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1. WEAK CONVERGENCE AND SCALING
LIMITS

Key reference:

Rick Durrett, Probability: theory and examples,
4th edition, Cambridge University Press (2010).



Scaling limits

Suppose we have a sequence of random variables R1,R2, . . . and
we can find a sequence α1, α2, . . . such that

αnRn
d→ R

as n→∞ for some limiting random variable R. Then we call R
the scaling limit of the sequence (Rn, n ≥ 1).

Example (The central limit theorem)

Suppose that Z1,Z2, . . . are independent and identically distributed
random variables with mean 0 and variance 0 < σ2 <∞. Then as
n→∞,

1

σ
√
n

n∑
i=1

Zi
d→ X ,

where X ∼ N(0, 1).
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Universality

This scaling limit is universal, in that it doesn’t depend on the
precise details of the distribution of Z1,Z2, . . . (as long as the
distribution has finite variance).

(Aside: what happens if var(Z1) =∞? Or even if E [|Z1|] =∞?)
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Convergence in distribution

Throughout this minicourse we are going to want to deal with
random objects which are not real-valued. Recall that the usual
definition of convergence in distribution for a sequence (Xn)n≥0 of
random variables to X is

P (Xn ≤ x)→ P (X ≤ x) as n→∞

for all x which are points of continuity of the function
x 7→ P (X ≤ x) , x ∈ R.

Problem: this doesn’t generalise well to non-real-valued random
variables!



Convergence in distribution

Suppose that we want to deal with random variables taking values
in some arbitrary metric space (M, d).

Let Cb(M,R) be the set of bounded continuous functions
f : M → R (continuous in the sense that if d(xn, x)→ 0 then
f (xn)→ f (x)).

Definition
Let (Xn)n≥0 and X be random variables taking values in M. Then
Xn converges in distribution (or converges weakly or converges in
law) to X if

E [f (Xn)]→ E [f (X )] as n→∞

for every f ∈ Cb(M,R).
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Convergence in distribution

Exercise
Show that if M = R this is equivalent to the usual definition.

So the convergence in distribution in the CLT also means that

E

[
f

(
1

σ
√
n

n∑
i=1

Zi

)]
→ E [f (X )]

for all functions f : R→ R which are bounded and continuous.
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Convergence in distribution

A very useful theorem:

Theorem (Skorokhod’s representation theorem)

Suppose that (Xn)n≥0 and X are random variables taking values in
a Polish space (M, d), each a priori defined on a different
probability space. Suppose that

Xn
d→ X

as n→∞. Then there exists a probability space (Ω,F ,P), and

random variables (Yn)n≥0 and Y defined on it, such that Xn
d
= Yn

for each n ≥ 0, Y
d
= X and

Yn → Y almost surely.



Another (related) scaling limit
Suppose that Z1,Z2, . . . are independent and identically distributed
random variables with mean 0 and variance σ2. Let X (0) = 0 and
X (k) =

∑k
i=1 Zi . Then (X (k), k ≥ 0) is a random walk.

Theorem (Donsker’s theorem)

Let (W (t), t ≥ 0) be a standard Brownian motion. Then as
n→∞,

1

σ
√
n

(X (bntc), t ≥ 0)
d→ (W (t), t ≥ 0).

[Picture by Louigi Addario-Berry]
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Convergence in distribution

Here, we are thinking of function-valued random variables, where
the functions take values in M = D(R+,R) and we can specify a
metric on M as follows:

d(x , y) =
∞∑
k=1

2−k
(

sup
t∈[0,k]

|x(t)− y(t)| ∧ 1

)
.

This metric encodes uniform convergence on compact
time-intervals.

Then Donsker’s theorem says that for all bounded continuous
functions f : D(R+,R)→ R, we have

E
[
f

(
1

σ
√
n

(X (bntc), t ≥ 0)

)]
→ E [f (W (t), t ≥ 0)]

as n→∞.



Convergence in distribution

Here, we are thinking of function-valued random variables, where
the functions take values in M = D(R+,R) and we can specify a
metric on M as follows:

d(x , y) =
∞∑
k=1

2−k
(

sup
t∈[0,k]

|x(t)− y(t)| ∧ 1

)
.

This metric encodes uniform convergence on compact
time-intervals.

Then Donsker’s theorem says that for all bounded continuous
functions f : D(R+,R)→ R, we have

E
[
f

(
1

σ
√
n

(X (bntc), t ≥ 0)

)]
→ E [f (W (t), t ≥ 0)]

as n→∞.



Convergence in distribution

Here, we are thinking of function-valued random variables, where
the functions take values in M = D(R+,R) and we can specify a
metric on M as follows:

d(x , y) =
∞∑
k=1

2−k
(

sup
t∈[0,k]

|x(t)− y(t)| ∧ 1

)
.

This metric encodes uniform convergence on compact
time-intervals.

Then Donsker’s theorem says that for all bounded continuous
functions f : D(R+,R)→ R, we have

E
[
f

(
1

σ
√
n

(X (bntc), t ≥ 0)

)]
→ E [f (W (t), t ≥ 0)]

as n→∞.



2. THE UNIFORM RANDOM TREE

Key references:

David Aldous, The continuum random tree I,
Annals of Probability 19 (1991) pp.1-28.

David Aldous, The continuum random tree II. An overview,
in Stochastic analysis (Durham 1990), vol. 167 of London
Mathematical Society Lecture Note Series (1991) pp.23-70.



Labelled trees

Let Tn be the set of unordered trees on n vertices labelled by
[n] := {1, 2, . . . , n}.

For example, T3 consists of the trees

3
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Labelled trees

Unordered means that these trees are all the same:

54
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1

2 2

1

3

5 4

1

4 5

3 2

but this one is different:

23

1

4 5



Labelled trees

Theorem (Cayley’s formula)

For n ≥ 2, |Tn| = nn−2. I

[Proof due to Jim Pitman, Coalescent random forests, Journal
of Combinatorial Theory Series A, 85(2) (1999), pp.165–193.]



Uniform random trees

Write Tn for a tree chosen uniformly from Tn.
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Question: what happens as n grows?



Uniform random trees

Write Tn for a tree chosen uniformly from Tn.

4

7

52

3 6

1

Question: what happens as n grows?



Uniform random trees, as n→∞

There are lots of statistics we might be interested in. For example:

I How many leaves (vertices with a single neighbour) are there?

I More generally, how many vertices of degree k are there (i.e.
with exactly k neighbours), for k ≥ 1?

I What is the diameter of the tree (i.e. the length of the longest
path between two vertices in the tree)?

I What is the distance between two uniformly chosen vertices?

I . . .



Uniform random trees

It turns out that the first question is not too hard to answer.

Exercise
Prove a limit in probability for the proportion of vertices which are
leaves, as n→∞.

In order to think about some of the other questions, it useful to
have an algorithm for building Tn.
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The Aldous-Broder algorithm

Take the complete graph on n vertices.

The Aldous-Broder algorithm

1

2

3

4

5

6

I Pick a uniform vertex to be the starting point.

I Run a simple random walk (Sk)k≥0 on the graph (i.e. at each
step, move to a neighbour chosen uniformly at random).

I Anytime the walk visits a new vertex, keep the edge along
which it was reached.

I Stop when all vertices have been visited.

The resulting tree is uniformly distributed on Tn.



The Aldous-Broder algorithm
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The Aldous-Broder algorithm: proof

The random walk (Sk)k≥0 has a uniform stationary distribution,
and is reversible, so that it makes sense to talk about a stationary
random walk (Sk)k∈Z.

The dynamics of the random walk give rise to Markovian dynamics
on T•n, the set of trees labelled by [n] with a distinguished root.

Why? Let τk be the tree constructed from the random walk
started at time k , rooted at Sk .

τk depends on Sk ,Sk+1, . . . through first hitting times of vertices.
These can only occur later if we start from a later time. So, given
τk , τk+1 is independent of τk−1, τk−2, . . ..
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The Aldous-Broder algorithm: proof

Since the random walk is stationary, the tree must be also.

It remains to show that the stationary distribution π for (τk)k∈Z is
uniform on T•n. It turns out to be easier to work with the
time-reversed chain.

Consider the transition probabilities q(τ, τ ′) for the time-reversed
chain (which must have the same stationary distribution).
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The Aldous-Broder algorithm: proof

Taking one step backwards in time (say from time 0 to time −1)
inserts an edge from S0 to S−1 in τ0. This creates a cycle, from
which we must delete the unique other edge in that cycle which
connects to S−1 in order to obtain τ−1.



The Aldous-Broder algorithm: proof
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The Aldous-Broder algorithm: proof
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The Aldous-Broder algorithm: proof

Taking one step backwards in time (say from time 0 to time −1)
inserts an edge from S0 to S−1 in τ0. This creates a cycle, from
which we must delete the unique other edge in that cycle which
connects to S−1 in order to obtain τ−1.

There are n − 1 different places that S0 might move to and so
n − 1 possible rooted trees we can reach going backwards in time,
each equally likely.

So for fixed τ , q(τ, τ ′) = 0 or 1/(n − 1).
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The Aldous-Broder algorithm: proof

Given τ−1, how many possibilities are there for τ0?

S0 must be one of the neighbours of S−1. The possible values for
τ0 are generated by adding one of the n − 1 possible edges from
S−1 to a different vertex. This creates a cycle, from which we
remove the edge from S−1 to its neighbour in τ−1, which is S0.
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So there are n − 1 possible trees τ0 from which we can reach τ−1

going backwards in time. These moves all must have probability
1/(n − 1).

So for fixed τ ′, q(τ, τ ′) = 0 or 1/(n − 1).
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The Aldous-Broder algorithm: proof

Hence, the matrix Q = (q(τ, τ ′))τ,τ ′∈T•n is doubly stochastic (its
rows and columns all sum to 1).

So it must have uniform stationary distribution on the set of
rooted trees.

It’s straightforward to show that the chain is irreducible and since
the root is uniformly distributed, it follows that τ0 is a uniform
random rooted tree. The result follows from forgetting the root.

Remark
There is a more general version of this algorithm, for trees with
edge-weights.
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A variant due to Aldous

“Do the labelling as we go, then relabel at the end.”

Let U2, . . . ,Un be uniform on [n].

1. Start from the vertex labelled 1.

2. For 2 ≤ i ≤ n, connect vertex i to vertex Vi = min{Ui , i − 1}.
3. Take a uniform random permutation of the labels.
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uniform on {1, 2, . . . , i − 2} otherwise.
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Aldous’ algorithm

Connect 2 to 1 with prob 1
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Aldous’ algorithm
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Aldous’ algorithm
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Aldous’ algorithm
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Typical distances
Consider the tree before we permute. Let

Cn
1 = inf{i ≥ 2 : Vi 6= i − 1}.

We can use Cn
1 to give us an idea of typical distances in the tree.

In our example, C 6
1 = 4:

Aldous’ algorithm

Stop 4
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Typical distances

For 2 ≤ i ≤ n, connect vertex i to vertex Vi such that

Vi =

{
i − 1 with probability 1− i−2

n−1

uniform on {1, 2, . . . , i − 2} otherwise.

Cn
1 = inf{i ≥ 2 : Vi 6= i − 1}

Proposition. n−1/2Cn
1 converges in distribution as n→∞. I



Typical distances

Once we have built this first stick of consecutive labels, we pick a
uniform starting point along that stick and attach a new stick with
a random length, and so on.

Imagine now that edges in the tree have length 1. The proposition
suggests that rescaling edge-lengths by n−1/2 will give some sort of
limit for the whole tree.

Before we can describe the limiting version of the algorithm, we
need a definition.
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An inhomogeneous Poisson process

Definition
Let λ : [0,∞)→ [0,∞) be a continuous function such that∫∞

0 λ(s)ds =∞ but
∫ t

0 λ(s)ds <∞ for all t ≥ 0.

We say that an increasing Markov process with càdlàg paths
(P(t), t ≥ 0) is an inhomogeneous Poisson process of intensity λ if
P(0) = 0 and, given P(t) = n ∈ Z+, the rate of jumping to n + 1
is λ(t).

Equivalently, the number of points (= jump-times) falling in any
interval [s, t] has a Poisson distribution with mean

∫ t
s λ(r)dr , and

the numbers of points falling in disjoint intervals are independent.



Line-breaking procedure

Let C1,C2, . . . be the points of an inhomogeneous Poisson process
on R+ of intensity λ(t) = t.

...
6

C
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C
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C

 

0

Note that

P (C1 > x) = P (no points in [0,x])

= P
(

Poisson

(∫ x

0
tdt

)
= 0

)
= exp

(
−
∫ x

0
tdt

)
= exp(−x2/2).
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Line-breaking procedure

Exercise
We may equivalently take E1,E2, . . . to be i.i.d. Exponential(1) and
set

Ck =

√√√√2
k∑

i=1

Ei , k ≥ 1.



Line-breaking procedure
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0

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively. For i ≥ 1, sample Bi

uniformly from [0,Ci ) and attach [Ci ,Ci+1) at the corresponding
point of the tree constructed so far (this is a point chosen
uniformly at random over the existing tree).
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Line-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 1, sample Bi uniformly from [0,Ci ) and attach [Ci ,Ci+1)
at the corresponding point of the tree constructed so far (this is a
point chosen uniformly at random over the existing tree).

For n ≥ 1, consider the union of all the line-segments making up
the first n branches. We can think of this as a metric space
(Mn, dn) in a natural way. These metric spaces are nested as n
increases, so it makes sense to think about the space
M = ∪n≥1Mn.

(Finally, take the metric completion (M̄, d̄), formed by adding in
all limit points of Cauchy sequences (xk)k≥1 in M.)



Line-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 1, sample Bi uniformly from [0,Ci ) and attach [Ci ,Ci+1)
at the corresponding point of the tree constructed so far (this is a
point chosen uniformly at random over the existing tree).

For n ≥ 1, consider the union of all the line-segments making up
the first n branches. We can think of this as a metric space
(Mn, dn) in a natural way. These metric spaces are nested as n
increases, so it makes sense to think about the space
M = ∪n≥1Mn.

(Finally, take the metric completion (M̄, d̄), formed by adding in
all limit points of Cauchy sequences (xk)k≥1 in M.)



Line-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 1, sample Bi uniformly from [0,Ci ) and attach [Ci ,Ci+1)
at the corresponding point of the tree constructed so far (this is a
point chosen uniformly at random over the existing tree).

For n ≥ 1, consider the union of all the line-segments making up
the first n branches. We can think of this as a metric space
(Mn, dn) in a natural way. These metric spaces are nested as n
increases, so it makes sense to think about the space
M = ∪n≥1Mn.

(Finally, take the metric completion (M̄, d̄), formed by adding in
all limit points of Cauchy sequences (xk)k≥1 in M.)



Line-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 1, sample Bi uniformly from [0,Ci ) and attach [Ci ,Ci+1)
at the corresponding point of the tree constructed so far (this is a
point chosen uniformly at random over the existing tree).

For n ≥ 1, consider the union of all the line-segments making up
the first n branches. We can think of this as a metric space
(Mn, dn) in a natural way. These metric spaces are nested as n
increases, so it makes sense to think about the space
M = ∪n≥1Mn.

(Finally, take the metric completion (M̄, d̄), formed by adding in
all limit points of Cauchy sequences (xk)k≥1 in M.)



Line-breaking procedure

The line-breaking procedure gives a (slightly informally expressed)
definition of Aldous’ Brownian continuum random tree (CRT)
which will be the key object in this minicourse.



A first look at the Brownian CRT

[Picture by Igor Kortchemski]



The scaling limit of the uniform random tree

Theorem. (Aldous (1991)) Let Tn be a uniform random labelled
tree. As n→∞,

1√
n
Tn

d→ T ,

where T is the Brownian CRT.



A very brief idea of a proof

Recall that we had

Cn
1 = inf{i ≥ 2 : Vi 6= i − 1}.

More generally, for k ≥ 1, define Cn
k to be the kth element of the

set {i ≥ 2 : Vi 6= i − 1} i.e. the kth cut-time.

Let Bn
k = VCn

k
, the kth branch-point.

Then the heart of the proof is the fact that(
1√
n

(Cn
1 ,B

n
1 ),

1√
n

(Cn
2 ,B

n
2 ), . . .

)
d→ ((C1,B1), (C2,B2), . . .)

as n→∞.



The scaling limit of the uniform random tree

Theorem (Aldous (1991))

Let Tn be a uniform random labelled tree. As n→∞,

1√
n
Tn

d→ T ,

where T is the Brownian CRT.

Of course, before we can really make sense of this theorem, we
need to know what sort of objects we’re really dealing with, and
what is the topology in which the convergence occurs!

We will, in fact, sketch a proof of a much more general result.
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3. GALTON-WATSON TREES

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.



Ordered trees

It turns out to be helpful to work with rooted, ordered trees (also
called plane trees).

This is not too much of a restriction if what we’re really interested
in is labelled unordered trees, since it’s always possible to obtain a
rooted ordered tree from a labelled one: for example, root at the
vertex labelled 1 and order the children of a vertex from left to
right in increasing order of label.
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Ordered trees: some notation
We will use the Ulam-Harris labelling. Let N = {1, 2, 3, . . .} and

U =
∞⋃
n=0

Nn,

where N0 = {∅}.

An element u ∈ U is a sequence
u = (u1, u2, . . . , un) of natural numbers representing a point in an
infinitary tree:

3,2
3,1

2,2
2,1

1,2
1,1

1

;

32

Thus the label of a vertex indicates its genealogy.
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Ordered trees: some notation

Write |u| = n for the generation of u.

u has parent p(u) = (u1, u2, . . . , un−1).

u has children u1, u2, . . ..

We root the tree at ∅.



Ordered trees

A (finite) rooted, ordered tree t is a finite subset of U such that

I ∅ ∈ t

I for all u ∈ t such that u 6= ∅, p(u) ∈ t

I for all u ∈ t, there exists c(u) ∈ Z+ such that for j ∈ N,
uj ∈ t iff 1 ≤ j ≤ c(u).

c(u) is the number of children of u in t.

Write #(t) for the size (number of vertices) of t and note that

#(t) = 1 +
∑
u∈t

c(u).

Write T for the set of all rooted ordered trees.
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Two ways of encoding a tree

Consider a rooted ordered tree t ∈ T.

It will be convenient to encode this tree in terms of discrete
functions which are easier to manipulate.

We will do this is two different ways:

I the height function

I the depth-first walk.



Two ways of encoding a tree

Consider a rooted ordered tree t ∈ T.

It will be convenient to encode this tree in terms of discrete
functions which are easier to manipulate.

We will do this is two different ways:

I the height function

I the depth-first walk.



Height function

Suppose that t has n vertices. Let them be v0, v1, . . . , vn−1, listed
in lexicographical order.

Then the height function is defined by

H(k) = |vk |, 0 ≤ k ≤ n − 1.
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Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)
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k

We can recover the tree from its height function.



Depth-first walk

Recall that c(v) is the number of children of v , and that
v0, v1, . . . , vn−1 is a list of the vertices of t in lexicographical order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi )− 1, 0 ≤ i ≤ n − 1.
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It is less easy to see that the depth-first walk also encodes the tree.

Proposition

For 0 ≤ i ≤ n − 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
. I



Random discrete trees

From a probabilistic perspective, a natural probability measure on
trees is that generated by a so-called Galton-Watson branching
process. We will see in a moment that this is a good thing to do
from a combinatorial perspective too!



Galton-Watson processes

A Galton-Watson branching process (Zn)n≥0 describes the size of a
population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution p, where p(k) gives the
probability of k children, k ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Zn gives the number of individuals in generation n (in particular,
Z0 = 1). The process (Zn)n≥0 is a Markov chain with an absorbing
state at 0.
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Galton-Watson processes

In order to avoid special cases, we will assume that p(0) > 0 and
p(0) + p(1) < 1. This means that it’s always possible for the
branching process to die out and we won’t have every individual
that gives birth just deterministically having a single offspring.



Generating functions
Probability generating functions play a key role in the analysis of
branching processes. Let

G (s) =
∞∑
k=0

p(k)sk

be the probability generating function of the offspring distribution.

Let C
(n)
i denote the number of children of individual i ≥ 1 in

generation n ≥ 0, so that

Zn = C
(n−1)
1 + C

(n−1)
2 + · · ·+ C

(n−1)
Zn−1

.

Then if Gn(s) = E
[
sZn
]
, we get G1(s) = G (s) and, for n ≥ 2,

Gn(s) = Gn−1(G (s)) = G (G (. . .G︸ ︷︷ ︸
n times

(s))) = G (Gn−1(s)).
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Extinction probability

Let q = P (population dies out) = P (∪∞n=1{Zn = 0}). Since these
events are nested (Zn = 0 implies that Zn+1 = 0), we have

q = lim
n→∞

P (Zn = 0) .

Recall that each of the individuals in the first generation behaves
exactly like the parent. We can think of each of them starting its
own family, which is an independent copy of the original family.
Moreover, the whole population dies out if and only if all of the
subpopulations die out. If there are k individuals in the first
generation, this occurs with probability qk . So

q =
∞∑
k=0

p(k)qk = G (q).



Extinction probability

Let q = P (population dies out) = P (∪∞n=1{Zn = 0}). Since these
events are nested (Zn = 0 implies that Zn+1 = 0), we have

q = lim
n→∞

P (Zn = 0) .

Recall that each of the individuals in the first generation behaves
exactly like the parent. We can think of each of them starting its
own family, which is an independent copy of the original family.
Moreover, the whole population dies out if and only if all of the
subpopulations die out. If there are k individuals in the first
generation, this occurs with probability qk . So

q =
∞∑
k=0

p(k)qk = G (q).



Extinction probability

So q solves the equation s = G (s). Notice that s = 1 is always a
solution, but it may not be the only one.

Theorem
Suppose that p(0) > 0 and p(0) + p(1) < 1.

(a) The equation s = G (s) has at most two solutions in [0, 1].
The extinction probability q is the smallest non-negative root
of the equation.

(b) Suppose that the offspring distribution has mean µ. Then
I if µ ≤ 1 then q = 1;
I if µ > 1 then q < 1. I
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Proof by picture

Solving s = G (s):
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µ < 1 (subcritical) µ = 1 (critical) µ > 1 (supercritical)

Note that P (Zn = 0) = Gn(0) and so q = limn→∞ Gn(0).



Galton-Watson trees

A Galton-Watson tree is the family tree arising from a
Galton-Watson branching process.

We will think of this as a
rooted ordered tree.

As before, call its depth-first walk X . Because the numbers of
children of different individuals are i.i.d. X has a particularly nice
form.
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The depth-first walk of a Galton-Watson tree is a stopped
random walk

Proposition

Let (R(k), k ≥ 0) be a random walk with initial value 0 and step
distribution ν(k) = p(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a Galton-Watson tree with offspring
distribution p and total progeny N. Then,

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall (2005).]
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M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a Galton-Watson tree with offspring
distribution p and total progeny N. Then,

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall (2005).]



Critical Galton-Watson trees

We will restrict our attention to the case where the offspring
distribution p is critical i.e.

∞∑
k=1

kp(k) = 1.

Then q = 1 and the resulting tree, T , is finite.

Another way to see this: the depth-first walk has the law of a
random walk with step sizes of mean 0 stopped when it first hits
−1. Since such a random walk is recurrent, we get N <∞ with
probability 1.

The critical case turns out to be the right one to consider in order
to capture various natural combinatorial models.
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Uniform random trees revisited

Proposition

Let T be a (rooted, ordered) Galton-Watson tree, with Poisson(1)
offspring distribution and total progeny N.

Assign the vertices
labels uniformly at random from {1, 2, . . . ,N} and then forget the
ordering and the root. Let T̃ be the labelled tree obtained. Then,
conditional on N = n, T̃ has the same distribution as Tn, a
uniform random tree on n vertices. I
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Other combinatorial trees (in disguise)

Let T be a Galton-Watson tree with offspring distribution p and
total progeny N.

Exercise

1. If p(k) = 2−k−1, k ≥ 0 (i.e. Geometric(1/2) offspring
distribution) then conditional on N = n, the tree is uniform on
the set of ordered trees with n vertices.

2. If p(0) = 1/2 and p(2) = 1/2 then, conditional on N = n (for
n odd), the tree is uniform on the set of (complete) binary
trees.



Galton-Watson trees conditioned on their total progeny:
finite variance case

Suppose now that we have offspring variance
σ2 :=

∑∞
k=1(k − 1)2p(k) ∈ (0,∞) (which is the case for all the

examples we have seen so far).

Then the depth-first walk X is a random walk with step mean 0
and variance σ2, stopped at the first time it hits −1. The
underlying random walk has a Brownian motion as its scaling limit,
by Donsker’s theorem.

The total progeny N is equal to inf{k ≥ 0 : X (k) = −1}. We want
to condition on the event {N = n}.

Standing assumption: P (N = n) > 0 for all n sufficiently large.
(This is true if, for example, p(1) > 0.)
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Galton-Watson trees conditioned on their total progeny:
finite variance case

Write (X n(k), 0 ≤ k ≤ n) for the depth-first walk conditioned on
{N = n}. Then there is a conditional version of Donsker’s theorem:

Theorem (Kaigh (1976))

As n→∞,

1

σ
√
n

(X n(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

[W.D. Kaigh, An invariance principle for random walk
conditioned by a late return to zero, Annals of Probability 4
(1976) pp.115-121.]



Brownian excursion

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[Picture by Igor Kortchemski]



Brownian excursion
There are several (equivalent) definitions of this process.

For example, let W be a standard Brownian motion.

Fix s > 0. Let

gs = sup{t ≤ s : W (t) = 0} and ds = inf{t ≥ s : W (t) = 0}.
Note that W (s) 6= 0 with probability 1, so that
P (gs < s < ds) = 1. Then for t ∈ [0, 1] define

e(t) =
|W (gs + t(ds − gs))|√

ds − gs
.

It turns out that the distribution of (e(t), 0 ≤ t ≤ 1) is
independent of s.
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Convergence of the coding processes

Let (Hn(i), 0 ≤ i ≤ n) be the height process of a critical
Galton-Watson tree with offspring variance σ2 ∈ (0,∞),
conditioned to have total progeny n. (Since the tree is random, we
refer to the height process rather than function.)

Theorem
As n→∞,

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2 (e(t), 0 ≤ t ≤ 1)) ,

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.
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Actually, I’m going to cheat...
Consider the unconditioned random walk (X (k), k ≥ 0) (without
stopping). This is the depth-first walk of a sequence of i.i.d.
unconditioned Galton-Watson trees: the random walk X begins
encoding a new tree every time it attains a new minimum. It is
technically easier to work without the conditioning.

Define the height process H for all i ≥ 0 via H(0) = 0 and, for
i ≥ 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
.

This is the height process of the sequence of i.i.d. (unconditioned)
Galton-Watson trees.

We have
1

σ
√
n

(X (bntc), t ≥ 0)
d→ (W (t), t ≥ 0)

as n→∞.
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An unconditioned result

Proposition

As n→∞,

σ√
n

(H(bntc), t ≥ 0)→ 2

(
W (t)− min

0≤s≤t
W (s), t ≥ 0

)
in the sense of finite-dimensional distributions, i.e. if
0 ≤ t1 ≤ t2 ≤ · · · ≤ tm then

σ√
n

(H(bnt1c), . . . ,H(bntmc))

d→ 2

(
W (t1)− min

0≤s≤t1

W (s), . . . ,W (tm)− min
0≤s≤tm

W (s)

)
. I

[Approach due to Marckert & Mokkadem, The depth first
processes of Galton-Watson trees converge to the same
Brownian excursion, Annals of Probability 31 (2003),
pp.1655-1678]



Lecture 3



Recap

(X (k), k ≥ 0) is the depth-first walk of a sequence of i.i.d.
Galton-Watson trees.

(H(k), k ≥ 0) is the height process, defined by H(0) = 0 and, for
i ≥ 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
.

We have
1

σ
√
n

(X (bntc), t ≥ 0)
d→ (W (t), t ≥ 0)

as n→∞.



Recap

Proposition

As n→∞,

σ√
n

(H(bntc), t ≥ 0)→ 2

(
W (t)− min

0≤s≤t
W (s), t ≥ 0

)
in the sense of finite-dimensional distributions, i.e. if
0 ≤ t1 ≤ t2 ≤ · · · ≤ tm then

σ√
n

(H(bnt1c), . . . ,H(bntmc))

d→ 2

(
W (t1)− min

0≤s≤t1

W (s), . . . ,W (tm)− min
0≤s≤tm

W (s)

)
. I

[Approach due to Marckert & Mokkadem, The depth first
processes of Galton-Watson trees converge to the same
Brownian excursion, Annals of Probability 31 (2003),
pp.1655-1678]



An unconditioned result

From this to get that

σ√
n

(H(bntc), t ≥ 0)
d→ 2

(
W (t)− min

0≤s≤t
W (s), t ≥ 0

)
we need to know that the sequence of processes on the left-hand
side is tight. See Le Gall (2005) for the details.

(By a theorem of Lévy, the process on the right-hand side is a
reflected Brownian motion, i.e.(

W (t)− min
0≤s≤t

W (s), t ≥ 0

)
d
= (|W (s)|, 0 ≤ s ≤ t) ,

but we won’t need this.)
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Conditioned version

Let (Hn(i), 0 ≤ i ≤ n) be the height process of a critical
Galton-Watson tree with offspring variance σ2 ∈ (0,∞),
conditioned to have total progeny n.

Theorem
As n→∞,

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2 (e(t), 0 ≤ t ≤ 1)) ,

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.



4. R-TREES

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.



Continuous trees

We want a continuous notion of a tree. We don’t really care about
vertices: the important aspects are the shape of the tree and the
distances. So it makes sense to think in terms of metric spaces.



R-trees

Definition
A compact metric space (T , d) is an R-tree if for all x , y ∈ T ,

I There exists a unique shortest path [[x , y ]] from x to y (of
length d(x , y)).

(There is a unique isometric map
fx ,y : [0, d(x , y)]→ T such that fx ,y (0) = x and
fx ,y (d(x , y)) = y. We write fx ,y ([0, d(x , y)]) = [[x , y ]].)

I The only non-self-intersecting path from x to y is [[x , y ]].

(If
g : [0, 1]→ T is a continuous injective map such that
g(0) = x and g(1) = y, then g([0, 1]) = [[x , y ]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that T \ {v} is connected.
More generally, the degree of v is the number of connected
components of T \ {v}.



R-trees

Definition
A compact metric space (T , d) is an R-tree if for all x , y ∈ T ,

I There exists a unique shortest path [[x , y ]] from x to y (of
length d(x , y)). (There is a unique isometric map
fx ,y : [0, d(x , y)]→ T such that fx ,y (0) = x and
fx ,y (d(x , y)) = y. We write fx ,y ([0, d(x , y)]) = [[x , y ]].)

I The only non-self-intersecting path from x to y is [[x , y ]]. (If
g : [0, 1]→ T is a continuous injective map such that
g(0) = x and g(1) = y, then g([0, 1]) = [[x , y ]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that T \ {v} is connected.
More generally, the degree of v is the number of connected
components of T \ {v}.



R-trees

Definition
A compact metric space (T , d) is an R-tree if for all x , y ∈ T ,

I There exists a unique shortest path [[x , y ]] from x to y (of
length d(x , y)). (There is a unique isometric map
fx ,y : [0, d(x , y)]→ T such that fx ,y (0) = x and
fx ,y (d(x , y)) = y. We write fx ,y ([0, d(x , y)]) = [[x , y ]].)

I The only non-self-intersecting path from x to y is [[x , y ]]. (If
g : [0, 1]→ T is a continuous injective map such that
g(0) = x and g(1) = y, then g([0, 1]) = [[x , y ]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that T \ {v} is connected.
More generally, the degree of v is the number of connected
components of T \ {v}.



R-trees

Example

A metric space obtained by glueing together finitely many finite
line-segments is an R-tree.



Coding R-trees
Let h : [0, 1]→ R+ be an excursion, that is a continuous function
such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0, 1). h will play
the role of the height process for an R-tree.



Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...
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Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...



Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together to get a tree.



Coding R-trees

Formally, use h to define a distance:

dh(x , y) = h(x) + h(y)− 2 inf
x∧y≤z≤x∨y

h(z).



Coding R-trees

Let y ∼ y ′ if dh(y , y ′) = 0 and take the quotient Th = [0, 1]/ ∼.



Coding R-trees

Theorem
For any excursion h, (Th, dh) is an R-tree. Conversely, any (rooted)
R-tree can be represented in the form (Tg , dg ) for some excursion
g.

[Proof: see Le Gall (2005).]

We will always take the equivalence class of 0 to be the root, ρ.

Definition
The Brownian continuum random tree is the random R-tree
(T2e , d2e), where e is a standard Brownian excursion.
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The Brownian continuum random tree T2e

[Picture by Igor Kortchemski]



Discrete trees as metric spaces
We want to think of (Tn, n ≥ 1) as metric spaces.

The vertices of Tn come equipped with a natural metric: the graph
distance dgr.

1
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We sometimes write aTn for the metric space (Tn, adgr) given by
the vertices of Tn with the graph distance scaled by a.



Convergence in distribution

What is the the sense of the convergence in distribution

(Tn, σdgr/
√
n)

d→ (T2e , d2e) as n→∞?



Convergence in distribution

Consider the space, M, of compact metric spaces up to isometry.
We’ll define a metric dGH on M in a moment. Recall that then

(Tn, σdgr/
√
n)

d→ (T2e , d2e) as n→∞

will mean that for any bounded function f : M→ R which is
continuous with respect to dGH, we have

E
[
f
(
(Tn, σdgr/

√
n)
)]
→ E [f ((T2e , d2e))] as n→∞.



Measuring the distance between compact metric spaces
Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.
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Measuring the distance between compact metric spaces

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.



Measuring the distance between compact metric spaces
The Gromov-Hausdorff distance between (X , d) and (X ′, d ′) is

dGH((X , d), (X ′, d ′)) =
1

2
inf
R

dis(R).

(There exists an equivalent definition which more closely resembles
that of the usual Hausdorff distance, but this one is easier to use.
See Burago, Burago and Ivanov, A course in metric geometry
for more details.)

Recall that M is the space of compact metric spaces, up to
isometry.

Theorem
(M, dGH) is a complete separable metric space.

[Proof: see Evans, Pitman and Winter, Rayleigh processes, real
trees, and root growth with re-grafting, Probability Theory and
Related Fields 134 (2006) pp.81-126.]
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Convergence to the Brownian CRT

Let Tn be our Galton-Watson tree conditioned to have size n.

Write Hn for its height process and recall that

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2(e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

Theorem (Aldous (1993), Le Gall (2005))

As n→∞, (
Tn,

σ√
n
dgr

)
d→ (T2e , d2e),

where convergence is in the Gromov-Hausdorff sense. I

[Approach due to Grégory Miermont.]
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Uniform ordered trees

Exercise
There is a simpler argument, using a different functional encoding
of the tree, the so-called contour function, which proves the
convergence to the Brownian CRT for uniform ordered trees.



Some simple consequences
Let Tn be any of the conditioned Galton-Watson trees to which
the theorem applies. Let Dn be the diameter of Tn and let Rn be
the distance between two uniformly chosen points. Let D and R be
the corresponding quantities for the Brownian CRT.

Corollary

We have
σ√
n
Dn

d→ D and
σ√
n
Rn

d→ R

as n→∞.

It turns out that

P (D > x) =
∞∑
k=1

e−2k2x2
(8k2x2 − 2), x ≥ 0

and
P (R > x) = exp(−x2/2), x ≥ 0.
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Universality

We started with the uniform random labelled tree, and then
generalised to conditioned critical Galton-Watson trees with finite
offspring variance. So the Brownian CRT is the universal scaling
limit of a whole class of trees. In fact, this class is much larger!



Universality
Some other examples of trees (and graphs!) with the Brownian
CRT as their scaling limit are:

I uniform unordered rooted trees [Haas & Miermont (2012)]

I uniform unordered unrooted trees [Stufler (2014+)]

I critical multi-type Galton-Watson trees [Miermont (2008)]

I random trees with a prescribed degree sequence satisfying
certain conditions [Broutin & Marckert (2014)]

I random dissections [Curien, Haas & Kortchemski (2015)]

I random graphs from subcritical classes [Panagiotou, Stufler &
Weller (2014+)]

I the range of a Brownian bridge in a hyperbolic space [Chen &
Miermont (2016+)]

I the trace of a random walk bridge on an infinite d-regular tree
for d ≥ 3 [Stewart (2016++)]



Applications

Universal scaling limits often show up in other places, and the
Brownian CRT is no exception. It appears, for example, as a
building block in

I the scaling limit of random planar maps [Le Gall (2013),
Miermont (2013)];

I the scaling limit of the critical Erdős-Rényi random graph
[Addario-Berry, Broutin, G. (2010, 2012)].



5. THE BROWNIAN CONTINUUM
RANDOM TREE

Key references:

David Aldous, The continuum random tree III,
Annals of Probability 21 (1993) pp.248-289.

Jim Pitman, Combinatorial stochastic processes,
Lecture notes in mathematics 1875, Springer-Verlag, Berlin
(2006).



What is a continuum random tree?!

A continuum tree is a triple (T , d , µ) where (T , d) is an R-tree
with leaves L(T ) and µ is a Borel probability measure on T which
is non-atomic and satisfies

I µ(L(T )) = 1;

I for every v ∈ T of degree k ≥ 2, let T1, . . . , Tk be the
connected components of T \ {v}. Then µ(Ti ) > 0 for all
1 ≤ i ≤ k .



Gromov-Hausdorff-Prokhorov distance

We can endow the set of continuum trees with a generalisation of
the Gromov-Hausdorff distance, the Gromov-Hausdorff-Prokhorov
distance, which takes account of the measure also.

Idea: take two compact measured metric spaces, and find a
correspondence between them. In addition to minimising the
distortion of the correspondence, find a coupling of the two
probability measures which puts as small mass as possible outside
the correspondence.



Gromov-Hausdorff-Prokhorov distance

We can endow the set of continuum trees with a generalisation of
the Gromov-Hausdorff distance, the Gromov-Hausdorff-Prokhorov
distance, which takes account of the measure also.

Idea: take two compact measured metric spaces, and find a
correspondence between them. In addition to minimising the
distortion of the correspondence, find a coupling of the two
probability measures which puts as small mass as possible outside
the correspondence.



Gromov-Hausdorff-Prokhorov distance
More formally, suppose we have compact measured metric spaces
(X , d , µ) and (X ′, d ′, µ′).

Define a coupling of µ and µ′ to be a probability measure m on
X × X ′ such that for A ∈ B(X ) and B ∈ B(X ′),

m(A,X ′) = µ(A) and m(X ,B) = µ′(B).

Then define the Gromov-Hausdorff-Prokhorov distance to be

dGHP((X , d , µ), (X ′, d ′, µ′)) = inf
R,m

max

{
1

2
dis(R),m(Rc)

}
,

where the infimum is over all possible correspondences R ⊆ X ×X ′

and all possible couplings m of µ and µ′.

If M∗ is the set of compact measured metric spaces, up to
measured isometry, then

(M∗, dGHP)

is again a complete separable metric space.
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What is a continuum random tree?!

A continuum random tree (CRT) is a random variable taking
values in the set of continuum trees.

As its name would suggest, the Brownian CRT is a continuum
random tree! In order to make this precise, we need a measure.

We let µ2e be the push-forward of Lebesgue measure on [0, 1] onto
T2e .
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A continuum random tree (CRT) is a random variable taking
values in the set of continuum trees.

As its name would suggest, the Brownian CRT is a continuum
random tree! In order to make this precise, we need a measure.

We let µ2e be the push-forward of Lebesgue measure on [0, 1] onto
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The mass measure of the Brownian CRT
Extra exercise (for the keen!)
Consider a uniform random tree Tn. Put mass 1/n at each vertex.
Call the resulting probability measure µn. Show that(

Tn, dgr/
√
n, µn

) d→ (T2e , d2e , µ2e)

as n→∞, in the sense of the Gromov-Hausdorff-Prokhorov
distance.

Lemma

1. µ2e(L(T2e)) = 1.

2. For every v ∈ T2e of degree k ≥ 2, if T1, . . . , Tk are the
connected components of T2e \ {v} then µ(Ti ) > 0 for all
1 ≤ i ≤ k.

[Intuition: non-leaf vertices of Tn are typically at distance o(
√
n)

from a leaf, and the leaves are spread “uniformly” over the tree.
Proof: see Aldous (1991).]
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Lecture 4



The root of the Brownian CRT

Since the law of Tn is invariant under uniform random re-rooting
(i.e. choosing a new root according to µn), the same must be true
for T2e if we re-root according to a sample from µ2e .



The branch-points of the Brownian CRT

The branch-points of T2e correspond to the local minima of the
Brownian excursion e. With probability 1, there are no repeated
local minima, which tells us that the branch-points all have degree
3 i.e. the tree is binary.

Note that Tn is not binary. The fact that T2e is tells us that there
cannot be more than two children of a vertex in Tn whose family
trees grow to

√
n height.



Characterising a CRT via sampling

Take a CRT (T , d , µ) and suppose that U1,U2, . . . are i.i.d.
samples from the measure µ.

(Note: these are a.s. leaves.) For
m ≥ 2, let R(m) be the subtree of T spanned by U1,U2, . . . ,Um.



Characterising a CRT via sampling

Take a CRT (T , d , µ) and suppose that U1,U2, . . . are i.i.d.
samples from the measure µ. (Note: these are a.s. leaves.)

For
m ≥ 2, let R(m) be the subtree of T spanned by U1,U2, . . . ,Um.



Characterising a CRT via sampling

Take a CRT (T , d , µ) and suppose that U1,U2, . . . are i.i.d.
samples from the measure µ. (Note: these are a.s. leaves.) For
m ≥ 2, let R(m) be the subtree of T spanned by U1,U2, . . . ,Um.



Characterising a CRT via sampling

Take a CRT (T , d , µ) and suppose that U1,U2, . . . are i.i.d.
samples from the measure µ. (Note: these are a.s. leaves.) For
m ≥ 2, let R(m) be the subtree of T spanned by U1,U2, . . . ,Um.

U2

U3U5

U4

U6

U1

R(6)



Characterising a CRT via sampling

For every m ≥ 2, R(m) can be regarded as a discrete tree with
edge-lengths and labelled leaves, and so its distribution is specified
by its tree-shape, t, an unrooted unordered tree with m labelled
leaves, and its edge-lengths. The reduced trees are clearly
consistent, in that R(m) is a subtree of R(m + 1).

Theorem (Aldous (1993))

The law of (T , d , µ) is specified by its random finite-dimensional
distributions, that is the laws of (R(m),m ≥ 2).
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The random fdds of the Brownian CRT
Observe that R(m) must be binary since T2e is. So the tree-shape
of R(m) has 2m − 2 vertices and 2m − 3 edges.

Let t be this tree-shape and let x1, x2, . . . , x2m−3 be the
edge-lengths listed in any (arbitrary but fixed) order.

Theorem (Aldous (1993))

R(m) has density

f (t; x1, x2, . . . , x2m−3) =

(
2m−3∑
i=1

xi

)
exp

−1

2

(
2m−3∑
i=1

xi

)2
 .

[See Le Gall (2005) for a direct proof from the Brownian excursion.]

This implies that t is uniform on the set of binary unordered trees
with m labelled leaves and that the edge-lengths are exchangeable.
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The Dirichlet distribution

Write

Sn =

{
(s1, s2, . . . , sn) ∈ Rn

+ :
n∑

i=1

si = 1

}
.

Definition
The Dirichlet distribution with parameters a1, a2, . . . , an > 0,
written Dir(a1, a2, . . . , an), has density

Γ(a1 + a2 + · · ·+ an)

Γ(a1) · · · Γ(an)
xa1−1

1 . . . xan−1
n

with respect to (n − 1)-dimensional Lebesgue measure on Sn.

Note: If B ∼ Beta(a1, a2) then (B, 1− B) ∼ Dir(a1, a2).
Dir(1, 1, . . . , 1) is the uniform distribution on the simplex Sn, and
is the law of the lengths of the sub-intervals into which [0, 1] is
split by n − 1 independent U(0, 1) random variables.
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Dirichlet distribution facts (size-biased sampling)

Proposition

Let D = (D1,D2, . . . ,Dn) ∼ Dir(a1, a2, . . . , an) and

P (I = i |D) = Di

(i.e. sample a size-biased co-ordinate). Then, conditionally on the
event {I = i}, we have

(D1, . . . ,Di , . . . ,Dn) ∼ Dir(a1, . . . , ai + 1, . . . , an). I



Dirichlet distribution facts (beta-gamma algebra)

Exercise
If D ∼ Dir(a1, a2, . . . , an) and G ∼ Gamma(

∑n
i=1 ai , 1) are

independent then

G × (D1,D2, . . . ,Dn)
d
= (G1,G2, . . . ,Gn),

where
G1 ∼ Gamma(a1, 1),G2 ∼ Gamma(a2, 1), . . . ,Gn ∼ Gamma(an, 1)
are independent.

Moreover,(
G1∑n
i=1 Gi

,
G2∑n
i=1 Gi

, . . . ,
Gn∑n
i=1 Gi

)
d
= (D1,D2, . . . ,Dn)

and is independent of
∑n

i=1 Gi ∼ Gamma(
∑n

i=1 ai , 1).



Dirichlet distribution facts (beta-gamma algebra)

A consequence that will be useful for us in a moment:

Proposition

If B ∼ Beta(k, 1) and (D1, . . . ,Dk) ∼ Dir(1, 1, . . . , 1︸ ︷︷ ︸
k

) are

independent then

(BD1, . . . ,BDk , 1− B) ∼ Dir(1, 1, . . . , 1︸ ︷︷ ︸
k+1

).

I

Note: Beta(1, 1) = U[0, 1].



The random fdds of the Brownian CRT

Recall that the edge-lengths of R(m) have joint density

f (x1, x2, . . . , x2m−3) ∝
(

2m−3∑
i=1

xi

)
exp

−1

2

(
2m−3∑
i=1

xi

)2
 . (?)

If m = 2, we get density x exp(−x2/2) for the length of the single
branch. This is the same as the density of the first length in the
line-breaking construction...

Proposition

The line-breaking construction realises the random fdds of the
Brownian CRT.
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The random fdds of the Brownian CRT

Proof. For m ≥ 2, a change-of-variables argument shows that (?)
is the same as the density of√√√√2

m−1∑
i=1

Ei × (D1,D2, . . . ,D2m−3),

where the factors are independent,

E1,E2, . . . ,Em−1
i.i.d.∼ Exp(1)

and

(D1,D2, . . . ,D2m−3) ∼ Dir(1, 1, . . . , 1).



Line-breaking revisited

Recall the line-breaking construction:

Take E1,E2, . . . to be i.i.d. Exp(1) and set Ck =
√

2
∑k

i=1 Ek .

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively. For i ≥ 1, sample Bi

uniformly from [0,Ci ) and attach [Ci ,Ci+1) at the corresponding
point of the tree constructed so far (this is a point chosen
uniformly at random over the existing tree).
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uniformly at random over the existing tree).



Line-breaking revisited

The points B1,C1,B2,C2, . . . ,Bm−2,Cm−2 split the interval
[0,Cm−1) into 2m − 3 sub-intervals.

Cm−1
d
=
√

2
∑m−1

i=1 Ei .

So it remains to prove the following claim:
the sub-intervals into which the values

B1

Cm−1
,

C1

Cm−1
, . . . ,

Bm−2

Cm−1
,
Cm−2

Cm−1

(put in increasing order) split [0, 1) have Dir(1, 1, . . . , 1)
distribution, independently of Cm−1.
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Line-breaking revisited
Sketch proof of claim:

1. For any m ≥ 2,
(
Cm−1

Cm
, Cm−Cm−1

Cm

)
∼ Dir(2m − 2, 1)

independently of Cm.

2. For m = 2,
(
B1
C2
, C1−B1

C2
, C2−C1

C2

)
d
=
(
UC1
C2
, (1−U)C1

C2
, C2−C1

C2

)
,

where U ∼ U[0, 1] is independent of everything else.
Combining with 1. and the previous proposition, we get that
this has Dir(1, 1, 1) law.

3. Now proceed by induction: suppose that the given
subintervals have lengths (L1, . . . , L2m−3) ∼ Dir(1, 1, . . . , 1).
Sampling Bm−1 takes a size-biased pick from among these
intervals, and splits it at a uniform position. This gives back
lengths (L̃1, . . . , L̃2m−2) ∼ Dir(1, 1, . . . , 1).

4. Then the lengths we want are(
Cm−1

Cm
(L̃1, . . . , L̃2m−2), Cm−Cm−1

Cm

)
which has distribution

Dir(1, 1, . . . , 1) by 1. and the previous proposition.

This completes the proof of the proposition.
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Line-breaking revisited

Proposition

The line-breaking construction realises the random fdds of the
Brownian CRT.

Indeed, we can recover a Brownian CRT by taking the metric
space completion of the object constructed by line-breaking.

Note: completion can only add leaves.
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Rémy’s algorithm

Consider the tree shapes in the line-breaking construction: at step
m − 1 we have an unordered tree with m labelled leaves. We have
seen that it is uniform on the set of binary trees with m labelled
leaves, for m ≥ 2.

Implicit in the line-breaking construction, then, is an algorithm
(originally due to Rémy (1985)) for generating these trees:

I Start from an edge with end-points labelled 1 and 2.

I For m ≥ 3, pick an edge from the existing tree uniformly at
random, subdivide it into two edges and attach another edge
to the new vertex, with label m at its other end.
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Rémy’s algorithm

If Tn is the nth tree in Rémy’s algorithm, and µn is the uniform
distribution on the leaves, then it’s not hard to show that(

Tn,
1√
2n

dgr, µn

)
d→ (T2e , d2e , µ2e).

(In fact, this time the convergence can be shown to be almost
sure.)



Self-similarity

Consider picking three independent points U1,U2,U3 from T2e

according to µ2e . There is a unique branch-point between these
three points, and it splits the tree into three subtrees, T1, T2, T3.

Write d1, d2, d3 and µ1, µ2, µ3 for the restrictions of d2e and µ2e to
each of these subtrees respectively. Let
∆1 = µ2e(T1),∆2 = µ2e(T2),∆3 = µ2e(T3).

Theorem (Aldous (1993))

I We have (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2).

I The rescaled subtrees (T1, d1/
√

∆1, µ1/∆1),
(T2, d2/

√
∆2, µ2/∆2), (T3, d3/

√
∆3, µ3/∆3) are i.i.d.

Brownian CRTs, independent of (∆1,∆2,∆3).

I Ui and the original branch-point are independent samples
from µi/∆i in subtree i = 1, 2, 3. I



Self-similarity

Consider picking three independent points U1,U2,U3 from T2e

according to µ2e . There is a unique branch-point between these
three points, and it splits the tree into three subtrees, T1, T2, T3.

Write d1, d2, d3 and µ1, µ2, µ3 for the restrictions of d2e and µ2e to
each of these subtrees respectively. Let
∆1 = µ2e(T1),∆2 = µ2e(T2),∆3 = µ2e(T3).

Theorem (Aldous (1993))

I We have (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2).

I The rescaled subtrees (T1, d1/
√

∆1, µ1/∆1),
(T2, d2/

√
∆2, µ2/∆2), (T3, d3/

√
∆3, µ3/∆3) are i.i.d.

Brownian CRTs, independent of (∆1,∆2,∆3).

I Ui and the original branch-point are independent samples
from µi/∆i in subtree i = 1, 2, 3. I



Self-similarity

Consider picking three independent points U1,U2,U3 from T2e

according to µ2e . There is a unique branch-point between these
three points, and it splits the tree into three subtrees, T1, T2, T3.

Write d1, d2, d3 and µ1, µ2, µ3 for the restrictions of d2e and µ2e to
each of these subtrees respectively. Let
∆1 = µ2e(T1),∆2 = µ2e(T2),∆3 = µ2e(T3).

Theorem (Aldous (1993))

I We have (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2).

I The rescaled subtrees (T1, d1/
√

∆1, µ1/∆1),
(T2, d2/

√
∆2, µ2/∆2), (T3, d3/

√
∆3, µ3/∆3) are i.i.d.

Brownian CRTs, independent of (∆1,∆2,∆3).

I Ui and the original branch-point are independent samples
from µi/∆i in subtree i = 1, 2, 3. I



A random fractal
The self-similarity of the Brownian CRT tells us, in particular, that
it is a random fractal.

Theorem (Haas & Miermont (2004), Duquesne & Le Gall
(2005))

The Brownian CRT has Hausdorff dimension 2, almost surely.

[Picture by Igor Kortchemski]
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A random fractal

Croydon & Hambly (2008) showed that it is a familiar
deterministic fractal endowed with a random metric.

740 D. Croydon, B. Hambly / Stochastic Processes and their Applications 118 (2008) 730–754

Fig. 3. Self-similar dendrite.

a µi -random vertex, Z1
i . To continue the algorithm, we pick independently for each i 2 ⌃n+1 a

second µi -random vertex, Z2
i . Note that picking this extra µi -random vertex is the equivalent of

picking the U [0, 1] random variable Vi in the excursion picture.
To complete this section, we introduce one further family of variables associated with the

decomposition of the continuum random tree. From Proposition 9(f), observe that the sets in
(Ti )i2⌃n only intersect at points of the form ⇢i or Z1

i . Consequently, it is possible to consider
the two point set {⇢i , Z1

i } to be the boundary of Ti . Denote the renormalised distance between
boundary points by, for i 2 ⌃⇤,

Di := l(i)�1dT (⇢i , Z1
i ).

By construction, we have that dT (⇢i , Z1
i ) = l(i)dW i (0, Ui ). Hence we can also write Di = dW i

(0, Ui ), and so, for each n, (Di )i2⌃n is a collection of independent random variables, independent
of Fn . Moreover, the random variables (Di )i2⌃⇤ are identically distributed as D;, which
represents the height of a µ-random vertex in T . It is known that such a random variable has
mean

p
⇡/8, and finite variance (see [9], Section 3.3). Finally, we have the following recursive

relationship

Di = w(i1)Di1 + w(i2)Di2, (14)

which may be deduced by decomposing the path from ⇢i to Z1
i at b(⇢i , Z1

i , Z2
i ), and applying

parts (c) and (d) of Proposition 9.

4. Self-similar dendrite in R2

The subset of R2 to which we will map the continuum random tree is a simple self-similar
fractal, and is described as the fixed point of a collection of contraction maps. In particular, for
(x, y) 2 R2, set

F1(x, y) := 1
2
(1 � x, y), F2(x, y) := 1

2
(1 + x, �y),

F3(x, y) :=
✓

1
2

+ cy, cx
◆

,

where c 2 (0, 1/2) is a constant, and define T to be the unique non-empty compact set satisfying
A = S3

i=1 Fi (A). The existence and uniqueness of T , which is shown in Fig. 3, is guaranteed
by an extension of the usual contraction principle for metric spaces, see [3], Theorem 1.1.4.

[Image from Croydon & Hambly (2008)]



6. THE STABLE TREES

Key reference:

Thomas Duquesne & Jean-François Le Gall, Random trees, Lévy
processes and spatial branching processes,
Astérisque 281 (2002)



Infinite variance

Write Tn for a Galton-Watson tree with critical offspring
distribution (p(k), k ≥ 0), conditioned to have total progeny n.
We have so far focussed on the case where the offspring
distribution also has finite variance. What if this is not true?

It’s going to be important to understand what happens to sums of
i.i.d. random variables with mean 0 and infinite variance. We will
treat a particular special case.
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A generalised central limit theorem

Theorem
Let Z1,Z2, . . . be i.i.d. random variables such that
P (Z1 ≥ −1) = 1, E [Z1] = 0 and, for some α ∈ (1, 2),

P (Z1 = k) ∼ ck−α−1 as k →∞,

for some constant c > 0. Then as n→∞,

1

n1/α

n∑
i=1

Zi
d→ Sα,

where Sα is a random variable with Laplace transform

E [exp(−λSα)] = exp(Cαλ
α), λ ≥ 0,

for Cα = cΓ(2−α)
α(α−1) . I



A generalised central limit theorem

Notice that we can include the case α = 2: if E
[
Z 2

1

]
= σ2 <∞

then we get that

1

σ
√
n

n∑
i=1

Zi
d→ S2,

where S2 has a N(0, 1) distribution, with Laplace transform

E [exp(−λS2)] = exp(C2λ
2), λ ∈ R.



Stable laws

We say that the random variables Sα, α ∈ (1, 2] have stable laws.
There is, in fact, a two-parameter family of such distributions,
which have the property that for every n ≥ 1, there exist constants
an and bn such that if Y has such a distribution then Y satisfies
the recursive distributional equation

Y
d
=

Y1 + Y2 + · · ·+ Yn − an
bn

where Y1,Y2, . . . are i.i.d. copies of Y .

In our case, an = 0 and bn = n1/α for n ≥ 1.

[Reference: see Durrett, Probability theory and examples for a
very beautiful presentation of the stable laws and how they arise.]
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Functional convergence
In order to understand the behaviour of a single conditioned
Galton-Watson tree, we again start by understanding the
depth-first walk X corresponding to a sequence of i.i.d.
unconditioned Galton-Watson trees.

The functional convergence is as follows.

Theorem
Let X (k) =

∑k
i=1 Zk . Then

1

n1/α
(X (bntc), t ≥ 0)

d→ (L(t), t ≥ 0),

where L is an α-stable Lévy process with no negative jumps,
having Laplace transform

E [exp(−λL(t))] = exp(Cαλ
αt), λ ≥ 0.
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The Lévy process L
L = (L(t), t ≥ 0) is a process with stationary independent
increments. We have L(0) = 0, and for fixed t ≥ 0, L(t) has
Laplace transform

E [exp(−λL(t))] = exp(Cαλ
αt), λ ≥ 0.

Because of the stationary independent increments, this determines
all the finite-dimensional distributions of the process:

E [exp(−(λ1 − λ2)L(t1)− (λ2 − λ3)L(t2)− · · · − λnL(tn))]]

= E [exp(−λ1L(t1)− λ2[L(t2)− L(t1)]− · · · − λn[L(tn)− L(tn−1)]]

= exp(Cα[λα1 t1 + λα2 (t2 − t1) + · · ·+ λαn (tn − tn−1)])

and so determines its law.

Recall that we had E [exp(−λSα)] = exp(Cαλ
α), which entails that

t−1/αL(t)
d
= L(1)

d
= Sα, t ≥ 0.

So L(t) has a stable law for each t, and the process is self-similar
with index α.



The Lévy process L
L = (L(t), t ≥ 0) is a process with stationary independent
increments. We have L(0) = 0, and for fixed t ≥ 0, L(t) has
Laplace transform

E [exp(−λL(t))] = exp(Cαλ
αt), λ ≥ 0.

Because of the stationary independent increments, this determines
all the finite-dimensional distributions of the process:

E [exp(−(λ1 − λ2)L(t1)− (λ2 − λ3)L(t2)− · · · − λnL(tn))]]

= E [exp(−λ1L(t1)− λ2[L(t2)− L(t1)]− · · · − λn[L(tn)− L(tn−1)]]

= exp(Cα[λα1 t1 + λα2 (t2 − t1) + · · ·+ λαn (tn − tn−1)])

and so determines its law.

Recall that we had E [exp(−λSα)] = exp(Cαλ
α), which entails that

t−1/αL(t)
d
= L(1)

d
= Sα, t ≥ 0.

So L(t) has a stable law for each t, and the process is self-similar
with index α.
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Height process convergence
Recall that

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
.

In the case of finite variance, the limiting relationship between X
and H was multiplication by a constant. That is no longer the case
here.

The limiting analogue (H
(α)
t , t ≥ 0) is defined as a (suitably

normalised) local time at level 0 of the process(
Ls − inf

s≤r≤t
Lr , 0 ≤ s ≤ t

)
.

(The local time is a measure of how much time this process spends
at 0.)

It turns out that (H
(α)
t , t ≥ 0) is a continuous process (but it has

some pretty weird properties!).
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An excursion e(α) of the limiting height process

There is an excursion theory for the α-stable Lévy process L, which
enables us to think about a single tree, and we can again make
sense of an excursion e(α) of H(α) of length 1.
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Height process convergence

Theorem (Duquesne & Le Gall (2002); Duquesne (2003))

As n→∞,

n−
(α−1)

α (Hn(bntc), 0 ≤ t ≤ 1)
d→ C (e(α)(t), 0 ≤ t ≤ 1).

As before, this is the key result that enables us to deduce the
convergence of the trees.
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The stable trees

Theorem (Duquesne & Le Gall (2002); Duquesne (2003))

Suppose that the offspring distribution satisfies p(k) ∼ ck−1−α as
k →∞ for α ∈ (1, 2). Then as n→∞,

1

n1−1/α
Tn

d→ cαTα,

where Tα is the stable tree of parameter α and cα is a strictly
positive constant. The convergence is in the sense of the
Gromov–Hausdorff distance.



The stable trees
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The stable trees

An important difference between the stable trees for α ∈ (1, 2) and
the Brownian CRT is that the Brownian CRT is binary. The stable
trees, on the other hand, have only branch-points of infinite degree.



A uniform measure

For α ∈ (1, 2), the stable tree Tα is again naturally endowed with a
“uniform” probability measure µα, which is the push-forward of the
Lebesgue measure on [0, 1] onto the tree. It is also the limit of the
discrete uniform measure on Tn. As in the Brownian case, µα is
supported by the set of leaves of Tα, and the law of the tree is
invariant under random re-rooting according to µα.



Reduced trees

Let U1,U2, . . . be leaves sampled independently from Tα according
to µα, and let Tα,n be the subtree spanned by the root ρ and
U1, . . . ,Un:

U1

U2U4

U3

U5

ρ



Characterising the law of a stable tree

As usual, Tα,n can be thought of in two parts: its tree-shape Tα,n
(a rooted unordered tree with n labelled leaves) and its
edge-lengths.

Moreover, Tα is the completion of
⋃

n≥1 Tα,n.
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Line-breaking construction

We had that Aldous’ line-breaking construction precisely gives the
random finite-dimensional distributions for the Brownian CRT, i.e.
if T̃n is the nth tree in the line-breaking construction, we have

(T̃n, n ≥ 1)
d
= (T2,n, n ≥ 1) .

Question: does there exist a similar line-breaking construction for
the stable trees with α ∈ (1, 2)?

Answer: yes!

[Christina Goldschmidt & Bénédicte Haas, A line-breaking
construction of the stable trees, Electronic Journal of
Probability 20 (2015), paper no. 16, pp.1-24.]
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¡ Muchas gracias !


