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Abstract. In the last 30 years, random combinatorial structures and
their limits have formed a flourishing area of research at the interface
between probability and combinatorics. In this mini-course, I aim to
show some of the beautiful theory that arises when considering scaling
limits of random trees and graphs.

Trees are fundamental objects in combinatorics and the enumeration of
different classes of trees is a classical subject. In the first section, we will
take as our basic object the genealogical tree of a critical Galton–Watson
branching process. (As well as having nice probabilistic properties, this
class turns out to include various natural types of random combinatorial
tree in disguise.) In the same way as Brownian motion is the universal
scaling limit for centred random walks of finite step-size variance, it turns
out that all critical Galton–Watson trees with finite offspring variance
have a universal scaling limit, Aldous’ Brownian continuum random tree.

The simplest model of a random network is the Erdős–Rényi random
graph: we take n vertices, and include each possible edge independently
with probability p. One of the most well-known features of this model
is that it undergoes a phase transition. Take p = c/n. Then for c < 1,
the components have size O(logn), whereas for c > 1, there is a giant
component, comprising a positive fraction of the vertices, and a collection
of O(logn) components. (This statements hold with probability tending
to 1 as n → ∞.) In the second section, we will focus on the critical
setting, c = 1, where the largest components have size on the order n2/3,
and are “close” to being trees, in the sense that they have only finitely
many more edges. We will see how to use a careful comparison with
a branching process in order to derive the scaling limit of the critical
Erdős–Rényi random graph.

In the final section, we consider the more general setting of a critical
random graph generated according to the configuration model with in-
dependent and identically distributed degrees. Here, under natural con-
ditions we obtain the same scaling limit as in the Erdős–Rényi case (up
to constants).

Keywords: scaling limits, random graphs, random trees, R-trees, Brow-
nian continuum random tree
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These are (somewhat expanded) lecture notes for a 3-hour long mini-course. The
principal aim is to give an idea of the intuition behind the main results, rather
than fully rigorous proofs. Some of the ideas are further explored in exercises.

1 Galton–Watson trees and the Brownian continuum
random tree

1.1 Uniform random trees

In order to build up some intuition, we start with perhaps the simplest model
of a random tree. Let Tn be the set of (unordered) trees labelled by [n] :=
{1, 2, . . . , n}, and let T = ∪n≥1Tn. For example, T3 consists of the trees
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Cayley’s formula says that |Tn| = nn−2. We let Tn be a tree chosen uniformly at
random from the nn−2 elements of Tn. Our first aim is to understand what Tn
“looks like” for large n. In order to do this, it will be useful to have an algorithm
for building Tn.

It will be technically easier to deal with T•n, the set of elements of Tn with a
single distinguished vertex, called the root. Given a uniform element of T•n, we
obtain a uniform element of Tn by simply forgetting the root.

The Aldous–Broder algorithm
Start from the complete graph on [n].

– Pick a uniform vertex from which to start; this acts as a root.
– Run a simple random walk (Sk)k≥0 on the graph (i.e. at each step, move to

a vertex distinct from the current one, chosen uniformly at random).
– Whenever the walk visits a new vertex, keep the edge along which it was

reached.
– Stop when all vertices have been visited.

Claim: the resulting rooted tree is uniform on T•n.

The random walk (Sk)k≥0 has a uniform stationary distribution, and is re-
versible, so that we may talk about a stationary random walk (Sk)k∈Z. The
dynamics of this random walk give rise to Markovian dynamics on T•n. Let τk be
the tree constructed from the random walk started at time k (which is rooted at
Sk). Then τk depends on Sk, Sk+1, . . . through the first hitting times of vertices.
These can only occur later if we start from a later point in the sequence. So,
given τk, τk+1 is independent of τk−1, τk−2, . . ..

Since the random walk is stationary, the tree must be also. It remains to
prove that its distribution is uniform on T•n.
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Exercise 1 Consider the time-reversed chain (which must have the same sta-
tionary distribution). For τ, τ ′ ∈ T•n, write q(τ, τ ′) for the transition probability
from τ to τ ′ for the time-reversed chain.

1. Argue that the chain is irreducible on T•n.
2. Show that for fixed τ , q(τ, τ ′) = 0 or 1/(n− 1).
3. Show that for fixed τ ′, q(τ, τ ′) = 0 or 1/(n− 1).
4. It follows that Q = (q(τ, τ ′))τ,τ ′∈T•n is a doubly stochastic matrix. Deduce

that the stationary distribution must be uniform.

A variant algorithm due to Aldous
Note that nothing changes if we permute all of the vertex-labels uniformly. So we
may as well just do the labelling at the very end. Also, there are steps on which
we do not add a new edge at all because the vertex to which the walk moves has
already been visited. (Indeed, steps on which we add new edges are separated by
geometrically-distributed numbers of steps on which we add no edges.) We may
as well suppress this “wandering around” inside the structure we have already
built.

– Start from a single vertex labelled 1.
– For 2 ≤ i ≤ n, connect vertex i to vertex Vi by an edge, where

Vi =

{
i− 1 with probability 1− i−2

n−1
k with probability 1

n−1 for 1 ≤ k ≤ i− 2.

– Uniformly permute the vertex labels.

We may think of this algorithm as growing a sequence of paths with consecutive
vertex-labels (of random lengths), with such a path ending whenever we reach a
vertex labelled i which connects to Vi 6= i− 1. The first such path has length

Cn1 := inf{i ≥ 2 : Vi 6= i− 1}.

Our first glimpse into the scaling behaviour of Tn is given by the following simple
proposition.

Proposition 1 We have
Cn1√
n

d→ C1

as n→∞, where P (C1 > x) = exp(−x2/2), x ≥ 0.

Proof. We have

P
(
n−1/2Cn1 > x

)
= P

(
Cn1 ≥ bx

√
nc+ 1

)
=

bx
√
nc−2∏
i=1

(
1− i

n− 1

)
.
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Taking logarithms and then Taylor expanding, we have

− logP
(
n−1/2Cn1 > x

)
= −

bx
√
nc−2∑
i=1

log

(
1− i

n− 1

)

=

bx
√
nc−2∑
i=1

i

n− 1
+ o(1)

=
(bx√nc − 2)(bx√nc − 1)

2(n− 1)
+ o(1)→ x2

2
,

as n→∞. 2

Once we have built the first path of consecutive labels, we pick a uniform
random point along it and start growing a second path of uniform labels, etc.

Imagine now that edges in the tree have length 1. Formally, we do this by
thinking of Tn as a metric space, where the points of the space are the vertices and
the metric is given by the graph distance, for which we write dn. The proposition
suggests that, in order to get some sort of nice limit as n→∞, we should rescale
the graph distance by n−1/2.

Here is what turns out to be the limiting version of the algorithm.

Line-breaking construction
Let C1, C2, . . . be the points of an inhomogeneous Poisson process on [0,∞) of
intensity measure tdt. (In particular, we have P (C1 > x) = exp

(
−
∫ x
0
tdt
)

=
exp(−x2/2).) For each i ≥ 1, conditionally on Ci, let Ji ∼ U[0, Ci). Cut [0,∞)
into intervals at the points given by the Ci’s and, for i ≥ 1, glue the line-segment
[Ci, Ci+1) to the point Ji. (In particular, if we think of this as gradually building
up a tree branch by branch, we glue [Ci, Ci+1) to a point chosen uniformly from
the tree built so far.) Think of the union of all of these line-segments as a path
metric space, and take its completion. This is (one somewhat informal definition
of) the Brownian continuum random tree (CRT) T . Write d for its metric.

Theorem 2 (Aldous [4]) As n→∞,(
Tn,

1√
n
dn

)
d→ (T , d).

In order to make sense of this convergence, we need a topology on metric
spaces, which we will discuss in Section 1.4. For the purposes of the present
discussion, let us observe that one way to prove this theorem has at its heart the
following joint convergence: if Cnk is the kth element of the set {i ≥ 2 : Vi 6= i−1}
and Jnk = VCn

k
then(

1√
n

(Cn1 , J
n
1 ),

1√
n

(Cn2 , J
n
2 ), . . .

)
d→ ((C1, J1), (C2, J2), . . .).

(See Aldous [4].) We will later take a different approach in order to prove a more
general version of Theorem 2.
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1.2 Ordered trees and their encodings

We will henceforth find it easier to work with rooted, ordered trees i.e. those
with a distinguished vertex (the root) and such that the children of a vertex (its
neighbours which are furthest away from the root) have a given planar order.
We will use the standard Ulam–Harris labelling by elements of U := ∪∞n=0Nn
where, by convention, N0 := {∅}.

Write T for the set of finite rooted ordered trees. (To an element of T we
may associate a canonical element of T by rooting at the vertex labelled 1 and
embedding the children of a vertex in left-to-right order by increasing label.)

We will find it convenient to encode elements of T by discrete functions in
two different ways. For t ∈ T with n vertices, let v0, v1, . . . , vn−1 be the vertices
listed in lexicographical order (so that, necessarily, v0 = ∅). Let d denote the
graph distance on t. We define the height function of t to be (H(i), 0 ≤ i ≤ n−1),
where

H(i) := d(v0, vi), 0 ≤ i ≤ n− 1.

We imagine visiting the vertices of the tree in lexicographical order and simply
recording the distance from the root at each step. It is straightforward to recover
t from its height function.

Now let K(i) be the number of children of vi, for i ≥ 0, and define the depth-
first walk (or  Lukasiewicz path) of t to be (X(i), 0 ≤ i ≤ n), where X(0) := 0
and

X(i) :=

i−1∑
j=0

(K(j)− 1).

Again, we imagine visiting the vertices in lexicographical order, but this time
we keep track of a stack of vertices which we “know about”, but have not yet
visited. At time 0, we are at the vertex v0. Whenever we leave a vertex, we
become aware of its children (if any) and add them to the stack. We also choose
a new vertex to visit by taking the one from the top of the stack; it is then
removed from the stack. Then for 0 ≤ i ≤ n− 1, the value X(i) records the size
of the stack when we visit vertex vi.

See Figure 1 for an example.
We observe straight away that X(n) =

∑n−1
i=0 K(i) − n = −1, since every

vertex is the child of some other vertex, except v0. On the other hand, for i < n,
there is some non-negative number of vertices on the stack, so that X(i) ≥ 0.

We shall now prove that X also encodes t.

Proposition 3 For 0 ≤ k ≤ n− 1,

H(k) = #

{
0 ≤ i ≤ k − 1 : X(i) = min

i≤j≤k
X(j)

}
.

Proof (sketch). For any subtree of the original tree, the value of X once we have
just finished exploring it is one less than its value when we visited the root of
the subtree, whereas within the subtree, X takes at least its value at the root.
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Fig. 1. A rooted ordered tree, its height function and its depth-first walk.
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Now, the height of vk is equal to the number of subtrees we have begun but not
completed exploring at the step before we reach vk. The roots of these subtrees
are times i before k − 1 such that X has not yet gone lower by step k i.e.

H(k) = #

{
0 ≤ i ≤ k − 1 : X(i) = min

i≤j≤k
X(j)

}
,

as desired. 2

1.3 Galton–Watson trees

Let us now take T ∈ T to be random by letting it be the family tree of a
Galton–Watson branching process, with offspring distribution (pi)i≥0 i.e. each
vertex gets a random number of children with distribution (pi)i≥0, independently
of all other vertices. Let N be the total progeny (i.e. the number of vertices in
the tree). We will impose the conditions p1 < 1 and

∑
i≥0 ipi ≤ 1, under which

N < ∞ almost surely. To avoid complicating the statements of our results,
except where otherwise stated, we shall also assume that for all n sufficiently
large, P (N = n) > 0.

Proposition 4 Let (R(k), k ≥ 0) be a random walk with R(0) = 0 and step
distribution ν(i) = pi+1, i ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Then
(X(k), 0 ≤ k ≤ N)

d
= (R(k), 0 ≤ k ≤M).

See Le Gall [27] for a careful proof. So the depth-first walk of a (sub-critical
or critical) Galton–Watson tree is a stopped random walk, which is a rather
natural object from a probabilistic perspective. It turns out that many of the
most natural combinatorial models of random trees are actually conditioned
critical Galton–Watson trees.

Exercise 2 Let T be a Galton-Watson tree with Poisson(1) offspring distribu-
tion and total progeny N .

1. Fix a particular rooted ordered tree t with n vertices having numbers of chil-
dren cv, v ∈ t. What is P (T = t)?

2. Condition on the event {N = n}. Assign the vertices of T a uniformly
random labelling by [n], and let T̃ be the labelled tree obtained by forgetting
the ordering and the root. Show that T̃ has the same distribution as Tn, a
uniform random tree on n vertices.
Hint: it suffices to show that the probability of obtaining a particular tree t
is a function of n only.

Exercise 3 Let T be a Galton-Watson tree with offspring distribution (pk)k≥0
and total progeny N .
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(a) Show that if pk = 2−k−1, k ≥ 0 then, conditional on N = n, T is uniform
on the set of ordered rooted trees with n vertices.

(b) Show that if p0 = 1/2 and p2 = 1/2 then, conditional on N = n (for n odd),
T is uniform on the set of complete binary trees.

Suppose now that
∑∞
i=1 ipi = 1 and σ2 :=

∑∞
i=1(i − 1)2pi ∈ (0,∞). Write

(Xn(k), 0 ≤ k ≤ n) for the depth-first walk of our Galton–Watson tree condi-
tioned on N = n.

Theorem 5 As n→∞,

1

σ
√
n

(Xn(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

Using the fact that the depth-first walk of a Galton–Watson tree is a stopped
random walk, this follows from a conditioned version of Donsker’s invariance
principle which is due to Kaigh [25]. A highly non-trivial consequence of Theo-
rem 5 is that, up to a scaling constant, the same is true for Hn, the conditioned
height process.

Theorem 6 As n→∞,

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2(e(t), 0 ≤ t ≤ 1),

The Brownian CRT is the tree encoded (in a sense to be made precise in the
next section) by 2(e(t), 0 ≤ t ≤ 1).

See Le Gall [27] for a complete proof of this theorem. We will give a sketch
proof, not for the case of a single tree conditioned to have size n, but rather for
a sequence of i.i.d. unconditioned critical Galton–Watson trees. (It is technically
easier not to have to deal with the conditioning.) We encode this “forest” via
the (shifted) concatenation of the depth-first walks of its trees: a new tree starts
every time X reaches a new minimum. (We must be a little careful now with our
interpretation of the quantity X(k): it is the number of vertices on the stack,
minus the number of components we have completely explored.) We take H to
be defined, as before, via

H(k) = #

{
0 ≤ i ≤ k − 1 : X(i) = min

i≤j≤k
X(j)

}
. (1)

Donsker’s theorem easily gives

1

σ
√
n

(X(bntc), t ≥ 0)
d→ (W (t), t ≥ 0),

where W is a standard Brownian motion. The analogue of Theorem 6 is then as
follows.
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Theorem 7 As n→∞,

σ√
n

(Hn(bntc), t ≥ 0)
d→ 2

(
W (t)− inf

0≤s≤t
W (s), t ≥ 0

)
.

(The right-hand side has the same distribution as twice a reflecting Brownian
motion (|W (t)|, t ≥ 0). We interpret this as encoding a sort of forest of continuum
trees, each corresponding to an excursion away from 0.)

The random walks which occur as depth-first walks of Galton-Watson trees
have the special property that they are skip-free to the left, which means that
they have step distribution concentrated on {−1, 0, 1, 2, . . .}. It turns out that
these random walks have particularly nice properties, some of which we explore
in the next exercise.

Exercise 4 Let (X(k), k ≥ 0) be a random walk with step distribution ν(k),
k ≥ −1. Assume that

∑
k≥−1 kν(k) = 0 and that

∑
k≥−1 k

2ν(k) = σ2 < ∞.
Suppose X(0) = 0 and let T = inf{k ≥ 1 : X(k) ≥ 0}. This is called the first
weak (ascending) ladder time. The random walk is recurrent, and so T <∞ a.s.
and it follows that the first weak ladder height X(T ) is finite a.s.

If the first step of the random walk is to 0 or above, then T = 1 and X(T ) is
simply the new location of the random walk.

If the first step is to −1, on the other hand, things are more involved. In
general, the random walk may now make several excursions which go below −1
and stay below it before returning to −1. Finally the walk leaves −1, perhaps
initially going downwards, but eventually reaching {0, 1, 2, . . .} without hitting
−1 again. Indeed, using the strong Markov property, we can see that the random
walk makes a geometrically distributed number of excursions which return to −1
before it hits {0, 1, . . .}, where the parameter of the geometric is (by translation-
invariance) P (X(T ) > 0).

1. By conditioning on the first step of the random walk, and using the above
considerations, show that for k ≥ 0,

P (X(T ) = k) = ν(k) + ν(−1)P (X(T ) = k + 1|X(T ) > 0) .

2. Show that for k ≥ 0,

P (X(T ) = k) =

∞∑
j=0

(
ν(−1)

P (X(T ) > 0)

)j
ν(k + j).

3. Show directly that
∞∑
k=0

ν̄(k) = 1

where ¯ν(k) =
∑∞
j=k ν(j).
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4. Using the fact that
∑∞
k=0 P (X(T ) = k) = 1, deduce carefully that we must

have
P (X(T ) > 0) = ν(−1),

and hence that P (X(T ) = k) = ν̄(k) for k ≥ 0.
Hint: you may want to use a probability generating function.

5. Finally, show that E [X(T )] = σ2/2.

This calculation is inspired by one by Jean-François Marckert & Abdelkader
Mokkadem in [30]. They credit the argument to Feller.

We will use the result of the exercise to prove that the height process con-
verges in the sense of finite-dimensional distributions.

Proposition 8 For any m ≥ 1 and any 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm <∞,

1√
n

(H(bnt1c), . . . ,H(bntmc))

d→ 2

σ

(
W (t1)− inf

0≤s≤t1
W (s), . . . ,W (tm)− inf

0≤s≤tm
W (s)

)
.

Proof. Let S(n) = sup0≤k≤nX(k) and I(n) = inf0≤k≤nX(k). Let us introduce
the time-reversed random walk, which takes the same jumps but in the opposite
order:

X̂n(k) = X(n)−X(n− k).

Then
(X̂n(k), 0 ≤ k ≤ n)

d
= (X(k), 0 ≤ k ≤ n).

Hence,

H(n) = #

{
0 ≤ k ≤ n− 1 : X(k) = inf

k≤j≤n
X(j)

}
= #

{
1 ≤ i ≤ n : X(n− i) = inf

0≤`≤i
X(n− `)

}
= #

{
1 ≤ i ≤ n : X̂n(i) = sup

0≤`≤i
X̂n(`)

}
.

By analogy, define

J(n) = #

{
1 ≤ i ≤ n : X(i) = sup

0≤`≤i
X(`)

}
= # {1 ≤ i ≤ n : X(i) = S(i)} .

Note that

sup
0≤k≤n

X̂n(k) = X(n)− inf
0≤k≤n

X(k) = X(n)− I(n).

It follows that for each fixed n,

(S(n), J(n))
d
= (X(n)− I(n), H(n)).
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Now define T0 = 0 and Tk = inf{i > Tk−1 : X(i) = S(i)}, k ≥ 1. Then the
random variables {X(Tk+1) − X(Tk), k ≥ 0} are i.i.d. by the strong Markov
property. By Exercise 4, they have mean σ2/2.

We now claim that
H(n)

X(n)− I(n)

p→ 2

σ2
, (2)

as n→∞. To see this, write

S(n) =
∑

k≥1:Tk≤n

(S(Tk)− S(Tk−1)) =

J(n)∑
k=1

(S(Tk)− S(Tk−1))

=

J(n)∑
k=1

(X(Tk)−X(Tk−1).

Since J(n)→∞ as n→∞, by the Strong Law of Large Numbers we have

S(n)

J(n)
→ E [X(T1)] =

σ2

2
a.s.

as n→∞. Since (S(n),K(n))
d
= (X(n)−I(n), H(n)) for each n, we deduce that

X(n)− I(n)

H(n)

p→ σ2

2

as n→∞. Now, we know that

1√
n

(X(bntc), t ≥ 0)
d→ σ(W (t), t ≥ 0)

and so, by the continuous mapping theorem,

1√
n

(X(bnt1c)− I(bnt1c), . . . , X(bntmc)− I(bntmc))

d→ σ

(
W (t1)− inf

0≤s≤t1
W (s), . . . ,W (tm)− inf

0≤s≤tm
W (s)

)
.

The result then follows by using (2). 2

1.4 R-trees encoded by continuous excursions

We now turn to our continuum notion of a tree.

Definition 9 A compact metric space (T, d) is an R-tree if the following con-
ditions are fulfilled for every pair x, y ∈ T :

– There exists an isometric map fx,y : [0, d(x, y)] → T such that fx,y(0) = x
and fx,y(d(x, y)) = y. We write [[x, y]] := fx,y([0, d(x, y)]).
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– If g is a continuous injective map [0, 1]→ T such that g(0) = x and g(1) = y
then g([0, 1]) = [[x, y]].

A continuous excursion is a continuous function h : [0, ζ] → R+ such that
h(0) = h(ζ) = 0 and h(x) > 0 for x ∈ (0, ζ), for some 0 < ζ <∞. We will build
all of our R-trees from such functions. For a continuous excursion h, define first
a pseudo-metric on [0, ζ] via

dh(x, y) = h(x) + h(y)− 2 inf
x∧y≤x≤x∨y

h(z).

Then define an equivalence relation by x ∼ y iff dh(x, y) = 0, and let Th be
given by the quotient [0, ζ]/ ∼. Intuitively, we put glue on the underside of the
function and then h and then imagine squashing the function from the right:
whenever two parts of the function at the same height and with glue on them
meet, they stick together. The effect is that local minima of the function become
branch-points of a tree.

Theorem 10 For any continuous excursion h, (Th, dh) is an R-tree.

For a proof, see Le Gall [27]. For t ∈ [0, ζ], we write ph for the canonical
projection [0, ζ] → Th. It is usual to think of the tree as rooted at ρ = ph(0) =
ph(ζ), the equivalence class of 0. It will be useful later to have a measure µh on
Th which is given by the push-forward of the Lebesgue measure on [0, ζ].

Now let M be the space of isometry classes of compact metric spaces. We
endow M with the Gromov–Hausdorff distance. To define this, let (X, d) and
(X ′, d′) be elements of M. A correspondence R is a subset of X ×X ′ such that
for all x ∈ X, there exists x′ ∈ X ′ such that (x, x′) ∈ R and vice versa. The
distortion of R is

dis(R) = sup{|d(x, y)− d′(x′, y′)| : (x, x′), (y, y′) ∈ R}.

The Gromov–Hausdorff distance between (X, d) and (X ′, d′) is then given by

dGH((X, d), (X ′, d′)) =
1

2
inf
R

dis(R),

where the infimum is taken over all correspondences R between X and X ′.
Importantly, (M, dGH) is a Polish space. (See Burago, Burago and Ivanov [15]
for much more about the Gromov–Hausdorff distance.)

We define the Brownian CRT to be (T2e, d2e), where e = (e(t), 0 ≤ t ≤ 1) is
a standard Brownian excursion.

1.5 Convergence to the Brownian CRT

Let Tn be a critical Galton–Watson tree with finite offspring variance σ2 > 0,
conditioned to have total size n, and let dn be the graph distance on Tn.
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Theorem 11 (Aldous [6], Le Gall [27]) As n→∞,(
Tn,

σ√
n
dn

)
d→ (T2e, d2e).

Proof. (I learnt this proof from Grégory Miermont.) By Skorokhod’s represen-
tation theorem, we can find a probability space on which the convergence

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)→ 2(e(t), 0 ≤ t ≤ 1)

occurs almost surely (in the uniform norm). As usual, write v0, v1, . . . , vn−1
for the vertices of Tn in lexicographical order. Then (Tn,

σ√
n
dn) is isometric to

{0, 1, . . . , n− 1} endowed with the distance

dn(i, j) =
σ√
n
dn(vi, vj).

Define a correspondence Rn between {0, 1, . . . , n−1} and [0, 1] by setting (i, s) ∈
Rn if i = bnsc; we also declare that (n − 1, 1) ∈ Rn. Now endow [0, 1] with the
pseudo-metric d2e. We will bound dis(Rn). Note first that

dn(v0, vi) = Hn(i).

If we write u ∧ v for the most recent common ancestor of u and v, then∣∣∣∣dn(v0, vi ∧ vj)− min
i≤k≤j

Hn(k)

∣∣∣∣ ≤ 1.

Now suppose that (i, s), (j, t) ∈ Rn with s ≤ t. Then

|dn(i, j)− d2e(s, t)| ≤
∣∣∣∣ σ√n

(
Hn(bnsc) +Hn(bntc)− 2 min

s≤u≤t
Hn(bnuc)

)
−
(

2e(s) + 2e(t)− 4 min
s≤u≤t

e(u)

)∣∣∣∣+
2σ√
n
.

The right-hand side converges to 0 uniformly in s, t ∈ [0, 1]. Since

dGH

((
Tn,

σ√
n
dn

)
, (T2e, d2e)

)
≤ 1

2
dis(Rn),

the result follows. 2

There are several steps along the way to the proof of Theorem 11 which, due
to a lack of time, I have omitted. The following exercise is intended to lead you
through a complete proof in one special case, assuming only Kaigh’s theorem on
the convergence of a random walk excursion.



14 C. Goldschmidt

Exercise 5 We have discussed the depth-first walk and the height function of
a tree. A third encoding which is often used is the so-called contour function
(C(i), 0 ≤ i ≤ 2(n − 1)). For a tree t ∈ T, we imagine a particle tracing the
outline of the tree from left to right at speed 1. (The picture below is for a
labelled tree, with a planar embedding given by the labels.) Notice that we visit
every vertex apart from the root ∅ a number of times given by its degree.

463

2 5

7

1

121110987

C(t)

t

42 6531
−1

0

1

2

3

Let Tn be a Galton-Watson tree with offspring distribution p(k) = 2−k−1, k ≥
0, conditioned to have total progeny N = n, as in Exercise 3(a). Let (Cn(i), 0 ≤
i ≤ 2(n− 1)) be its contour function. It will be convenient to define a somewhat
shifted version: let C̃n(0) = 0, C̃n(2n) = 0 and, for 1 ≤ i ≤ 2n − 1, C̃n(i) =
1 + C(i− 1).

1. Show that (C̃n(i), 0 ≤ i ≤ 2n) has the same distribution as a simple symmet-
ric random walk (i.e. a random walk which makes steps of +1 with probability
1/2 and steps of −1 with probability 1/2) conditioned to return to the origin
for the first time at time 2n.
Hint: first consider the unconditioned Galton-Watson tree with this offspring
distribution.

2. It’s straightforward to interpolate linearly to get a continuous function C̃n :
[0, 2n]→ R+. Let T̃n be the R-tree encoded by this linear interpolation. Show
that

dGH(Tn, T̃n) ≤ 1

2
.

Hint: notice that Tn considered as a metric space has only n points, whereas
T̃n is an R-tree and consists of uncountably many points. Draw a picture
and find a correspondence.

3. Suppose that we have continuous excursions f : [0, 1]→ R+ and g : [0, 1]→
R+ which encode R-trees Tf and Tg. For t ∈ [0, 1], let pf (t) be the image of
t in the tree Tf and similarly for pg(t). Define a correspondence

R = {(x, y) ∈ Tf × Tg : x = pf (t), y = pg(t) for some t ∈ [0, 1]} .

Show that dis(R) ≤ 4‖f − g‖∞.
Hint: recall how the metric in an R-tree is related to the function encoding
it.

4. Observe that the variance of the step-size in a simple symmetric random
walk is 1. Hence, by Theorem 5, we have

1√
2(n− 1)

(Cn(2(n− 1)t), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1) (*)
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as n→∞. Use this, (b) and (c) to prove directly that (Tn,
1√
n
dn) converges

to a constant multiple of the Brownian CRT in the Gromov-Hausdorff sense.
Hint: you may want to use Skorokhod’s representation theorem in order to
work on a probability space where the convergence (*) occurs almost surely.

This approach is taken from Jean-François Le Gall & Grégory Miermont’s lec-
ture notes [29].

1.6 Properties of the Brownian CRT

A relatively straightforward extension of Theorem 11 shows that, in the appro-
priate topology (that generated by the Gromov–Hausdorff–Prokhorov distance),
the metric space (Tn,

σ√
n
dn) endowed with the uniform measure on the vertices

of Tn converges to (T2e, d2e) endowed with the measure µ2e (the push-forward of
the Lebesgue measure on [0, 1]). In consequence, we refer to µ2e as the uniform
measure on T2e.

Consider picking points according to µ2e. We may generate a sample from
µ2e simply by taking p2e(U) where U ∼ U[0, 1] (recall that p2e is the projection
[0, 1] → T2e). It turns out that p2e(U) is almost surely a leaf. (This may seem
surprising at first sight. But we can think of it as saying, for example, that every
vertex of a uniform random tree is at distance o(

√
n) from a leaf.) It also the

case that the rooted Brownian CRT (T2e, d2e, ρ) is invariant in distribution under
random re-rooting at a point sampled from µ2e (this follows because the same
property is true for the uniform random tree Tn).

For fixed k ≥ 1, let X1, X2, . . . , Xk be leaves of T2e sampled according to µ2e.
Then subtree of T2e spanned by ρ,X1, . . . , Xk has exactly the same distribution
as the tree produced at step k in the line-breaking construction discussed in
Section 1.1 [4].

The Brownian CRT has many other fascinating properties: for example, it
is a random fractal, with Hausdorff and Minkowski dimension both equal to 2,
almost surely [22, 28].

2 The critical Erdős–Rényi random graph

We now turn to perhaps the simplest and best-known model of a random graph.
Take n vertices labelled by [n] and put an edge between any pair of them inde-
pendently with probability p, for some fixed p ∈ [0, 1]. We write G(n, p) for the
resulting random graph. We will be interested in the connected components of
G(n, p) and, in particular, in their size and structure.

2.1 The phase transition and component sizes in the critical window

Let p = c/n for some constant c > 0. The following statements hold with prob-
ability tending to 1 as n→∞:

– if c < 1, the largest connected component of G(n, p) has size O(log n);
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– if c > 1, the largest connected component has size Θ(n) and the others are
all O(log n).

In the latter case, we refer to the largest component as the giant.
Let us give an heuristic explanation for this phenomenon. We think about

exploring the graph in a depth-first manner, which we will make more precise
later. Firstly consider the vertex labelled 1. It has a Bin(n − 1, c/n) ≈ Po(c)
number of neighbours, say K. Consider the lowest-labelled of these neighbours.
Conditionally on K, it itself has a Bin(n−K−1, c/n) number of new neighbours.
This distribution is still well-approximated by Po(c), as long as K = o(n). So
we may think of exploring vertex by vertex and approximating the size of the
component that we discover by the total progeny of a Galton–Watson branching
process with Po(c) offspring distribution, as long as the total number of vertices
we have visited remains small relative to the size of the graph. If c ≤ 1, such a
branching process dies out with probability 1, which corresponds to obtaining
a small component containing vertex 1. A similar argument will then work in
subsequent components. If c > 1, there is positive probability that the branching
process will survive. The branching process approximation holds good until we
first explore a component which does not “die out”; this ends up being the giant
component.

We will focus here on the critical case c = 1 or, more precisely, on the critical
window : p = 1

n + λ
n4/3 , λ ∈ R. We will show in a moment that here the largest

components have sizes on the order of n2/3. With a view to later understanding
the structure of these components, we will also track the surplus of each one,
that is the number of edges more than a tree that it has: a component with m
vertices and k edges has surplus k −m+ 1.

Let us fix λ ∈ R and let Cn1 , C
n
2 , . . . be the component sizes of G

(
n, 1

n + λ
n4/3

)
,

listed in decreasing order, and let Sn1 , S
n
2 , . . . be the corresponding surpluses.

Theorem 12 (Aldous [7]) As n→∞,(
1

n2/3
(Cn1 , C

n
2 , . . .), (S

n
1 , S

n
2 , . . .)

)
d→ ((C1, C2, . . .), (S1, S2, . . .))

where the limit has an explicit description to be given below. Convergence for the
first sequence takes place in

`2↓ :=

{
x = (x1, x2, . . .) : x1 ≥ x2 ≥ . . . ≥ 0,

∞∑
i=1

x2i <∞
}

with the usual `2 distance; for the second sequence, it is in the product topology.

To describe the limit, let

Wλ(t) = W (t) + λt− t2

2
, t ≥ 0,

where (W (t), t ≥ 0) is a standard Brownian motion. Let Bλ(t) = Wλ(t) −
inf0≤s≤tW

λ(s) be the the process reflected at its minimum. Now draw the graph
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of the process Bλ and decorate it with the points of a rate 1 Poisson process in
the plane, keeping only those points which fall between the x-axis and the func-
tion. (Equivalently, conditionally on Bλ, let (Pλ(t), t ≥ 0) be an inhomogeneous
Poisson process of intensity Bλ(t) at time t.) Then (C1, C2, . . .) is the ordered
sequence of excursion-lengths above 0 of the process Bλ and (S1, S2, . . .) is the
sequence of numbers of Poisson points falling in the corresponding excursions.

The key to the proof of this result is the depth-first walk (or a variant thereof:
Aldous’ original proof rather uses a breadth-first walk, but the details are essen-
tially identical). Consider the component containing vertex 1. We explore as
we would in a tree, simply ignoring any edges to vertices we have already seen
(which make cycles), and using the labels to tell us which is the root of a com-
ponent (the lowest-labelled vertex) and to provide a left-right ordering for the
children of a vertex. When we reach the end of a component, we start exploring
the component of the lowest-labelled vertex we have not yet seen, concatenating
the depth-first walks. Note that, as in the case of a forest of Galton–Watson
trees, we begin a new component every time the depth-first walk attains a new
minimum.

Theorem 13 (Aldous [7]) Let Xn be the depth-first walk associated with
G
(
n, 1

n + λ
n4/3

)
and let Nn be the counting process of surplus edges (so that

Nn(k) is the number of surplus edges encountered by step k). Then the following
convergences occur jointly:

1

n1/3

(
Xn(bn2/3tc), t ≥ 0

)
d→ (Wλ(t), t ≥ 0)

and (
Nn(bn2/3tc), t ≥ 0

)
d→ (Pλ(t), t ≥ 0)

as n→∞ (here both convergences are in the Skorokhod sense).

Proof (sketch). Write v0, v1, . . . for the vertices in the order we visit them, where
v0 = 1. Let Kn(i) be the number of children of vi, where children are new vertices
we discover when we explore the neighbours of vi. Then

Xn(k) =

k−1∑
i=0

(Kn(i)− 1).

Write Ln(k) = − inf0≤i≤kX
n(i). Then Ln(k) is the number of components that

we have fully explored before step k. When we visit vi, there are 1 + Xn(i) +
Ln(i) vertices we have seen but not yet fully explored, and i vertices have been
fully processed. Hence, there are possible edges from vi to any of the remaining
n− i− 1−Xn(i)− Ln(i) vertices, each of which is present independently with
probability 1

n + λ
n4/3 . So, given Xn(i) and Ln(i),

Kn(i) ∼ Bin

(
n− i− 1−Xn(i)− Ln(i),

1

n
+

λ

n4/3

)
,
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with

E [Kn(i)− 1|Xn(0), . . . , Xn(i)]

=
λ

n1/3
− (i− 1)

n
− Xn(i) + Ln(i)

n
− λ(i− 1) + λXn(i) + λLn(i)

n4/3
.

In particular, (Xn, Ln) is a time-inhomogeneous Markov process. Suppose now
that sup0≤i≤k |Xn(i)| = o(n2/3) for k = Θ(n2/3). Then we may neglect the last

two terms on the right-hand side to obtain that, for i = Θ(n2/3),

E [Kn(i)− 1|Xn(0), . . . , Xn(i)] =
λ

n1/3
− i

n
+ o(n−1/3).

So, for i = Θ(n2/3), it is approximately the case that

Xn(i+ 1)−Xn(i) ∼ Po

(
1 +

λ

n1/3
− i

n

)
− 1.

Now let

Mn(k) = Xn(k)−
k−1∑
i=0

(
λ

n1/3
− i

n

)
≈ Xn(k)− λk

n1/3
+
k2

2n
.

Then (Mn(k), k ≥ 0) is approximately a martingale. Since the step-sizes of Xn

have variance approximately equal to 1, we may apply the martingale central
limit theorem (Theorem 7.1.4 of [20]) to obtain

1

n1/3

(
Xn(btn2/3c)− λt+

t2

2
, t ≥ 0

)
d→ (W (t), t ≥ 0).

Turning now to the surplus edges, there is potentially an edge between the
vertex vk we are currently visiting and any one of the Xn(k) + Ln(k) ver-
tices on the stack, which cannot be children of vk, since they are already chil-
dren of elements of {v0, . . . , vk−1}. Any such edges which are present thus con-
tribute to the surplus of a component. Since such edges occur independently
and with probability 1

n + λ
n4/3 , we get that surplus edges arise as a Binomial

point process with intensity approximately (Xn(k) +Ln(k))/n. With the rescal-
ing used in Theorem 13, this means that at time btn2/3c we have intensity
n−1/3(Xn(btn2/3c) + Ln(btn2/3c)) · n2/3. Taking limits as n → ∞, this corre-
sponds to a Poisson point process of intensity Wλ(t)− inf0≤s≤tW

λ(s) = Bλ(t)
at time t ≥ 0. 2

In the depth-first walk, we explore the components of the graph in size-
biased random order. (Given the component sizes, vertex 1 lies in a component
chosen with probability proportional to its size, and similarly for subsequent
components.) In order to get from Theorem 13 to Theorem 12, one must show
that in going from size-biased order to decreasing order, one doesn’t lose track
of any of the large components; see Aldous [7] for the details.
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2.2 Component structures

We saw in Proposition 3 that the depth-first walk of a tree can be used to recover
its structure. The excursions of the depth-first walk in the graph setting thus
encode a collection of spanning trees for the components. In the scaling limit,
this depth-first walk becomes a Brownian motion with parabolic drift. Let us
first look a little deeper into the properties of this limit process.

By the Cameron–Martin–Girsanov theorem, for any bounded measurable
test-function f : C([0, t],R)→ R, we have

E
[
f(Wλ(s), 0 ≤ s ≤ t)

]
= E

[
exp

(∫ t

0

(λ− s)dW (s)− 1

2

∫ t

0

(λ− s)2ds

)
f(W (s), 0 ≤ s ≤ t)

]
.

So Wλ is absolutely continuous with respect to a process which would encode
a forest of Brownian CRT’s. Consider the process of excursions of Wλ above
its running minimum or, equivalently, the excursions of Bλ above 0. One can
make sense of a sort of time-inhomogeneous excursion measure for Bλ, where
the time-inhomogeneity manifests itself only in the lengths of the excursions.
The shapes of the excursions themselves are absolutely continuous with respect
to those of W . Indeed, let us write ẽ for an excursion of Bλ normalised to have
length 1. Then for a bounded measurable test-function g : C([0, 1],R+)→ R, we
have

E [g(ẽ)] =
E
[
g(e) exp

(∫ 1

0
e(u)du

)]
E
[
exp

(∫ 1

0
e(u)du

)] .

More generally, for an excursion of length x (and an appropriately adjusted
test-function), we have the usual Brownian scaling relation:

E
[
g
(
ẽ(x)

)]
= E

[
f
(√
xẽ(t/x), 0 ≤ t ≤ x

)]
.

In summary, it is helpful to think of the reflected process Bλ in two parts:
(a) it has excursions above 0 whose ordered lengths are the random variables
(C1, C2, . . .) from Theorem 12 and (b), given these lengths, the excursions them-
selves are conditionally independent, with the ith longest having the same distri-
bution as ẽ(Ci). Part (a) of this decomposition is rather complicated, but taking
that as an input, part (b) is comparatively simple.

The limiting picture for a single component corresponding to an excursion of
length x is then as follows. We have an excursion ẽ(x) (with law as above).
Conditionally on ẽ(x), the number of points falling under the excursion has
Po
(∫ x

0
ẽ(x)(u)du

)
distribution. Let T̃ (x) be the R-tree encoded by 2ẽ(x) and

write p : [0, x] → T̃ (x) for the canonical projection. A point (t, y/2) under ẽ(x)

identifies the vertex p(t) which is at height 2ẽ(x) with the vertex at distance y
along the path from the root to v in T̃ (x). In the resulting space, we adjust the
metric in the obvious way to accommodate the fact that we now have cycles.
See Figure 2 for an illustration.
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Fig. 2. Left: an excursion with three points. Right: the corresponding R-tree with
vertex-identifications (identify any pair of points joined by a dashed line).

Let Cn1 , Cn2 , . . . be the sequence of components of G(n, 1
n + λ

n4/3 ), listed in
decreasing order of size. In order to keep the notation compact, for a > 0, write
aCni for the metric space formed by Cni endowed with the graph distance rescaled
by a.

Theorem 14 (Addario-Berry, Broutin, G. [2]) As n→∞,

n−1/3(Cn1 , Cn2 , . . .)
d→ (C1, C2, . . .),

where C1, C2, . . . is the sequence of random compact metric spaces corresponding
to the excursions of Aldous’ marked limit process Bλ in decreasing order of
length.

The convergence here is with respect to the distance

dist(A,B) =

( ∞∑
i=1

dGH(Ai,Bi)4
)1/4

,

where A = (A1,A2, . . .) and B = (B1,B2, . . .) are sequences of compact metric
spaces.

Proof (sketch). Consider a component G of G(n, p), conditioned to have a vertex
set of size m (we take [m] for simplicity). To any such component, we may
associate a canonical spanning tree T (G), called the depth-first tree of G: this
is the tree we pick out when we do our depth-first walk, for which we write
(X(k), 0 ≤ k ≤ m).

Given a fixed tree T ∈ Tm, which connected graphs G have T (G) = T? In
other words, where might we put surplus edges into T such that we don’t change
the depth-first tree? Call any such edges permitted. It is straightforward to see
that there are precisely X(k) permitted edges at step k: one between vk and
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each of the vertices which have been seen but not yet fully explored. So there
are

a(T ) :=

m−1∑
k=0

X(k)

permitted edges in total. We call this the area of T . Now let

GT = {graphs G such that T (G) = T}.

Then

{GT : T ∈ Tm}

is a partition of the set of connected graphs on [m]. Moreover, |GT | = 2a(T ),
since each permitted edge may either be included or not.

Exercise 6 Let G̃pm be a connected graph on vertices labelled by [m] generated
as follows:

– Pick a random tree T̃ pm such that

P
(
T̃ pm = T

)
∝ (1− p)−a(T ), T ∈ Tm.

– Add each of the a(T̃ pm) permitted edges independently with probability p.

Show that G̃pm has the same distribution as a component of G(n, p) conditioned
to have vertex set [m].

It remains now to show that, for m ∼ xn2/3 and p = 1
n + λ

n4/3 , we have

– n−1/3T̃ pm
d→ T (x)

– the locations of the surplus edges converge to the locations in the limiting
picture.

For simplicity, let us take x = 1 and λ = 0, so that p = m−3/2. (The general
case is similar.) Write X̃m for the depth-first walk of T̃ pm, and let H̃m be the
corresponding height process defined, as usual, from X̃m via the relation (1).
Then

a(T̃ pm) =

∫ m

0

X̃m(bsc)ds = m

∫ 1

0

X̃m(bmtc)dt,

by a simple change of variables in the integral.

If Tm is a uniform random tree on [m] and Xm is its depth-first walk, we
know from Theorem 5 that

(m−1/2Xm(bmtc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1). (3)
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Moreover, by Exercise 6, for a bounded continuous test-function f ,

E
[
f(m−1/2X̃m(bmtc), 0 ≤ t ≤ 1)

]
=

E
[
f(m−1/2Xm(bmtc), 0 ≤ t ≤ 1)(1− p)−m

∫ 1
0
Xm(bmuc)du

]
E
[
(1− p)−m

∫ 1
0
Xm(bmuc)du

]
=

E
[
f(m−1/2Xm(bmtc), 0 ≤ t ≤ 1)(1−m−3/2)−m

3/2
∫ 1
0
m−1/2Xm(bmuc)du

]
E
[
(1−m−3/2)−m

3/2
∫ 1
0
m−1/2Xm(bmuc)du

] .

We have

(1−m−3/2)−m
3/2

∫ 1
0
m−1/2Xm(bmuc)du d→ exp

(∫ 1

0

e(u)du

)
as m→∞, by (3) and the continuous mapping theorem. The sequence of random
variables on the left-hand side may be shown to be uniformly integrable (see
Lemma 14 of [2]) and so

E
[
f(m−1/2X̃m(bmtc), 0 ≤ t ≤ 1)

]
→ E [f(ẽ)]

as m→∞. Similar reasoning then gives that

E
[
f(m−1/2H̃m(bmtc), 0 ≤ t ≤ 1)

]
→ E [f(2ẽ)] ,

which implies (by the same argument as in the proof of Theorem 11) that

1√
m
T̃ pm

d→ T̃

as m→∞, in the Gromov–Hausdorff sense.
Now consider the surplus edges. It is straightforward to see that there is

a bijection between permitted edges and integer points under the graph of the
depth-first walk. A point at (k, `) means “put an edge between vk and the vertex
at distance ` from the bottom of the stack”. Since each permitted edge is present
independently with probability p, the surplus edges form a Binomial point pro-
cess, which converges on rescaling to our Poisson point process. Finally, surplus
edges always join vk and a younger child of some ancestor of vk. In the limit,
the distance between a vertex and its children vanishes, so that surplus edges
are effectively to ancestors. 2

3 Critical random graphs with i.i.d. random degrees

We have seen that degrees in the Erdős–Rényi model are approximately Poisson
distributed. In recent years, there has been much interest in modelling settings
where this is certainly not the case. We will discuss one popular model which has
arisen with the principal aim of demonstrating that the results in the previous
section are universal. We will restrict our attention to component sizes.
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3.1 The configuration model

Suppose we wish to generate a graph Gn uniformly at random from those with
vertex set [n] and such that vertex i has degree vertex di, where di ≥ 1 for
1 ≤ i ≤ n and `n =

∑n
i=1 di is even.

Assign di half-edges to vertex i. Label the half-edges in some arbitrary way
by 1, 2, . . . , `n. Then generate a uniformly random pairing of the half-edges to
create full edges.

Clearly this may produce self-loops (edges whose endpoints are the same
vertex) or multiple edges between the same pair of vertices, so in general the
configuration model produces a multigraph, Mn. Assuming that there exists at
least one simple graph with the given degrees then, conditionally on the event
{Mn is a simple graph}, Mn has the same law as Gn. This is a consequence of
the following exercise.

Exercise 7 Fix a degree sequence d1, . . . , dn. Show that the probability of gen-
erating a particular multigraph G with these degrees is

1

(`n − 1)!!

∏n
i=1 di!

2sl(G)
∏
e∈E(G) mult(e)!

,

where `n =
∑n
i=1 di, sl(G) is the number of self-loops in G and mult(e) is the

multiplicity of the edge e ∈ E(G).

We will take the degrees themselves to be random: let D1, D2, . . . , Dn be
i.i.d. with finite variance. We resolve the issue of

∑n
i=1Di potentially being odd

by simply throwing the last half-edge away when we generate the pairing in that
case.

Let γ = E [D(D − 1)] /E [D]. Then

P (Mn is simple)→ exp

(
−γ

2
− γ2

4

)
> 0

(see Theorem 7.12 of van der Hofstad [23]), so that conditioning will make sense
for large n.

Theorem 15 (Molloy and Reed [31]) If γ < 1 then, with probability tending
to 1 as n → ∞, there is no giant component; if γ > 1 then, with probability
tending to 1 as n→∞, there is a unique giant component.

Let us give an heuristic argument for why γ = 1 should be the critical point.
An important point is that we may generate the pairing of the half-edges one by
one, in any order that is convenient. So we will generate and explore the graph
at the same time. Perform a depth-first exploration from an arbitrary vertex.
Consider the first half-edge attached to the vertex (the one with the smallest
half-edge label). It picks its pair uniformly from all those available, and so in
particular it picks a half-edge belonging to a vertex chosen with probability
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proportional to its degree. The same will be true of subsequent half-edges. As
long as we have not explored much of the graph, these degrees should have law
close to the size-biased distribution, given by

P (D∗ = k) =
kP (D = k)

E [D]
, k ≥ 1.

Hence, we can compare to a branching process with offspring distribution D∗−1,
which has expectation

E [D∗ − 1] =
E
[
D2
]

E [D]
− 1 = γ.

The following exercise gives an idea of why Poisson degrees are particularly nice.

Exercise 8 Suppose that D is a non-negative integer-valued random variable
with finite mean, and let D∗ have the size-biased distribution

P (D∗ = k) =
kP (D = k)

E [D]
, k ≥ 1.

Show that D∗ − 1
d
= D if and only if D has a Poisson distribution.

3.2 Scaling limit for the critical component sizes

We will henceforth consider the configuration model with the following set-up:
the degrees D1, D2, . . . , Dn are i.i.d. and such that

– P (D1 ≥ 1) = 1, P (D1 = 2) < 1;

– γ = E[D(D−1)]
E[D] = 1;

– E
[
D3

1

]
<∞.

We write µ = E [D1] and β = E [D1(D1 − 1)(D1 − 2)]. We observe immediately
that E [D∗] = 2 and that var (D∗) = β/µ.

The analogue of Theorem 13 in this setting is as follows.

Theorem 16 (Riordan [33], Joseph [24]) Let C ,1C
n
2 , . . . be the ordered com-

ponent sizes of Mn or Gn. Then

n−2/3(Cn1 , C
n
2 , . . .)

d→ (C1, C2, . . .)

in `2↓, where the limit is given by the ordered sequence of excursion-lengths above

past-minima of the process (W β,µ(t), t ≥ 0) defined by

W β,µ(t) :=

√
β

µ
W (t)− βt2

2µ2
, t ≥ 0,

where W is a standard Brownian motion.
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We give a sketch of a proof of this result. To start with, we make precise the
connection between a collection of i.i.d. random variables in size-biased random
order and a collection of i.i.d. random variables with the size-biased distribution.

Exercise 9 Suppose that D1, D2, . . . , Dn are i.i.d. random variables with finite
mean µ, and let (D̂n

1 , D̂
n
2 , . . . , D̂

n
n) be the same random variables in size-biased

random order. That is, given D1, D2, . . . , Dn, let Σ be a permutation of [n] with
conditional distribution

P (Σ = σ|D1, D2, . . . , Dn) =
Dσ(1)∑n
j=1Dσ(j)

Dσ(2)∑n
j=2Dσ(j)

· · · Dσ(n)

Dσ(n)
, σ ∈ Sn.

Then define

(D̂n
1 , D̂

n
2 , . . . , D̂

n
n) = (DΣ(1), DΣ(2), . . . , DΣ(n)).

Now let D∗1 , D
∗
2 , . . . be i.i.d. with the (true) size-biased distribution. Show that

for m < n and d1, d2, . . . , dm ≥ 1,

P
(
D̂n

1 = d1, D̂
n
2 = d2, . . . , D̂

n
m = dm

)
= φnm(d1, d2, . . . , dm)P (D∗1 = d1, D

∗
2 = d2, . . . , D

∗
m = dm) ,

where

φnm(d1, d2, . . . , dm) :=
n!µm

(n−m)!
E

[
m∏
i=1

1∑m
j=i dj +∆n−m

]
,

and ∆n−m
d
= D1 + . . .+Dn−m.

Proof (sketch). We again use a depth-first walk but this time with a stack of
unpaired half-edges. Start by picking a vertex with probability proportional to
its degree. Declare one of its half-edges to be active and put the rest on the
stack. Sample the active half-edge’s pair (either on the stack or not) and remove
both from further consideration. If we discovered a new vertex, add its remaining
half-edges to the top of the stack. Then declare whichever half-edge is now on
top of the stack to be active. If ever the stack becomes empty, pick a new vertex
with probability proportional to its degree and continue.

In this procedure, we observe the vertex-degrees precisely in size-biased ran-
dom order. Let X̃(0) = 0 and

X̃n(k) :=

k∑
i=1

(D̂n
i − 2), k ≥ 1.

Then X̃n behaves exactly like the depth-first walk except

– at the start of a component, where we should add D̂n
i −1 rather than D̂n

i −2
and

– whenever we pair the active half-edge with one on the stack.
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Neither problem shows up in the limit and for the purposes of this sketch, we
shall ignore the difference. We write X∗(0) = 0 and let

X∗(i) =

i∑
j=1

(D∗j − 2)

be a similar process built instead from i.i.d. size-biased random variables. Note
that X∗ is a centred random walk with step-variance equal to β/µ. In particular,
by Donsker’s theorem,

n−1/3(X∗(bn2/3sc), s ≥ 0)
d→
√
β

µ
(W (s), s ≥ 0) (4)

as n→∞. We aim to show that

n−1/3(X̃(bn2/3sc), s ≥ 0)
d→ (W β,µ(s), s ≥ 0).

By the Cameron–Martin–Girsanov theorem and integration by parts, for suitable
test-functions f ,

E
[
f(W β,µ(s), 0 ≤ s ≤ t)

]
E

[
exp

(
−
√

β

µ3

∫ t

0

sdW (s)− 1

2

β

µ3

∫ t

0

s2ds

)
f

(√
β

µ
(W (s), 0 ≤ s ≤ t)

)]

= E

[
exp

(√
β

µ3

∫ t

0

(W (s)−W (t))ds− βt3

6µ3

)
f

(√
β

µ
(W (s), 0 ≤ s ≤ t)

)]
.

(5)
Exercise 9 gives us a way to obtain a discrete analogue of this change of measure.
Write x(i) =

∑i
j=1(dj − 2). Then we may rewrite

φnm(d1, d2, . . . , dm)

=
n!

(n−m)!nm
E

[
m∏
i=1

nµ

x(m)− x(i− 1) + 2(m− i+ 1) +∆n−m

]

=

m−1∏
i=1

(
1− i

n

)
E

[
m∏
i=1

nµ

∆n−m + 2(m− i+ 1) + x(m)− x(i− 1)

]

= exp

(
m−1∑
i=1

log

(
1− i

n

))

× E

[
exp

(
−

m∑
i=1

log

(
∆n−m + 2(m− i+ 1) + x(m)− x(i− 1)

nµ

))]
.
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Taylor expanding the logarithms, we get that this is approximately equal to

exp

(
−
m−1∑
i=1

[
i

n
+

i2

2n2

]
−

m∑
i=1

[
2(m− i+ 1)

nµ
− 2(m− i+ 1)2

n2µ2

]
+m

)

× exp

(
− 1

nµ

m∑
i=1

(x(m)− x(i− 1))

)
E
[
exp

(
− m
nµ

∆n−m

)]

≈ exp

(
1

nµ

m−1∑
i=1

(x(i)− x(m)) +m− (2 + µ)m2

2µn
+

(2 + µ)(2− µ)m3

6µ2n2

)

× E
[
exp

(
− m
nµ

D1

)]n−m
.

Using the moments ofD1, it is straightforward to show that its Laplace transform
has the following asymptotic behaviour:

E [exp(−θD1)] = exp

(
−θµ+

θ2µ(2− µ)

2
− θ3

6
(β + 4µ− 6µ2 + 2µ3) + o(θ3)

)
,

as θ ↓ 0. Putting all of this together, almost everything cancels and we get that
for m = btn2/3c,

φnm(D∗1 , D
∗
2 , . . . , D

∗
m) ≈ exp

(
1

nµ

m−1∑
i=1

(X∗(i)−X∗(m))− βt3

6µ3

)
.

A little more work gets uniform integrability, and then we may conclude using
(4) and the continuous mapping theorem that

E
[
f
(
n−1/3X̃(bn2/3sc), 0 ≤ s ≤ t

)]
= E

[
φnm(D∗1 , D

∗
2 , . . . , D

∗
m)f

(
n−1/3X∗(bn2/3sc), 0 ≤ s ≤ t)

)]
→ E

[
exp

(
1

µ

∫ t

0

√
β

µ
(W (s)−W (t))ds− βt3

6µ3

)
f

(√
β

µ
(W (u), 0 ≤ s ≤ t)

)]
= E

[
f(W β,µ(s), 0 ≤ s ≤ t)

]
,

where the last equality holds by (5).
Finally, it is possible to show that when exploring Mn, the first loop or

multiple edge occurs at a time which is � n2/3 and so the same distributional
convergence holds if we condition on simplicity. 2

4 Sources for these notes and suggested further reading

David Aldous’ series of papers [4–6] and Jean-François Le Gall’s paper [26] on
the Brownian CRT remain an excellent source of inspiration. I have used Aldous’
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approach from [4, 5] in Section 1.1. The survey paper [5] gives what Aldous refers
to as The Big Picture and is a great place to start reading about the Brownian
CRT. I first learnt much of the material in Section 1 from a wonderful DEA
lecture course at Paris VI in 2003 given by Jean-François Le Gall. These notes
borrow heavily from his excellent survey of random trees [27].

To learn about generalisations of the Brownian CRT, in particular the so-
called Lévy trees, see the monograph of Duquesne and Le Gall [19]. The stable
trees are the scaling limits of critical Galton–Watson trees with offspring dis-
tributions which do not have finite variance, but instead lie in the domain of
attraction of an α-stable law, for α ∈ (1, 2). They have particularly nice proper-
ties, including a line-breaking construction [21].

For those looking to learn about random graphs, I warmly recommend Remco
van der Hofstad’s recent book [23]. David Aldous’ paper [7] on the critical Erdős–
Rényi random graph and the multiplicative coalescent is essential reading for
Section 2.1. Jim Pitman’s St-Flour course [32] contains much complementary
material. Section 2.2 is based on joint work with Louigi Addario-Berry and Nico-
las Broutin [2]. To learn more about the properties of the metric space scaling
limit of the Erdős–Rényi random graph, see the companion paper [1]. The results
in these two papers played a key role in our proof, jointly with Grégory Mier-
mont, of a scaling limit for the minimum-spanning tree of the complete graph
endowed with i.i.d. random edge-weights from a continuous distribution [3].

The component sizes in the configuration model with critical i.i.d. degrees,
as treated in Section 3, were studied by Joseph [24]; the component sizes and
surpluses in a more general set-up were studied independently by Riordan [33].
See also Dhara, van der Hofstad, van Leeuwaarden and Sen [18]. The sketch
proof of Theorem 16 presented here is based on joint work in progress with
Guillaume Conchon-Kerjan [16]. The corresponding metric space scaling limit
has been proved by Bhamidi and Sen [13]. In recent years, several other critical
random graph models have been shown to possess the same scaling limit as the
critical Erdős–Rényi random graph (either for the component sizes, or for the
full component structures). See [8, 9, 11, 13, 14]. The case where the degree dis-
tribution does not have a third moment is more complicated and gives different
scaling limits; see [10, 12, 17, 24].
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processes. Astérisque 281, vi+147 (2002)

20. Ethier, S.N., Kurtz, T.G.: Markov processes: Characterization and convergence.
Wiley Series in Probability and Mathematical Statistics: Probability and Mathe-
matical Statistics. John Wiley & Sons Inc., New York (1986)

21. Goldschmidt, C., Haas, B.: A line-breaking construction of the stable trees. Elec-
tron. J. Probab. 20, no. 16, 24 (2015)

22. Haas, B., Miermont, G.: The genealogy of self-similar fragmentations with negative
index as a continuum random tree. Electron. J. Probab. 9, no. 4, 57–97 (2004)



30 C. Goldschmidt

23. van der Hofstad, R.: Random graphs and complex networks: volume I. Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge (2016)

24. Joseph, A.: The component sizes of a critical random graph with given degree
sequence. Ann. Appl. Probab. 24(6), 2560–2594 (2014)

25. Kaigh, W.: An invariance principle for random walk conditioned by a late return
to zero. Ann. Probab. 4(1), 115–121 (1976)

26. Le Gall, J.F.: The uniform random tree in a Brownian excursion. Probability
Theory and Related Fields 96(3), 369–383 (1993)

27. Le Gall, J.F.: Random trees and applications. Probab. Surv. 2, 245–311 (2005)
28. Le Gall, J.F.: Random real trees. Ann. Fac. Sci. Toulouse Math. (6) 15(1), 35–62

(2006)
29. Le Gall, J.F., Miermont, G.: Scaling limits of random trees and planar maps. In:

Probability and statistical physics in two and more dimensions, Clay Math. Proc.,
vol. 15, pp. 155–211. Amer. Math. Soc., Providence, RI (2012)

30. Marckert, J.F., Mokkadem, A.: The depth first processes of Galton-Watson trees
converge to the same Brownian excursion. Ann. Probab. 31(3), 1655–1678 (2003)

31. Molloy, M., Reed, B.: A critical point for random graphs with a given degree
sequence. Random Structures & Algorithms 6(2-3), 161–180 (1995)

32. Pitman, J.: Combinatorial stochastic processes, Lecture Notes in Mathematics, vol.
1875. Springer-Verlag, Berlin (2006). Lectures from the 32nd Summer School on
Probability Theory held in Saint-Flour, July 7–24, 2002, With a foreword by Jean
Picard

33. Riordan, O.: The phase transition in the configuration model. Combin. Probab.
Comput. 21(1-2), 265–299 (2012)


