0 Xm(u)du

]
E
[
(1− p)−

R m
0 Xm(u)du

]

=
E
[
f
(
m−1/2Xm(mt), 0 ≤ t ≤ 1

)
(1− p)−m3/2

R 1
0 m−1/2Xm(ms)ds

]
E
[
(1− p)−m3/2

R 1
0 m−1/2Xm(ms)ds

]
Since (m−1/2Xm(mt), 0 ≤ t ≤ 1)

d→ (e(t), 0 ≤ t ≤ 1) and
p = m−3/2,

(1− p)−m3/2
R 1
0 m−1/2Xm(ms)ds d→ exp

(∫ 1

0
e(u)du

)
.
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Part 1: Convergence of the tree
Taking care with the limits, we obtain

E
[
f
(
m−1/2X̃m(mt), 0 ≤ t ≤ 1

)]
→

E
[
f (e) exp

(∫ 1
0 e(u)du

)]
E
[
exp

(∫ 1
0 e(u)du

)]
= E [f (ẽ)] .

As in the uniform case, we get jointly

(m−1/2H̃m(mt), 0 ≤ t ≤ 1)
d→ (2ẽ(t), 0 ≤ t ≤ 1)

(m−1/2C̃m(2mt), 0 ≤ t ≤ 1)
d→ (2ẽ(t), 0 ≤ t ≤ 1)

(where the limit is the same tilted excursion).

This entails that
1√
m

T̃ p
m

d→ T̃ .
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Part 2: Surplus edges

The permitted edges are in bijective correspondence with the
integer points under the graph of the depth-first walk.

Since each
permitted edge is included independently with probability p, the
surplus edges form a Binomial point process.
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Part 2: Surplus edges
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A point at (k, j) means “put an edge between the current vertex at
step k and the vertex at distance j from the bottom of the list of
alive vertices”.



Part 2: Surplus edges

Surplus edges almost go to ancestors... In fact, they go to younger
children of ancestors of the current vertex.
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Part 2: Surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex.

The Binomial point process of surplus edges, when rescaled,
straightforwardly converges to the required Poisson point process.

The difference between the depth-first walk and the height process
is also small, and so the locations of the surplus “edges” are
essentially as described in our limit process.
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An introduction to

fragmentation processes



Fragmentation

We will talk about mathematical models for an object which splits
apart randomly and repeatedly over the course of time.

In this lecture, the object will essentially be the open interval
(0, 1), so that the successive states of a fragmentation process
might look like this:
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Definition. An interval fragmentation is a process (O(t), t ≥ 0)
taking values in the set of open subsets of (0, 1) such that
O(t) ⊆ O(s) whenever 0 ≤ s ≤ t.

(

( (

(

( (

(

))

) ) )

) )t

s

We will refer to the interval components of O(t) as blocks.
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Interval fragmentations derived from excursions

By an excursion, we will now mean a continuous function
f : [0, 1]→ R+ such that f (0) = f (1) = 0 and f (x) > 0 for all
x ∈ (0, 1).

The associated interval fragmentation is given by

O(t) := {x ∈ [0, 1] : f (x) > t}.

t
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In general, we have no hope of being able to say very much about
an arbitrary interval fragmentation.

What might be natural conditions to impose on its evolution?

I Markov property

I Different blocks split independently (“branching property”)

I Self-similarity: the way in which different blocks split is the
same each time.
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It turns out to be easier to think in terms of the lengths of the
blocks. By a ranked fragmentation, we mean an ordered list of the
lengths of the blocks of O(t), written (F (t), t ≥ 0).

Here, F (t) takes values in the set

S↓ =

{
s = (s1, s2, . . .) : s1 ≥ s2 ≥ . . . ≥ 0,

∞∑
i=1

si ≤ 1

}
.
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Self-similar fragmentations
The self-similar fragmentations are a particularly nice family of
fragmentation processes, which were introduced by Jean Bertoin.

Heuristically,

I a block of length x splits at a rate proportional to xα, for
some index α ∈ R, independently for different blocks;

I the relative lengths of the sub-blocks produced have the same
distribution for each split.

At rate xα:
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Definition. A ranked self-similar fragmentation (F (t), t ≥ 0) with
index α ∈ R is a càdlàg Markov process taking values in S↓ such
that

I F (0) = (1, 0, . . .);

I conditional on F (t) = (x1, x2, . . .), F (t + s) has the
distribution of the decreasing rearrangement of the terms of

xiF
(i)(xαi s), i ≥ 1,

where F (1),F (2), . . . are i.i.d. copies of the original process F .



Note that this definition does not exclude the possibility that
jumps of the process might be dense.

We call an interval fragmentation (O(t), t ≥ 0) self-similar if its
associated ranked fragmentation (F (t), t ≥ 0) is self-similar.

Of course, there might be several different interval fragmentations
corresponding to a particular ranked fragmentation. It is possible
that not all, or indeed none, of them can be constructed starting
from an excursion. We will come back to this point later.
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An example

Suppose that, at the times of a Poisson process of rate 1, we rain
down U(0, 1) random variables on the interval (0, 1).

This gives a self-similar fragmentation with index α = 1.
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Characterization

Theorem. (Bertoin (2002)) A ranked self-similar fragmentation is
characterized by three parameters: (α, ν, c), α ∈ R, ν is a measure
on S↓ and c ≥ 0.

α is the index of self-similarity
ν is the dislocation measure (satisfying

∫
S↓(1− s1)ν(ds) <∞)

c is the erosion coefficient.

If ν is finite, when we have a block of size m, it splits at rate
mαν(S↓) into blocks of sizes (ms1,ms2, . . .), where s = (s1, s2, . . .)
is sampled according to the distribution ν(·)/ν(S↓).

When ν is infinite, we heuristically interpret mαν(ds) as “the rate
of jumping to (ms1,ms2, . . .)”.

The erosion coefficient describes a continuous melting of the
blocks.
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In our example constructed from uniform random variables, we had

I index of self-similarity α = 1

I dislocation measure ν characterized by ν(s1 + s2 = 1) = 1 and
ν(s1 ∈ dx) = 2I[1/2,1](x)dx

I erosion coefficient 0.

For the rest of this talk, we will have c = 0.
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Behaviour

The index of self-similarity has an enormous influence on the
behaviour of the fragmentation process.

I If α = 0, the blocks all split at the same rate.

I If α > 0, bigger blocks split faster. This tends to act to
homogenize the block sizes. In fact, the empirical measure of
the rescaled block sizes has law of large numbers-style
behaviour as t →∞.

I If α < 0, smaller blocks split faster than larger ones.

In fact,
as blocks get smaller, they split faster and faster until they are
reduced to dust i.e. blocks of infinitesimal mass. The whole
state is reduced to dust in an almost surely finite time ζ,
called the extinction time.



Behaviour

The index of self-similarity has an enormous influence on the
behaviour of the fragmentation process.

I If α = 0, the blocks all split at the same rate.

I If α > 0, bigger blocks split faster. This tends to act to
homogenize the block sizes. In fact, the empirical measure of
the rescaled block sizes has law of large numbers-style
behaviour as t →∞.

I If α < 0, smaller blocks split faster than larger ones.

In fact,
as blocks get smaller, they split faster and faster until they are
reduced to dust i.e. blocks of infinitesimal mass. The whole
state is reduced to dust in an almost surely finite time ζ,
called the extinction time.



Behaviour

The index of self-similarity has an enormous influence on the
behaviour of the fragmentation process.

I If α = 0, the blocks all split at the same rate.

I If α > 0, bigger blocks split faster. This tends to act to
homogenize the block sizes. In fact, the empirical measure of
the rescaled block sizes has law of large numbers-style
behaviour as t →∞.

I If α < 0, smaller blocks split faster than larger ones.

In fact,
as blocks get smaller, they split faster and faster until they are
reduced to dust i.e. blocks of infinitesimal mass. The whole
state is reduced to dust in an almost surely finite time ζ,
called the extinction time.



Behaviour

The index of self-similarity has an enormous influence on the
behaviour of the fragmentation process.

I If α = 0, the blocks all split at the same rate.

I If α > 0, bigger blocks split faster. This tends to act to
homogenize the block sizes. In fact, the empirical measure of
the rescaled block sizes has law of large numbers-style
behaviour as t →∞.

I If α < 0, smaller blocks split faster than larger ones.

In fact,
as blocks get smaller, they split faster and faster until they are
reduced to dust i.e. blocks of infinitesimal mass. The whole
state is reduced to dust in an almost surely finite time ζ,
called the extinction time.



Behaviour

The index of self-similarity has an enormous influence on the
behaviour of the fragmentation process.

I If α = 0, the blocks all split at the same rate.

I If α > 0, bigger blocks split faster. This tends to act to
homogenize the block sizes. In fact, the empirical measure of
the rescaled block sizes has law of large numbers-style
behaviour as t →∞.

I If α < 0, smaller blocks split faster than larger ones. In fact,
as blocks get smaller, they split faster and faster until they are
reduced to dust i.e. blocks of infinitesimal mass. The whole
state is reduced to dust in an almost surely finite time ζ,
called the extinction time.



An important example: the Brownian fragmentation

Take a standard Brownian excursion (e(x), 0 ≤ x ≤ 1) and
consider the associated interval fragmentation (O(t), t ≥ 0).
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The Brownian fragmentation

Let (F (t), t ≥ 0) be the ranked fragmentation derived from the
Brownian interval fragmentation (O(t), t ≥ 0).

Theorem. (Bertoin (2002)) (F (t), t ≥ 0) is a self-similar
fragmentation of index α = −1/2 and binary dislocation measure
specified by ν(s1 + s2 < 1) = 0 and

ν(s1 ∈ dx) =
2√

2πx3(1− x)3
I[1/2,1](x)dx .
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