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1. INTRODUCTION: BINARY TREES
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Binary leaf-labelled trees
I Let Tn be the set of planted binary leaf-labelled trees with n

labelled leaves (note: we don’t distinguish a planar ordering
around each vertex).

I The root, labelled 0 is, by convention, not a leaf.
I Note that every element of Tn has n − 1 internal vertices

(which are not labelled) and 2n − 1 edges.
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Uniform binary leaf-labelled trees

|Tn| =
1

n

(
2n − 2
n − 1

)
∼ 4n−1

n3/2
√
π

as n→∞.

Our first object of interest is a uniform random element of Tn.

Rémy’s algorithm recursively constructs a sequence (Tn)n≥1 of
trees such that Tn is uniform on Tn for each n.
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Rémy’s algorithm

I Start from a single edge with endpoints labelled 0 and 1.

I At step n ≥ 2, pick an edge uniformly at random, divide it into
two edges, insert a new vertex in the middle and attach to
that vertex a new edge with a leaf labelled n at its other end.
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Rémy’s algorithm

0

1

2

3
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Rémy’s algorithm

Claim: for each n, Tn is a uniform element of Tn.
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[J.-L. Rémy, Un procédé itératif de dénombrement d’arbres binaires et son application à leur génération
aléatoire, RAIRO. Informatique théorique 19:2 (1985), pp.179–195]



Taking limits

Vague question: what can we say about Tn as n→∞?

Concrete first question: as n→∞, how does the distance between
0 and 1 behave?
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An urn in Rémy’s algorithm

The total number of edges present at step n is equal to 2n − 1.

Consider the number of edges in the path between 0 and 1:

I If we add our new leaf somewhere along that path, it gets
longer by 1.

I If we add our new leaf anywhere else, the length of the path
remains the same.



An urn in Rémy’s algorithm

We have an urn process with two colours, say black and white,
where each black ball represents an edge in the path between 0
and 1, and each white ball represents an edge elsewhere.

When we pick a black ball, we replace it in the
urn together with one black and one white ball.

+

+

When we pick a white ball, we replace it in the
urn together with two new white balls.

+

+

We start with a single black ball. At step n, we always have 2n− 1
balls present.



An urn in Rémy’s algorithm
Let Bn be the number of black balls at step n.

We have B1 = 1.

For n ≥ 1,

E [Bn+1|Fn] =
Bn

2n − 1
(Bn + 1) +

2n − 1− Bn

2n − 1
Bn =

2n

2n − 1
Bn.

Define a sequence by b1 = 1 and bn+1 = 22n(n!)2

(2n)! for n ≥ 1. Then

bn+1 =
2n

2n − 1
bn.

Then we have that
(
Bn

bn

)

n≥1

is a non-negative martingale.
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Martingale limit

(Bn/bn)n≥1 is also bounded in L2, so it has an almost sure limit.

Since

bn+1 =
22n(n!)2

(2n)!
∼
√
πn,

we get that
Bn√
2n
→ L a.s. as n→∞.

[P. Marchal, A note on the fragmentation of the stable tree, Fifth Colloquium on Mathematics and Computer
Science, DMTCS (2008), pp.489–500]



Limiting distribution for the length
It also turns out that the law of Bn+1 is explicit:

P (Bn+1 = k) =
k − 1

n
2k−1

(
2n−k
n−1

)

( 2n
n )

and so

P
(
Bn+1 = bx

√
2nc
)
∼ x√

2n
e−x

2/2, x > 0.

In other words, we get

Bn√
2n
→ L a.s. as n→∞,

where the limit L has the Rayleigh distribution, with density
xe−x

2/2 on R+.

[P. Flajolet, P. Dumas and V. Puyhaubert, Some exactly solvable models of urn process theory, Fourth
Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probabilities, DMTCS
(2006), pp.59–118]
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Consequences
The distance between 0 and 1 varies as

√
2n, with a nice almost

sure limit. What can we say about the distances between the other
leaves as n→∞?

For example, let’s think about the distance from 2 to the path
between 0 and 1, and the position along that path at which it
branches off.
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More urns: self-similarity
At step 2 of Rémy’s algorithm, we have
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Each of the three parts here behaves precisely as a little copy of
Rémy’s algorithm, although the numbers of leaves we add to each
copy are dependent. A useful consequence is that given the three
sets of leaves, these three trees are themselves uniform binary
leaf-labelled trees.

How many leaves end up in each of the three copies?
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At step 2 of Rémy’s algorithm, we have

0

1

2

Each of the three parts here behaves precisely as a little copy of
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More urns: self-similarity

Consider Pólya’s urn with three colours, red, green and blue. We
start with one ball of each colour. We pick a ball at random and
replace it in the urn with two more of the same colour. Let
Rn,Gn,Bn be the numbers of red, green and blue balls respectively
at step n (let us now re-number the steps from 0, so that
R0 = G0 = B0 = 1).

+
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+



More urns: self-similarity

It is then standard that

1

2n + 3
(Rn,Gn,Bn)→ (∆1,∆2,∆3) a.s. as n→∞,

where (∆1,∆2,∆3) ∼ Dirichlet(1/2, 1/2, 1/2).

The Dirichlet distribution with parameters α1, α2, . . . , αk > 0 has
density

Γ(
∑k

i=1 αi )∏k
i=1 Γ(αi )

xα1−1
1 . . . xαk−1

k

with respect to Lebesgue measure on

{
x = (x1, . . . , xk) ∈ Rk

+ :
k∑

i=1

xi = 1

}
.
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More urns: self-similarity

It is then standard that

1

2n + 3
(Rn,Gn,Bn)→ (∆1,∆2,∆3) a.s. as n→∞,

where (∆1,∆2,∆3) ∼ Dirichlet(1/2, 1/2, 1/2).

Let γi ∼ Gamma(αi , 1) for 1 ≤ i ≤ k independently. Then

1
∑k

i=1 γi
(γ1, γ2, . . . , γk) ∼ Dir(α1, . . . , αk),

(and is independent of
∑k

i=1 γi ).



More urns: self-similarity
The numbers of leaves in each of the three subtrees are given by

NR
n = (Rn + 1)/2, NG

n = (Gn + 1)/2, NB
n = (Bn + 1)/2.

So we have

1

n
(NR

n ,N
G
n ,N

B
n )→ (∆1,∆2,∆3) a.s.

Writing LRn , L
G
n , L

B
n for the lengths of the three paths at step n, we

see that they look like small copies of the first urn model run for
numbers of steps which are approximately n∆1, n∆2 and n∆3. It
follows that

1√
2n

(LRn , L
G
n , L

B
n )→ (

√
∆1L1,

√
∆2L2,

√
∆3L3) a.s.

where L1, L2, L3 are i.i.d. Rayleigh random variables, independent
of (∆1,∆2,∆3).
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Limiting subtree lengths

An elementary calculation yields that

(
√

∆1L1,
√

∆2L2,
√

∆3L3)
d
=
√

Γ2 × Dir(1, 1, 1),

where Γ2 ∼ Gamma(2, 1/2) and the two factors are independent.

More generally, if we consider the subtree spanned by 0 and the
leaves labelled 1, 2, . . . , k , we get 2k − 1 edges whose lengths are
distributed as √

Γk × Dir(1, 1, . . . , 1︸ ︷︷ ︸
2k−1

),

where again Γk ∼ Gamma(k , 1/2) and the two factors are
independent.

Note that the k = 1 case fits into this pattern, since

Rayleigh
d
=
√

Γ1.
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A limiting version of Rémy’s algorithm: Aldous’
line-breaking construction of the Brownian CRT

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

A useful way of constructing this is to let E1,E2, . . . be i.i.d.

Exp(1/2) and set Ci =
√∑i

j=1 Ej .

I Consider the line-segments [0,C1), [C1,C2), . . ..

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen
uniformly over the existing tree.
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Why is this the right limit?

Claim: this gives the almost sure limit of the subtree spanned by 0
and the leaves 1, 2, . . . , k in the rescaled version of Rémy’s
algorithm.

I The tree at step k ≥ 1 has total length

Ck =

√√√√
k∑

i=1

Ei
d
=
√

Gamma(k , 1/2).

I The combinatorics of the attachment mechanism are exactly
the same as in Rémy’s algorithm – so the underlying binary
leaf-labelled tree has the right distribution.

I A calculation shows that the cut-points and attachment
points split up the interval [0,Ck) uniformly.



The line-breaking definition of the Brownian CRT

I Start from [0,C1) and proceed inductively.

I For i ≥ 1, sample Bi uniformly from [0,Ci ) and attach
[Ci ,Ci+1) at the corresponding point of the tree constructed
so far (this is a point chosen uniformly at random over the
existing tree).

Now take the union of all the branches, thought of as a path
metric space, and then take its completion.

This procedure gives (slightly informally expressed) definition of
the Brownian continuum random tree (CRT) which is the key
object in this minicourse.
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The line-breaking definition of the Brownian CRT

[Picture by Igor Kortchemski]



The scaling limit of the uniform binary leaf-labelled tree

In the next section, we will make sense of the following statement.

Theorem. (Marchal (2003), Curien and Haas (2013))
As n→∞,

1√
2n

Tn → T a.s.

where T is the Brownian CRT.

We need to know what sort of objects we’re really dealing with,
and what is the topology in which the convergence occurs.
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2. R-TREES AND CONVERGENCE

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.



Continuous trees

We want a continuous notion of a tree. We don’t really care about
vertices: the important aspects are the shape of the tree and the
distances. So it makes sense to think in terms of metric spaces.



R-trees

Definition. A compact metric space (T , d) is an R-tree if for all
x , y ∈ T ,

I There exists a unique shortest path [[x , y ]] from x to y (of
length d(x , y)).

(There is a unique isometric map fx ,y from
[0, d(x , y)] into T such that f (0) = x and f (d(x , y)) = y .
We write fx ,y ([0, d(x , y)]) = [[x , y ]].)

I The only non-self-intersecting path from x to y is [[x , y ]].

(If
g is a continuous injective map from [0, 1] into T , such that
g(0) = x and g(1) = y , then g([0, 1]) = [[x , y ]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that v /∈ [[ρ,w ]] for any w 6= v .
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Coding R-trees

Let h : [0, 1]→ R+ be an excursion, that is a continuous function
such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0, 1).
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Now put glue on the underside of the excursion and push the two
sides together...
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Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together to get a tree.



Coding R-trees

Formally, use h to define a distance:

dh(x , y) = h(x) + h(y)− 2 inf
x∧y≤z≤x∨y

h(z).



Coding R-trees

Let y ∼ y ′ if dh(y , y ′) = 0 and take the quotient Th = [0, 1]/ ∼.



Coding R-trees

Theorem. For any excursion h, (Th, dh) is an R-tree.

Write πh : [0, 1]→ Th for the projection map.

We will often root Th at ρ = πh(0) = πh(1).



A natural measure

We will want to be able to sample random points in our trees.
There is a natural “uniform” measure µh which is the push-forward
of the Lebesgue measure on [0, 1] onto Th.

To pick a point of Th according to µh, we simply sample
U ∼ U[0, 1] and then take our point to be πh(U).

We will typically think of our continuous trees as triples
(Th, dh, µh).
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(Th, dh, µh).



Topological considerations

Let M be the space of compact metric spaces endowed with a
Borel probability measure, up to measure-preserving isometry.

We will define a metric dGHP, the Gromov-Hausdorff-Prokhorov
distance on M.
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Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.
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Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.



Topological considerations
The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.

invisible line



Topological considerations

Suppose that µ is a Borel probability measure on (X , d) and that
µ′ is a Borel probability measure on (X ′, d ′).

A measure ν on X × X ′ is a coupling of µ and µ′ if ν(·,X ′) = µ(·)
and ν(X , ·) = µ′(·).

Idea: find a correspondence and a coupling such that the
correspondence has small distortion and the coupling “lines up”
well with the correspondence i.e. if (V ,V ′) ∼ ν then
P ((V ,V ′) ∈ R) = ν(R) is close to 1.
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Topological considerations

The Gromov-Hausdorff-Prokhorov distance between (X , d , µ) and
(X ′, d ′, µ′) is defined to be

dGHP((X , d , µ), (X ′, d ′, µ′)) =
1

2
inf
R,ν

max{dis(R), ν(Rc)}.

Theorem. (M, dGHP) is a complete separable metric space.

[S. Evans, J. Pitman and A. Winter, Rayleigh processes, real trees, and root growth with re-grafting, Probability
Theory and Related Fields 134 (2006) pp.81-126.]

[R. Abraham, J.-F. Delmas and P. Hoscheit, A note on the Gromov-Hausdorff-Prokhorov distance between
(locally) compact metric measure spaces, Electronic Journal of Probability 18 (2013), no. 14.]
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The Brownian CRT

Definition. The Brownian continuum random tree is
(T2e , d2e , µ2e), where e is a standard Brownian excursion.
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[Pictures by Igor Kortchemski]



A planar ordering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Observe that the excursion comes with slightly more information
than the the tree: if s < t and π2e(s) and π2e(t) are leaves, it is
natural to think of π2e(s) appearing to the left of π2e(t).



Discrete trees as metric spaces

We want to think of (Tn, n ≥ 1) as metric spaces.

The vertices of Tn (labelled and unlabelled) come equipped with a
natural metric: the graph distance dn.
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We sometimes write aTn for the metric space (Tn, adn) given by
the vertices of Tn with the graph distance scaled by a.



Uniform measure
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We will endow Tn with µn, the measure which puts mass 1/(2n)
on each of the 2n vertices.



Convergence

Theorem. As n→∞,
(
Tn,

dn√
2n
, µn

)
→ (T2e , d2e , µ2e) a.s.

with respect to the Gromov-Hausdorff-Prokhorov topology.

[P. Marchal, Constructing a sequence of random walks strongly converging to Brownian motion, Discrete
Mathematics and Theoretical Computer Science, 2003, pp.181–190.]

[N. Curien & B. Haas, The stable trees are nested, Probability Theory and Related Fields 157, 2013, pp.847–883.]



A plane version of our binary trees

In order to see where the Brownian excursion comes from, it will
be helpful for us to now give our binary trees a planar ordering.
We achieve this in Rémy’s algorithm by simply gluing each new
branch on the left or right with equal probability.
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Binary trees and lattice excursions

There is a well-known bijection between planted binary plane trees
with n leaves and lattice excursions with 2n steps.

Start every excursion with a +1 step. Now travel round the tree
from left to right, recording a step whenever you see a vertex for
the first time. The step is +1 if the vertex is a branch-point and
−1 if the vertex is a leaf.
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Binary trees and lattice excursions

To go back the other way, it’s easy to recover the tree:
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Binary trees and lattice excursions
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Since our trees are uniform, so are the lattice excursions. In other
words, they are excursions of simple random walk away from 0.

So
(at least in distribution), it’s clear that, suitably rescaled, they
should converge to a Brownian excursion.
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Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.
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Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.
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Binary trees and lattice excursions

Rémy’s algorithm then corresponds to a sequence of simple
operations on such lattice excursions.
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Binary trees and lattice excursions

Let (En)n≥1 be the sequence of lattice excursions.

Theorem. (Marchal (2003))
As n→∞, we have

1√
2n

(En(b2ntc), 0 ≤ t ≤ 1)→ (e(t), 0 ≤ t ≤ 1)

uniformly on [0, 1], almost surely.



Convergence of the trees
This is not quite enough to conclude that the trees converge in the
GHP sense. The embedding of the tree in the excursion distorts
distances.
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Write Hn(k) for the distance from the root to the vertex visited at
time k . Then

Hn(k) =

∣∣∣∣
{

0 ≤ i ≤ k − 1 : En(i) = min
i≤j≤k

En(k)

}∣∣∣∣ .

It turns out that Hn(k) ≈ 2En(k).
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Convergence of the trees

Theorem. As n→∞,

1√
2n

(Hn(b2ntc), 0 ≤ t ≤ 1)→ (2e(t), 0 ≤ t ≤ 1)

uniformly on [0, 1], almost surely.

[J.-F. Marckert & A. Mokkadem, The depth first processes of Galton-Watson trees converge to the same
Brownian excursion, Annals of Probability, 31(3), pp.1655–1678, 2003.]



Convergence of the trees

Let’s call the vertices be v0, v1, . . . , v2n−1 in the order we visit
them, where v0 is the root.

By definition,
dn(v0, vk) = Hn(k).

More generally, for 0 ≤ i < j ≤ 2n − 1, write vi ∧ vj for the most
recent common ancestor of vi and vj in the tree. Then

dn(vi , vj) = dn(v0, vi ) + dn(v0, vj)− 2dn(v0, vi ∧ vj).
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Convergence of the trees

dn(v0, vi∧vj) =

{
mini≤k≤j Hn(k)− 1 if vi not an ancestor of vj

mini≤k≤j Hn(k) = Hn(i) if vi an ancestor of vj .
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So ∣∣∣∣dn(v0, vi ∧ vj)− min
i≤k≤j

Hn(k)

∣∣∣∣ ≤ 1.



A correspondence

Define a correspondence Rn between {v0, v1, . . . , v2n−1} and [0, 1]
by declaring (vi , s) ∈ Rn if i = b2nsc.

Endow [0, 1] with the pseudo-metric d2e . We will bound dis(Rn).

Suppose that (vi , s), (vj , t) ∈ Rn with s ≤ t. Then

|dn(vi , vj)− d2e(s, t)|

≤
∣∣∣∣

1√
2n

(
Hn(b2nsc) + Hn(b2ntc)− 2 min

s≤u≤t
Hn(b2nuc)

)

−
(

2e(s) + 2e(t)− 4 min
s≤u≤t

e(u)

)∣∣∣∣+
2√
2n
.

The right-hand side converges to 0 uniformly in s, t ∈ [0, 1]. So

dis(Rn)→ 0 a.s.
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A coupling

Recall that µn is the measure which puts mass 1/(2n) on each of
the vertices v0, v1, . . . , v2n−1. Then we may couple µn and µ2e by
taking U ∼ U[0, 1] and taking ν to be the law of the pair

(vb2nUc, π2e(U)).

This is precisely the natural coupling νn induced by the
correspondence Rn, and so νn(Rc

n ) = 0.



GHP convergence

But then

dGHP

((
Tn,

dn√
2n
, µn

)
, (T2e , d2e , µ2e)

)

≤ 1

2
max {dis(Rn), νn(Rc

n )} → 0,

almost surely as n→∞. �



3. PROPERTIES OF THE BROWNIAN CRT

Key references:

David Aldous, The continuum random tree III,
Annals of Probability 21 (1993) pp.248-289.

Jim Pitman, Combinatorial stochastic processes,
Lecture notes in mathematics 1875, Springer-Verlag, Berlin
(2006).



Recap: Rémy’s algorithm
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Recap: line-breaking construction

Take an inhomogeneous Poisson process on R+ of intensity t at t.

C1 C2 C3 C4 C5 C60

I Consider the line-segments [0,C1), [C1,C2), . . ..

I Start from [0,C1) and proceed inductively.

I For i ≥ 2, attach [Ci−1,Ci ) at a random point chosen
uniformly over the existing tree.



Recap: convergence theorem

Recall that Tn is a uniform binary leaf-labelled tree and that T2e is
the Brownian CRT.
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Theorem. As n→∞,
(
Tn,

dn√
2n
, µn

)
→ (T2e , d2e , µ2e) a.s.

with respect to the Gromov-Hausdorff-Prokhorov topology.



Uniform measure on the leaves

The same is true if we take the measure to be the uniform measure
just on the leaves, µ̃n.

Theorem. (Curien & Haas (2013))
As n→∞,
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Tn,

dn√
2n
, µ̃n

)
→ (T2e , d2e , µ2e) a.s.

with respect to the Gromov-Hausdorff-Prokhorov topology.

Let L(T2e) be the set of leaves of T2e . Then µ2e(L(T2e)) = 1.
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The root

Imagine permuting the labels 0, 1, . . . , n in the binary tree Tn. It’s
straightforward to see that this does not change its law. In
particular, the root 0 acts just like a uniformly chosen leaf. So the
same must also be true for T2e .



What is a continuum random tree?

A continuum tree is a triple (T , d , µ) where (T , d) is an R-tree
with leaves L(T ) and µ is a Borel probability measure on T which
is such that

I µ is non-atomic

I µ(L(T )) = 1

I for every v ∈ T of degree k ≥ 2, let T1, . . . , Tk be the
connected components of T \ {v}. Then µ(Ti ) > 0 for all
1 ≤ i ≤ k .

A continuum random tree (CRT) is a random variable taking
values in the set of (equivalence classes of) continuum trees.
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Characterising a CRT via sampling

Take a CRT (T , d , µ) and suppose that V0,V1, . . . are i.i.d.
samples from the measure µ. (Note: these are a.s. leaves.) For
k ≥ 1, let Rk be the subtree of T spanned by V0,V1, . . . ,Vk .
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Characterising a CRT via sampling

For every k ≥ 1, Rk can be regarded as a discrete tree, rooted at
V0, with edge-lengths and labelled leaves, and so its distribution is
specified by its tree-shape, a rooted unordered tree with k labelled
leaves, and its edge-lengths. The reduced trees are clearly
consistent, in that Rk is a subtree of Rk+1.

Theorem. (Aldous (1993))
The law of a continuum random tree (T , d , µ) is specified by its
random finite-dimensional distributions, that is the laws of
(Rk , k ≥ 1).

[D. Aldous, The continuum random tree III, Annals of Probability 21(1), 1993, pp.248–289.]
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Characterising a CRT via sampling

Moreover, if we let

µ̂k =
1

k

k∑

i=1

δVi

then
(Rk , d |Rk

, µ̂k)→ (T , d , µ)

almost surely in dGHP, as k →∞.



The random finite-dimensional distributions of the
Brownian CRT

Our earlier urn results translate into facts about the Brownian
CRT.

Recall our planted binary leaf-labelled tree Tn. As n gets large, the
leaves 1, 2, . . . , k behave like i.i.d. samples from µ̃n. But our urn
arguments gave us the limiting distribution of the rescaled tree
spanned by 0 and 1, 2, . . . , k .
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The random finite-dimensional distributions of the
Brownian CRT

Theorem. (Aldous (1993))

I Rk is a uniform random planted binary leaf-labelled tree, with
edge-lengths distributed as

√
Γk × Dir(1, 1, . . . , 1︸ ︷︷ ︸

2k−1

),

where Γk ∼ Gamma(k , 1/2), independent of the Dirichlet
vector.

I (Rk)k≥1 evolves according to the line-breaking construction.

[See Le Gall (2005) for a direct proof from the Brownian excursion.]



The random finite-dimensional distributions of the
Brownian CRT

Note that since

(Rk , d2e |Rk
, µ̂k)→ (T2e , d2e , µ2e)

as k →∞, it follows that the Brownian CRT is binary.

Another way to see this is to observe that the local minima of a
Brownian excursion are unique almost surely.



Recursive self-similarity

Consider picking three independent points V1,V2,V3 from T2e

according to µ2e . There is a unique branch-point between these
three points, and it splits the tree into three subtrees, T1, T2, T3.

Write d1, d2, d3 and µ1, µ2, µ3 for the restrictions of d and µ to
each of these subtrees respectively. Let

∆1 = µ(T1),∆2 = µ(T2),∆3 = µ(T3).
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Recursive self-similarity

Theorem. (Aldous (1997))

I We have (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2).

I The rescaled subtrees (T1, d1/
√

∆1, µ1/∆1),
(T2, d2/

√
∆2, µ2/∆2), (T3, d3/

√
∆3, µ3/∆3) are i.i.d.

Brownian CRTs, independent of (∆1,∆2,∆3).

I Vi and the original branch-point are independent samples
from µi/∆i in subtree i = 1, 2, 3.

[D. Aldous, Recursive self-similarity for random trees, random triangulations and Brownian excursion, Annals of
Probability 22, 1997, pp.812–854.]



The spine decomposition

Now look more closely at the tree from the perspective of the path
between the root and a single uniform point (the spine).

What are the masses hanging off the spine?
Where are they located?



The spine decomposition

Theorem. (Haas, Pitman & Winkel (2009))
The spinal mass partition is distributed as Poisson-Dirichlet
PD(1/2, 1/2) and the trees corresponding to the different blocks
are attached at i.i.d. uniform points along the spine. These little
subtrees are randomly rescaled i.i.d. Brownian CRT’s.

Fix 0 ≤ α < 1 and θ > −α. Let β1, β2, . . . be independent random
variables such that βi ∼ Beta(1− α, θ + iα). Let
P̃i = βi

∏i−1
j=1(1− βj), i ≥ 1, and let P1 ≥ P2 ≥ . . . ≥ 0 be the P̃i

in decreasing order. Then (Pi )i≥1 ∼ PD(α, θ).

[B. Haas, J. Pitman & M. Winkel, Spinal partitions and invariance under re-rooting of continuum random trees,
Annals of Probability 37(4), 2009, pp.1381–1411.]
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The Chinese restaurant process

Generate an exchangeable random partition of N as follows.

I The first customer arrives and sits at a table.

I Suppose that after n customers have arrived, there are ni of
them sitting at table i , for 1 ≤ i ≤ k .

I Customer n + 1 arrives and sits at table i with probability
ni−α
n+θ , for 1 ≤ i ≤ k , or starts a new table with probability
θ+kα
n+θ .

Let Kn be the number of tables occupied by the first n customers,

and Π
(n)
1 , . . . ,Π

(n)
Kn

the sets of customers sitting at the different
tables. Then as n→∞,

1

n

(
|Π(n)

1 |, . . . , |Π
(n)
Kn
|
)↓
→ (Pi )i≥1 a.s.

where (Pi )i≥1 ∼ PD(α, θ).
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The spine decomposition

Claim: the spinal mass partition is distributed as PD(1/2, 1/2) and
the trees corresponding to the different blocks are attached at i.i.d.
uniform points along the spine.

0

1

2

3
4

5

6

7

Every time we add a new vertex in Rémy’s algorithm, we either
add it to a subtree which is already hanging from the path between
0 and 1, or we create a new such subtree.



The spine decomposition

Suppose we are at step n and that the current length of the path
from 0 to 1 is k + 1, so that there are k subtrees hanging off.
Suppose these subtrees contain n1, . . . , nk leaves, listing from top
to bottom.

I We add our new vertex to the ith existing subtree (containing
ni vertices) with probability 2ni−1

2n−1 .

I We add a new subtree with probability proportional to k+1
2n−1 .

These are precisely the probabilities in the Chinese restaurant
process with parameters α = 1/2, θ = 1/2. So the labels in the
subtrees behave exactly as tables in a (1/2, 1/2)-Chinese
restaurant process (on {2, 3, 4, . . .}) and it follows that their
ordered sizes, divided by n, converge almost surely to a
PD(1/2, 1/2) vector. Since each new subtree gets attached at a
uniform position along the path, the same is also true in the limit.
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An alternative viewpoint: via a path transformation
Theorem. (Bertoin & Pitman (1994))
Let Bex be a standard Brownian excursion and let U ∼ U[0, 1]. Let

Kt =

{
mint≤s≤U Bex

s for 0 ≤ t ≤ U

minU≤s≤t Bex
s for U ≤ t ≤ 1.

Then B |br | := Bex − K is the modulus of a standard Brownian
bridge.

JEAN BERTOIN AND JIM PITMAN

where g is the last zero of B before 1. According to (1-br), and to the invariance in law
under time-reversal for the bridge, the above pair has the same distribution as (Lbr, IBbrI).
This establishes the Theorem. 0

The next result transforms an absolute bridge into an excursion (see figure 4).
Theorem 3.2. lBridgel * Excursion. Notations are as in Theorem 3.1. Let U
sup{t < 1: Llbri Llbrl Then U is uniformly distributed on [0, 1]. Put

LlbrI for0<t< U,Kt = LL~brlI-JLbrI for U<t<1.

Then
Bex K +Blbrl

is an excursion independent of U. Moreover,
f mi BCex for

Kt = <Umin Be forU<s<t a

In particular, BlbrI can be recovered from Bex and U.

glbrl|

-

U 1

r 0 < t <U,

r U < t < 1.

BeT

1

Figum4: IBrdge I +4 Excursion in heorem 3.2

This result comes from the combination of Lemma 3.3 below and Theorems 3.1 and 2.3.
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[J. Bertoin & J. Pitman, Path transformations connecting Brownian bridge, excursion and meander, Bull. Sci.
Math. 2, 1994, pp.147–166.]
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s

The excursions of the bridge encode the little subtrees hanging off
the spine. The ordered lengths of these excursions are
Poisson-Dirichlet(1/2, 1/2) distributed. The local time at 0 of the
Brownian bridge is Rayleigh distributed, which represents the
length of the path between the root and uniform leaf. U sits
exactly halfway through the local time.



A random fractal

The self-similarity of the Brownian CRT tells us, in particular, that
it is a random fractal. What is its dimension?

The Minkowski (or box-counting) dimension is defined to be

limε↓0
log N(T2e ,ε)

log(1/ε) (if the limit exists) where N(T2e , ε) is the number
of balls of radius ε needed to cover T2e .

Theorem. (Duquesne & Le Gall (2005))
The Brownian CRT has Minkowski dimension 2, almost surely.

[T. Duquesne & J.-F. Le Gall, Probabilistic and fractal aspects of Lévy trees, Probability Theory and Related
Fields 131, 2005, pp.553–603.]
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Minkowski dimension: heuristic for lower bound
Consider Rk , the tree subtree spanned by the root and k uniform
leaves.

For a lower bound, we cover parts of this subtree. Recall that the
lengths are √

Γk × Dir(1, 1, . . . , 1︸ ︷︷ ︸
2k−1

),

where Γk ∼ Gamma(k , 1/2).



Minkowski dimension: heuristic for lower bound

We have E
[√

Γk

]
=
√

2Γ(k+1/2)
Γ(k) ∼

√
2k/e.

For a well-chosen δ > 0, there is exponentially small probability of
not having at least δk of the elements of the Dir(1, 1, . . . , 1︸ ︷︷ ︸

2k−1

) vector

larger than 1/(4k).

So we can find Ω(k) disjoint balls of radius Θ(1/
√
k) which cover

a strict subset of Rk .
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Minkowski dimension: heuristic for upper bound

Consider again picking k uniform leaves.

We know that the 2k − 1 subtrees have masses
(∆1, . . . ,∆2k−1) ∼ Dir(1/2, 1/2, . . . , 1/2). Inside each blob is a
rescaled independent Brownian CRT. Let R1, . . . ,R2k−1 be i.i.d.
copies of the maximum distance from the root in a Brownian CRT.



Minkowski dimension: heuristic for upper bound

R1 has the distribution of the maximum of a standard Brownian
excursion, which is such that

P (R1 ≥ x) =
∑

k≥1

(−1)k+1e−k
2x2 ≤ e−x

2
.

So we have covered T2e with balls of random radius at most

max
1≤i≤2k−1

√
∆iRi .

We may realise the Dirichlet vector as

(∆1, . . . ,∆2k−1) =
1

∑2k−1
i=1 γi

(γ1, . . . , γ2k−1),

where γ1, . . . , γ2k−1 are i.i.d. Gamma(1/2, 1).



Minkowski dimension: heuristic for upper bound

So

max
1≤i≤2k−1

√
∆iRi =

√
max1≤i≤2k−1 γiR

2
i∑2k−1

i=1 γi
.

Now
P
(
γ1R

2
1 > x

)
≤ E [exp(−x/γ1)] = exp(−2

√
x).

So max1≤i≤2k−1 γiR
2
i ∼ (log k)2. Since

∑2k−1
i=1 γi ∼ k , we get

max
1≤i≤2k−1

√
∆iRi ∼

log k√
k
.

So we need O(k) balls of radius approximately k−1/2 log k to cover
T2e .

[L. Addario-Berry, N. Broutin, C. Goldschmidt & G. Miermont, The scaling limit of the minimum-spanning tree of
the complete graph, Annals of Probability 45(5), 2017, pp.3075–3144.]
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A different perspective
Croydon & Hambly (2008) showed that we can also view (T2e , d2e)
as this familiar deterministic fractal endowed with a random metric.

740 D. Croydon, B. Hambly / Stochastic Processes and their Applications 118 (2008) 730–754

Fig. 3. Self-similar dendrite.

a µi -random vertex, Z1
i . To continue the algorithm, we pick independently for each i 2 ⌃n+1 a

second µi -random vertex, Z2
i . Note that picking this extra µi -random vertex is the equivalent of

picking the U [0, 1] random variable Vi in the excursion picture.
To complete this section, we introduce one further family of variables associated with the

decomposition of the continuum random tree. From Proposition 9(f), observe that the sets in
(Ti )i2⌃n only intersect at points of the form ⇢i or Z1

i . Consequently, it is possible to consider
the two point set {⇢i , Z1

i } to be the boundary of Ti . Denote the renormalised distance between
boundary points by, for i 2 ⌃⇤,

Di := l(i)�1dT (⇢i , Z1
i ).

By construction, we have that dT (⇢i , Z1
i ) = l(i)dW i (0, Ui ). Hence we can also write Di = dW i

(0, Ui ), and so, for each n, (Di )i2⌃n is a collection of independent random variables, independent
of Fn . Moreover, the random variables (Di )i2⌃⇤ are identically distributed as D;, which
represents the height of a µ-random vertex in T . It is known that such a random variable has
mean

p
⇡/8, and finite variance (see [9], Section 3.3). Finally, we have the following recursive

relationship

Di = w(i1)Di1 + w(i2)Di2, (14)

which may be deduced by decomposing the path from ⇢i to Z1
i at b(⇢i , Z1

i , Z2
i ), and applying

parts (c) and (d) of Proposition 9.

4. Self-similar dendrite in R2

The subset of R2 to which we will map the continuum random tree is a simple self-similar
fractal, and is described as the fixed point of a collection of contraction maps. In particular, for
(x, y) 2 R2, set

F1(x, y) := 1
2
(1 � x, y), F2(x, y) := 1

2
(1 + x, �y),

F3(x, y) :=
✓

1
2

+ cy, cx
◆

,

where c 2 (0, 1/2) is a constant, and define T to be the unique non-empty compact set satisfying
A = S3

i=1 Fi (A). The existence and uniqueness of T , which is shown in Fig. 3, is guaranteed
by an extension of the usual contraction principle for metric spaces, see [3], Theorem 1.1.4.

[D. Croydon & B. Hambly, Self-similarity and spectral asymptotics for the continuum random tree, Stochastic
Processes and their Applications 11, 2008, pp.730–754.]



4. VORONOI CELLS IN THE BROWNIAN CRT

Joint work with Louigi Addario-Berry (McGill), Omer Angel (UBC),
Guillaume Chapuy (Paris 7) and Éric Fusy (École polytechnique)

Eric Fusy
Joint work

Guillaume

Chapuy

Éric Fusy Guillaume Chapuy

Omer Angel Louigi Addario-Berry

[Voronoi tessellations in the CRT and continuum random maps of finite excess, Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018), pp.933-946.]



Voronoi cells in a metric space

Let (M, d) be a metric space.

Fix k ≥ 1 and let S = {xi : 1 ≤ i ≤ k} be a collection of points in
M, the centres.

For 1 ≤ i ≤ k , the Voronoi cells are

Vi = {y ∈ M : d(y ,S) = d(y , xi )}.

(Note that the Voronoi cells are not necessarily disjoint.)



Standard example: Voronoi cells in R2

Euclidean distance
11/09/2017, 19:23

Page 1 of 1file:///Users/goldschm/Dropbox/Talks/VoronoiTalk/Euclidean_Voronoi_diagram.svg

Picture by Balu Ertl (CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38534275)



Standard example: Voronoi cells in R2

Manhattan distance
27/02/2018, 10:20

Page 1 of 1file:///Users/goldschm/Desktop/Manhattan_Voronoi_Diagram.svg

Picture by Balu Ertl (CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=38534275)



Voronoi supermarkets

See https://chriszetter.com/voronoi-map/examples/uk-supermarkets/



Voronoi supermarkets

See https://chriszetter.com/voronoi-map/examples/uk-supermarkets/



General set-up: Voronoi cells in a metric space

Let (M, d) be a metric space endowed with a Borel probability
measure µ.

Fix k ≥ 1 and let S = {xi : 1 ≤ i ≤ k} be a collection of points in
M, the centres. Typically these will be random and i.i.d. samples
from µ.

For 1 ≤ i ≤ k , the Voronoi cells are

Vi = {y ∈ M : d(y ,S) = d(y , xi )}.

(Note that the Voronoi cells are not necessarily disjoint.)

We will be interested in the “masses” of these cells, as measured
by µ, i.e.

(µ(V1), µ(V2), . . . , µ(Vk)).



Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Any two points.

(µ(V1), µ(V2)) = (1/2, 1/2).
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Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Three uniform points.

(µ(V1), µ(V2)) = (1/2, 1/2).



Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Three uniform points.

(µ(V1), µ(V2)) = (1/2, 1/2).



Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Three uniform points.

0 U(1) U(2) 1

The lengths are uniform on the 2-dimensional simplex i.e. have
Dir(1, 1, 1) distribution.

We get that the Lebesgue measures of the Voronoi cells are

(µ(V1), µ(V2), µ(V3)) =

(
1

2
U(2),

1

2
(1− U(1)),

1

2
(1− U(1) − U(2))

)
.



Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Three uniform points.

0 U(1) U(2) 1

The lengths of these intervals are uniform on the 2-dimensional
simplex i.e. have Dir(1, 1, 1) distribution.

We get that the Lebesgue measures of the Voronoi cells are
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Warm-up: circle

Circle of circumference 1, Euclidean distance, Lebesgue measure.
Three uniform points.

0 U(1) U(2) 1

The lengths of these intervals are uniform on the 2-dimensional
simplex i.e. have Dir(1, 1, 1) distribution.

We get that the Lebesgue measures of the Voronoi cells are

(µ(V1), µ(V2), µ(V3)) =
(

1
2U(2),

1
2

(
1− U(1)

)
, 1

2

(
1− U(1) − U(2)

))

(exchangeable with marginals distributed as 1
2 Beta(2, 1)).



Voronoi cells in the Brownian CRT

Question: what if we take the metric space to be the Brownian
CRT?



Voronoi mass-partition in the Brownian CRT

Theorem. (Addario-Berry, Angel, Chapuy, Fusy & G. (2018))
Let (T , d , µ) be the Brownian CRT. Fix k ≥ 2 and let
X1,X2, . . . ,Xk be i.i.d. samples from µ. Let V1,V2, . . . ,Vk be the
corresponding Voronoi cells. Then

(µ(V1), µ(V2), . . . , µ(Vk)) ∼ Dir(1, 1, . . . , 1).

If you want to chop up the Brownian CRT in a uniform manner,
pick uniform points and find their Voronoi cells!

(Compare to the Dir(1/2, 1/2, 1/2) mass-split we get by cutting at
the branch-point between three uniform points.)
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the branch-point between three uniform points.)



Our original motivation

Conjecture. (Chapuy (2016))
Let (B, d , µ) be the Brownian map (or Brownian surface of genus
g ≥ 0). Let X1,X2, . . . ,Xk be i.i.d. points sampled from µ and
V1,V2, . . . ,Vk be the corresponding Voronoi cells. Then

(µ(V1), µ(V2), . . . , µ(Vk)) ∼ Dir(1, 1, . . .).

[G. Chapuy, On tesselations of random maps and the tg recurrence, Séminaire Lotharingien de Combinatoire
78B, 2017, no. 79, 12pp.]



The Brownian map (sphere)

[Picture by Jérémie Bettinelli]



The Brownian double torus

[Picture by Jérémie Bettinelli]



Brownian surfaces

Conjecture. (Chapuy (2016))
Let (B, d , µ) be the Brownian map (or Brownian surface of genus
g ≥ 0). Let X1,X2, . . . ,Xk be i.i.d. points sampled from µ and
V1,V2, . . . ,Vk be the corresponding Voronoi cells. Then

(µ(V1), µ(V2), . . . , µ(Vk)) ∼ Dir(1, 1, . . .).

Proved for g = 0, k = 2 by Emmanuel Guitter (but proof does not
generalise).

[E. Guitter, A universal law for Voronoi cell volumes in infinitely large maps, Journal of Statistical Mechanics:
Theory and Experiment, 2018.]



Open problem. Which properties of a random metric space give
rise to uniform Voronoi mass-partitions?



Recap: reconstructing the Brownian CRT

1

2

3

4

Suppose we start from the subtree spanned by X1, . . . ,Xk .

In order
to get back to the whole tree, we need to take i.i.d. copies of the
Brownian CRT, randomly rescaled by an exchangeable vector with
sum 1, and glued onto the subtree at i.i.d. uniform positions.



Recap: reconstructing the Brownian CRT

1

2

3

4

Suppose we start from the subtree spanned by X1, . . . ,Xk . In order
to get back to the whole tree, we need to take i.i.d. copies of the
Brownian CRT, randomly rescaled by an exchangeable vector with
sum 1, and glued onto the subtree at i.i.d. uniform positions.



Base case: k = 2

The proof goes via induction, with the base case being k = 2.

X1 X2

We wish to find the masses of the blue and red parts.



k = 2: an observation

U1

X1 X2

Call the masses above and below the backbone the contour cells.

These are equal to U1 and 1− U1, with U1 ∼ U[0, 1]. The little
trees attached to the backbone have exchangeable masses.



k = 2: an observation

U1

X1 X2

Call the masses above and below the backbone the contour cells.
These are equal to U1 and 1− U1, with U1 ∼ U[0, 1]. The little
trees attached to the backbone have exchangeable masses.



k = 2: a bijection

We may convert the Voronoi cells into the contour cells of a
different tree:

X1 X2

Since the subtree masses are exchangeable, the new tree is again a
Brownian CRT. But the contour cells in a Brownian CRT have
(U, 1− U) mass split, so the same must be true for the Voronoi
cells. (This may be read off from results of Lévy (1939) or Bertoin
and Pitman (1994).)
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cells. (This may be read off from results of Lévy (1939) or the
Bex ↔ B |br | path-transformation of Bertoin and Pitman (1994).)
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Reductions for k ≥ 3: contour cells
Consider the subtree spanned by our uniform points.

U1 U2U3

We will show that the lengths of the coloured intervals (the
contour intervals) have the same joint law as the lengths of the
Voronoi cells in the subtree. Since the mass attached to the
contour intervals yields a uniform split of unity, the same must be
true for the Voronoi cells.
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Reductions for k ≥ 3: contour cells
Consider the subtree spanned by our uniform points.

U1 U2U3

We will show that the lengths of the coloured intervals (the
contour intervals) have the same joint law as the lengths of the
Voronoi cells in the subtree. Since the mass attached to the
contour intervals yields a uniform split of unity, the same must
then be true for the Voronoi cells.



Reductions for k ≥ 3: scaling

Since we’re now only interested in showing that two vectors of
lengths have the same distribution, it makes no difference if we
rescale the whole tree.

So by the properties of the Brownian CRT, we may take the
edge-lengths in the subtree spanned by our uniform points to be
i.i.d. Exp(1).



k = 3: contour lengths ↔ Voronoi lengths

1

2

3

So again we have a bijection between the contour lengths and the
Voronoi lengths.
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So again we have a bijection between the contour lengths and the
Voronoi lengths.



k = 3: contour lengths ↔ Voronoi lengths

1

2

3a

a

a a

a
a

b
b

b
b

c
c

c c

So again we have a bijection between the contour lengths and the
Voronoi lengths.



General k ≥ 3: by induction

Suppose the result is true for all smaller k. We start with a uniform
binary plane leaf-labelled tree with i.i.d. Exp(1) edge-lengths.

Start from the shortest branch incident to a leaf. This branch is
uniform among all those incident to leaves. Call its leaf i and its
length `. Call the “opposite leaf” j .

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

`



General k ≥ 3: by induction

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

`
Ci−1

Ci

Ci+1

Cj

Cj+1

Voronoi lengths: (L0, L1, . . . , Lk−1)
Contour lengths: (C0,C1, . . . ,Ck−1).



General k ≥ 3: by induction
Now burn in from every leaf to remove length `:

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

`

By the memoryless property of the exponential, and the uniformity
of the shortest leaf, we split into two uniform binary leaf-labelled
trees with i.i.d. exponential edge-lengths, each with < k leaves.

So, by the induction hypothesis, the Voronoi and contour lengths
have the same laws in each of the subtrees.
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By the memoryless property of the exponential, and the uniformity
of the shortest leaf, we split into two uniform binary leaf-labelled
trees with i.i.d. exponential edge-lengths, each with < k leaves.

So, by the induction hypothesis, the Voronoi and contour lengths
have the same laws in each of the subtrees.



General k ≥ 3: by induction

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

I For each leaf other than j , we can get back the original
contour length Cr from r to r + 1 by simply adding 2` to the
contours in the smaller problems.

I For the contour from j to j + 1, we must add two contours
together and add 2`.



General k ≥ 3: by induction

i

i+ 1

i+ 2

j

j + 1

0 (mod k)

i− 1

j + 2

[. . .]

[. . .]

[. . .]

I For the Voronoi cells, add 2` to the new lengths of the cells to
get Lr , r 6= i .

I For the cell of i , add two Voronoi cells from the smaller trees,
plus 2`.

By induction, the vectors of lengths therefore have the same law.



5. THE BROWNIAN CRT AS A UNIQUE FIXED POINT

Joint work with Marie Albenque (École polytechnique)

[The Brownian continuum random tree as the unique solution to a fixed point equation, Electronic
Communications in Probability 20, 2015, paper no. 61, pp.1-14.]



Recursive distributional equations

By a recursive distributional equation (RDE) for a random variable
X taking values in some Polish space S, we mean an equation of
the form

X
d
= f ((ξi ,Xi )i≥1)

where X1,X2, . . . are i.i.d. copies of X , independent of the family
of random variables (ξi )i≥1 and f is a suitable S-valued function.



Recursive distributional equations

Example. Suppose that X1,X2, . . . ,Xn are i.i.d. real-valued r.v.’s
with finite variance such that

X1
d
=

X1 + X2 + . . .+ Xn√
n

.

Then X1 ∼ N(0, σ2) for some σ2 > 0.

The centred normal distributions are the fixed points of this RDE.
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Recap: recursive self-similarity
Consider picking three independent points U1,U2,U3 from the
Brownian CRT T according to µ. There is a unique branch-point
between these three points, and it splits the tree into three
subtrees, T1, T2, T3.

Write d1, d2, d3 and µ1, µ2, µ3 for the restrictions of d and µ to
each of these subtrees respectively. Let

∆1 = µ(T1),∆2 = µ(T2),∆3 = µ(T3).

Theorem. (Aldous (1993))

I We have (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2).

I The rescaled subtrees (T1, d1/
√

∆1, µ1/∆1),
(T2, d2/

√
∆2, µ2/∆2), (T3, d3/

√
∆3, µ3/∆3) are i.i.d.

Brownian CRTs, independent of (∆1,∆2,∆3).

I Ui and the original branch-point are independent samples
from µi/∆i in subtree i = 1, 2, 3.
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An operator on (laws of) CRTs

Let M be the set of probability measures on continuum trees.
Define an operator F :M→M as follows: for M ∈M,

I Sample independent trees (T1, d1, µ1), (T2, d2, µ3),
(T3, d3, µ3) having distribution M;

I For 1 ≤ i ≤ 3, sample Ui according to µi ;

I Independently sample (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2);

I Rescale to obtain (T1,∆
1/2
1 d1,∆1µ1), (T2,∆

1/2
2 d2,∆2µ2),

(T3,∆
1/2
3 d3,∆3µ3).

I Identify the vertices U1,U2,U3 in order to obtain a single
larger tree T with a marked branch-point B; the metrics and
measures naturally induce a metric d and a measure µ on T .

I Forget the branch-point in order to obtain (T , d , µ).

F(M) is the distribution of (T , d , µ).



The Brownian CRT as a unique fixed point

The previous theorem told us that the law of the Brownian CRT is
a fixed point of F.

Theorem. (Albenque & G. (2015))

I [Unique fixed point] Suppose that M is a law on continuum
trees which is a fixed point of F. Then there exists α > 0 such
that if (T , d , µ) ∼ M then (T , αd , µ) is a Brownian CRT.

I [Attractive] Suppose that M is a law on continuum trees such
that if (T , d , µ) ∼ M, given (T , d , µ), V1, V2 are sampled
independently from µ, then E [d(V1,V2)] exists and is equal
to π/2. Let Mn = FnM. Then Mn converges weakly to the
law of the Brownian CRT in the sense of the
Gromov-Prokhorov topology.
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Two-point distances

Lemma. Suppose that M ∈M is a fixed point of F. Let

(T , d , µ) ∼ M and, conditionally on (T , d , µ), let V1,V2
i.i.d.∼ µ.

Then there exists a constant α > 0 such that
αd(V1,V2) ∼ Rayleigh.



Two-point distances
(T , d , µ) ∼ M and V1,V2

i.i.d.∼ µ. Let L = d(V1,V2).

Since M is a fixed point of F, we can think of (T , d , µ) as having
been built out of three scaled independent copies, (T1, d1, µ1),
(T2, d2, µ2) and (T3, d3, µ3):

T1

T2 T3



Two-point distances

There are two possibilities (plus symmetries) for what happens to
the two points V1 and V2:
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Two-point distances

Let P1,P2,P3 denote the numbers of points falling in each of
T1,T2,T3 respectively.

Conditionally on (∆1,∆2,∆3), we have

(P1,P2,P3) ∼ Multinomial(2; ∆1,∆2,∆3).

Then

L
d
=
√

∆1L11{P1>0} +
√

∆2L21{P2>0} +
√

∆3L31{P3>0},

where L1, L2, L3 are i.i.d. copies of L, independent of (∆1,∆2,∆3)
and (P1,P2,P3).

This recursive distributional equation is an instance of the so-called
smoothing transform.
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The smoothing transform

Suppose that

X1
d
=

n∑

i=1

WiXi ,

where X1,X2, . . . ,Xn are i.i.d. non-negative r.v.’s, independent of
the non-negative r.v.’s W1,W2, . . . ,Wn which are such that

E
[
W γ

i

]
<∞

for all 1 ≤ i ≤ n and some γ > 1.



The smoothing transform, X1
d
=
∑n

i=1 WiXi

Let g(s) = log
(∑n

i=1 E
[
W s

i 1{Wi>0}
])

, s ≥ 0. Write F(µ) for the

distribution of
∑n

i=1 WiXi when X1,X2, . . . ,Xn
i.i.d.∼ µ.

Theorem. (Durrett & Liggett (1983))

1. Suppose that g has a unique zero α ∈ (0, 1]. If α = 1 and
g ′(1) < 0 then the RDE has a unique fixed point µ, up to a
deterministic scaling factor. Write µm for the fixed point with
mean m.

2. Suppose ν is any law on R+ such that
∫∞

0 xdν(x) = m. Then

Fk(ν)→ µm

as k →∞.

[R. Durrett & T. Liggett, Fixed points of the smoothing transformation, Zeitschrift für Warscheinlichkeitstheorie
und verwandte Gebiete 64, 1983, pp.275–301.]



Two-point distances

For any fixed point of F, the two-point distances satisfy

L
d
=
√

∆1L11{P1>0} +
√

∆2L21{P2>0} +
√

∆3L31{P3>0}.

We get g(s) = log
(

3(s+7)
(s+3)(s+5)

)
, which has its unique zero in s ≥ 0

at s = 1, with g ′(1) = −7/24 < 0. So the theorem of Durrett and
Liggett applies to give a unique distributional solution, up to a
deterministic constant.

Moreover, since the Rayleigh distribution must be a solution, and
E [Rayleigh] =

√
π
2 , the value α in the lemma is

√
π/2/E [L].
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Random finite-dimensional distributions

Theorem. Suppose that M ∈M is a fixed point of F. Then the
random finite-dimensional distributions of M are the same as those
of the Brownian CRT, up to a strictly positive scaling factor α.

Since the law of a continuum random tree is uniquely determined
by its random finite-dimensional distributions, this will be enough
to give the first part of our fixed point theorem.
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Three-point distances

There are three cases:
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Three-point distances

Case 1:

T1

T2 T3

V1

V2

V3

Accounting for symmetries, this event occurs with probability
6E [∆1∆2∆3] = 2/35.

Conditioning on its occurrence yields biased sizes (∆∗1,∆
∗
2,∆

∗
3) and

we get (
√

∆∗1L1,
√

∆∗2L2,
√

∆∗3L3) for the three distances.
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Three-point distances
Cases 2 and 3:

T1

T2 T3

V1

V2

V3

T1

T2 T3

V1

V2

V3

Here, in order to understand the distances, we need to figure out
what’s happening inside one of the level-1 subtrees. Note that, in
the two cases, the problem is really the same: we have three
uniform points within one of the subtrees, and want to find the
distances between them – it’s just that in case 2, one of the three
points is the branchpoint at the centre.

So we really have a new
copy of the original problem in this smaller subtree.
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Three-point distances: an example
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Three-point distances

It is always possible to split the paths between 3 points up into
sums of randomly scaled copies of the path between 2 uniform
points.

How deep do we need to go in order to find the decomposition? At
each level, we either get that the three points are in different
subtrees (which occurs with probability 2/35) or they are not and
we need to go one level deeper.

So the depth N to which we need to go satisfies
N ∼ Geometric(2/35) which is, in particular, almost surely finite.

But since we know the two-point distribution is Rayleigh, the
three-point distances must also be uniquely determined (and equal
to their distribution for the Brownian CRT).
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Three-point distances

It is always possible to split the paths between 3 points up into
sums of randomly scaled copies of the path between 2 uniform
points.

How deep do we need to go in order to find the decomposition? At
each level, we either get that the three points are in different
subtrees (which occurs with probability 2/35) or they are not and
we need to go one level deeper.

So the depth N to which we need to go satisfies
N ∼ Geometric(2/35) which is, in particular, almost surely finite.

But since we know the two-point distribution is Rayleigh, the
three-point distances must also be uniquely determined (and equal
to their distribution for the Brownian CRT).



Random finite-dimensional distributions

A similar inductive argument shows that the k-point distances may
always be expressed in terms of sums of randomly scaled two-point
distances, and so again must be uniquely fixed.

The attractiveness of the fixed point again makes use of Durrett
and Liggett’s theorem for the two-point distances, as well as a
slightly complicated coupling. �



6. UNIVERSALITY

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.



A universal scaling limit

Let Tn be the family tree of a Galton-Watson process with critical
offspring distribution of variance σ2 ∈ (0,∞), conditioned to have
total progeny n. Let dn be the graph distance on Tn and let µn be
the uniform measure on the vertices.

Theorem. (Aldous (1993), Le Gall (2005))
As n→∞,

(
Tn,

σ√
n
dn, µn

)
d→ (T2e , d2e , µ2e),

where convergence is in the Gromov-Hausdorff-Prokhorov sense.



Galton-Watson process

A Galton-Watson branching process (Zn)n≥0 describes the size of a
population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution p, where p(k) gives the
probability of k children, k ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Zn gives the number of individuals in generation n (in particular,
Z0 = 1).



Galton-Watson trees

A Galton-Watson tree is the family tree arising from a
Galton-Watson branching process. We will think of this as a
rooted ordered tree.

Consider the case where the offspring distribution p is critical i.e.

∞∑

k=1

kp(k) = 1.

This ensures, in particular, that the resulting tree, T , is finite.
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This ensures, in particular, that the resulting tree, T , is finite.



Uniform random trees

Proposition. Let T be a (rooted, ordered) Galton-Watson tree,
with Poisson(1) offspring distribution and total progeny N. Assign
the vertices labels uniformly at random from {1, 2, . . . ,N} and
then forget the ordering and the root. Let T̃ be the labelled tree
obtained. Then, conditional on N = n, T̃ has the same
distribution as Tn, a uniform random tree on n labelled vertices.



Other combinatorial trees in disguise

Let T be a Galton-Watson tree with offspring distribution p and
total progeny N.

I If p(k) = 2−k−1, k ≥ 0 (i.e. Geometric(1/2) offspring
distribution) then conditional on N = n, the tree is uniform on
the set of plane trees with n vertices.

I If p(0) = 1/2 and p(2) = 1/2 then, conditional on N = 2n,
the tree is uniform on the set of planted plane binary trees
with n leaves.



Two ways of encoding a tree

As we have seen, it is convenient to encode our trees in terms of
discrete functions which are easier to manipulate.

We will do this is two different ways:

I the height function

I the depth-first walk.



Height function

Suppose that our tree has n vertices. Let them be v0, v1, . . . , vn−1,
listed in depth-first order.

Then the height function is defined by

H(k) = dgr(v0, vk), 0 ≤ k ≤ n − 1.
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Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k



Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k



Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k



Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k



Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k



Height function

1 1 1 1 1 2 1 2 1

1 21 1

1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k



Height function

1

1 1 1 2

1 2 11 1 21 1 1

;

H(k)

3

2

1

0

−1
1 3 5 62 4

k



Height function
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We can easily recover the tree from its height function.



Depth-first walk

Let c(v) be the number of children of v , and that v0, v1, . . . , vn−1

is a list of the vertices in depth-first order.

Define

X (0) = 0,

X (i) =
i−1∑

j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi )− 1, 0 ≤ i ≤ n − 1.
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Proposition. For 0 ≤ i ≤ n − 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
.



The depth-first walk of a Galton-Watson process is a
stopped random walk

Recall that p is a distribution on Z+ such that
∑∞

k=1 kp(k) = 1.

Proposition. Let (R(k), k ≥ 0) be a random walk with initial
value 0 and step distribution ν(k) = p(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a Galton-Watson tree with offspring
distribution p and total progeny N. Then

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall (2005).]
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Galton-Watson trees conditioned on their total progeny

Suppose now that we have offspring variance
σ2 :=

∑∞
k=1(k − 1)2p(k) ∈ (0,∞).

The depth-first walk X is a random walk with step mean 0 and
variance σ2, stopped at the first time it hits −1. The underlying
random walk has a Brownian motion as its scaling limit, by
Donsker’s theorem.

The total progeny N is equal to inf{k ≥ 0 : X (k) = −1}. We want
to condition on the event {N = n}.

Standing assumption: P (N = n) > 0 for all n sufficiently large.
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Galton-Watson trees conditioned on their total progeny

Write (Xn(k), 0 ≤ k ≤ n) for the depth-first walk conditioned on
{N = n}. Then there is a conditional version of Donsker’s theorem.

Theorem. As n→∞,

1

σ
√
n

(Xn(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

[W.D. Kaigh, An invariance principle for random walk conditioned by a late return to zero, Annals of Probability
4, 1976, pp.115-121.]



Height process

Let (Hn(i), 0 ≤ i ≤ n) be the height process of a critical
Galton-Watson tree with offspring variance σ2 ∈ (0,∞),
conditioned to have total progeny n, so that

Hn(i) = #

{
0 ≤ j ≤ i − 1 : Xn(j) = min

j≤k≤i
Xn(k)

}
.

Theorem. As n→∞,

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2 (e(t), 0 ≤ t ≤ 1)) ,

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.



Convergence to the Brownian CRT

The convergence

(
Tn,

σ√
n
dn, µn

)
d→ (T2e , d2e , µ2e),

now follows by the same proof that we used in the case of binary
trees.



Universality

The universality class of the Brownian CRT is, in fact, even larger.
Some other examples of trees (and graphs!) with the Brownian
CRT as their scaling limit are:

I uniform unordered unlabelled rooted trees

I uniform unordered unlabelled unrooted trees

I critical multi-type Galton-Watson trees

I random trees with a prescribed degree sequence satisfying
certain conditions

I random dissections

I random graphs from subcritical classes.

A particularly useful tool: Markov branching trees.

[B. Haas & G. Miermont, Scaling limits of Markov branching trees with applications to Galton-Watson and
random unordered trees, Annals of Probability 40(6), 2012, pp.2589–2666.]



Applications

Universal scaling limits often show up in other places, and the
Brownian CRT is no exception. It appears, for example, as a
building block in the scaling limit of random planar maps: the
Brownian map is constructed as a (complicated) quotient of the
Brownian CRT.



What if the offspring variance isn’t finite?

Suppose instead that the offspring distribution is critical but in the
domain of attraction of an α-stable law, for α ∈ (1, 2). For
example,

p(k) ∼ Ck−1−α as k →∞
for C > 0.



The limiting depth-first walk
We now get

1

n1/α
(Xn(bntc), 0 ≤ t ≤ 1)

d→ (e(α)(t), 0 ≤ t ≤ 1),

where e(α) is an excursion of a spectrally positive α-stable Lévy
process.

6.2. The continuous setting: construction of the stable lamination

inf[s-✏,s] Z > Zs for some ✏ 2 (0, s], this means that s is a local minimum of Z. Since Zs = Zr1 ,
this contradicts (H1). We conclude that Zr > Zt for r 2 (s, t). This implies that s'Z t.
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Figure 6.6: Simulations of Xexc for respectively ✓ = 1.1, 1.5, 1.9.

Let (H0) be the property: {s 2 [0, 1]; �Zs 6= 0} is dense in [0, 1].

Proposition 6.2.10. Let 1 < ✓ < 2. With probability one, the normalized excursion Xexc of the ✓-stable
Lévy process satisfies the assumptions (H0), (H1), (H2), (H3) and (H4).

Proof. It is sufficient to prove that properties analogous to (H0) – (H4) hold for the Lévy process
X. The case of (H0) is clear. (H1) and (H2) are consequences of the (strong) Markov property of
X and the fact that 0 is regular for (-1, 0) with respect to X.

For the remaining properties, we will use the time-reversal property of X, which states that
if t > 0 and bX(t) is the process defined by bX(t)

s = Xt - X(t-s)- for 0 6 s < t and bX(t)
t = Xt,

then the two processes (Xs, 0 6 s 6 t) and (bX(t)
s , 0 6 s 6 t) have the same law. For (H3), the

time-reversal property of X and the regularity of 0 for (0,1) shows that a.s. for every jump
time s of X and every v 2 [0, s):

inf
r2[v,s]

Xr < Xs-.

We finally prove the analog of (H4) for X. By the time-reversal property of X, it is sufficient
to prove that if q > 0 is rational and T = inf{t > q; Xt > Sq} then XT > Sq > XT- almost surely.
This follows from the Markov property at time q and the fact that for any a > 0, X jumps a.s.
across a at its first passage time above a (see [15, Proposition VIII.8 (ii)]).

In the following, we always discard the set of zero probability where one of the properties
(H0) – (H4) does not hold.

Definition 6.2.11. The ✓-stable lamination is defined as the geodesic lamination L(Xexc), where
Xexc is the normalized excursion of the ✓-stable Lévy process.

See Figure 6.1 for some examples. The following proposition is immediate from the defini-
tion of the relation 'Xexc and Remark 6.2.8.

Proposition 6.2.12. Almost surely, for every choice of 0 6 ↵ < � 6 1 with (↵,�) 6= (0, 1), we have
↵'Xexc

� if and only if one of the following two mutually exclusive cases holds:
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[Picture by Igor Korchemski]



The limiting height process
It’s no longer the case that Hn has the same limit. We get

1

n1−1/α
(Hn(bntc), 0 ≤ t ≤ 1)

d→ (h(α)(t), 0 ≤ t ≤ 1)

for some much more complicated continuous excursion h(α).
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[Pictures by Igor Kortchemski]



The stable trees

Theorem. (Duquesne (2003)) Suppose that p(k) ∼ ck−1−α as
k →∞ for α ∈ (1, 2). Then as n→∞,

1

n1−1/α
Tn

d→ cαTα,

where Tα is the stable tree of parameter α and cα is a strictly
positive constant.

[T. Duquesne & J.-F. Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque 281,
2002.]

[T. Duquesne, A limit theorem for the contour process of conditioned Galton-Watson trees, Annals of
Probability 31(2), 2003, pp.996–1027.]



The stable trees

An important difference between the stable trees for α ∈ (1, 2) and
the Brownian CRT is that the Brownian CRT is binary. The stable
trees, on the other hand, have only branch-points of infinite degree.

[Pictures by Igor Kortchemski]



7. CONNECTED GRAPHS

Joint work with Louigi Addario-Berry (McGill) and Nicolas Broutin
(Sorbonne Université Paris).

[L. Addario-Berry, N. Broutin & C. Goldschmidt, The continuum limit of critical random graphs, Probability
Theory and Related Fields 152(3-4), 2012, pp.367–406.]

[L. Addario-Berry, N. Broutin & C. Goldschmidt, Critical random graphs: limiting constructions and distributional
properties, Electronic Journal of Probability 15, 2010, paper no. 25, pp.741–775.]



Uniform connected graph with fixed surplus

Fix k ≥ 0 and let G k
n be a uniform connected graph with vertices

labelled by 1, 2, . . . , n and n + k − 1 edges.

We say G k
n has surplus

k .

(For k = 0, this is just a uniform random tree on n vertices.)

Write dk
n for the graph distance and µkn for the uniform measure on

the vertices.

Theorem. (Addario-Berry, Broutin & G. (2012))
There exists a random compact metric measure space (Gk , dk , µk)
such that

1√
n

(G k
n , d

k
n , µ

k
n)

d→ (Gk , dk , µk)

as n→∞.

We can give an explicit description for the scaling limit.
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Scaling limit

Let e be a standard Brownian excursion. Define a random
excursion ẽk : [0, 1]→ R+ via a change of measure as follows. For
any suitable test-function f : C([0, 1],R+)→ R,

E
[
f (ẽk(t), 0 ≤ t ≤ 1)

]
=

E
[
f (e(t), 0 ≤ t ≤ 1)

(∫ 1
0 e(u)du

)k]

E
[(∫ 1

0 e(u)du
)k]



Scaling limit

Use 2ẽk to encode a continuum random tree (T̃ k , d̃k , µ̃k).

Each
mark picks out two points of the tree.



Scaling limit

Pick k independent uniform marks in the area under the curve.
Each mark picks out two points of the tree.

Identify them.



Scaling limit

Pick k independent uniform marks in the area under the curve.
Each mark picks out two points of the tree. Identify them.



Vertex identifications

Write πk for the usual projection [0, 1]→ T̃ k .

We have marks (x1, y1), . . . , (xk , yk) which are uniform in the area
under the excursion. For 1 ≤ i ≤ k, let

ti = inf{t ≥ xi : 2ẽk(t) = yi}.

Define another equivalence relation ∼ on T̃ k by declaring
πk(xi ) ∼ πk(ti ) and now let Gk = T̃ k/ ∼.

We have Gk = T̃ k/ ∼. Let dk be the metric and µk the measure
induced from d̃k and µ̃k respectively.



Scaling limit (Gk , dk , µk) for k = 4

[Picture by Nicolas Broutin]



Proof technique: depth-first exploration

For a tree of size n, we defined the depth-first walk by X (0) = 0
and, for 1 ≤ k ≤ n,

X (k) =
k−1∑

i=0

(c(vi )− 1),

where c(v) is the number of children of vertex v and
v0, v1, . . . , vn−1 are the vertices in contour order.

X tracks the number of vertices we have seen, but whose children
we have not yet explored.
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Depth-first exploration: an example
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Step 0: X (0) = 0
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Depth-first exploration: an example

1
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2 9

3

8

4 6

Step 10: X (9) = 0



Depth-first walk

3

2

1

0

−1
1 3 5 6 8 92 4 7

X(k)

k



Depth-first tree

In the depth-first exploration, we effectively explored this spanning
tree; the dashed surplus edges made no difference.

5 7 10

2 9

3

8

4 6

1

Call the spanning tree the depth-first tree associated with the
graph G , and write T (G ). X is also the depth-first walk of T .



Permitted edges

Look at things the other way round: for a given tree T , which
connected graphs G have depth-first tree T (G ) = T?

In other words, where can we put surplus edges so that they don’t
change T?

Call such edges permitted.



Depth-first walk and permitted edges
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Depth-first walk and permitted edges
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Depth-first walk and permitted edges
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1

Step 10: X (9) = 0.



Area
At step k ≥ 0, there are X (k) permitted edges. So the total
number is

a(T ) =
n−1∑

k=0

X (k).

We call this the area of T .
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Classifying graphs by depth-first tree

Let GT be the set of graphs G such that T (G ) = T . It follows
that |GT | = 2a(T ), since each permitted edge may either be
included or not.

Let T[n] be the set of trees with label-set [n] = {1, 2, . . . , n}. Then

{
GT : T ∈ T[n]

}

is a partition of the set of connected graphs on [n].
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Recipe for creating a uniform connected graph

Create a uniform connected graph G k
n as follows.

I Pick a random labelled tree T̃ k
n such that

P
(
T̃ k
m = T

)
∝
(
a(T )
k

)
, T ∈ T[n].

I Choose a uniform k-set from among the a(T̃ k
n ) permitted

edges and add them to the tree.
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I Pick a random labelled tree T̃ k
n such that

P
(
T̃ k
m = T

)
∝
(
a(T )
k

)
, T ∈ T[n].

I Choose a uniform k-set from among the a(T̃ k
n ) permitted

edges and add them to the tree.



Taking limits

We essentially need to show

I the tree T̃ k
n converges to a CRT coded by the excursion ẽk ;

I the locations of the surplus edges converge to the locations in
the limiting picture.



Taking limits for the tree

Write X̃ k
n for the depth-first walk associated with T̃ k

n . Then

a
(
T̃ k
n

)
=

n−1∑

i=0

X̃ k
n (i) =

∫ n

0
X̃ k
n (bsc)ds = n3/2

∫ 1

0
n−1/2X̃ k

n (bnuc)du,

by changing variable in the integral.

If Tn is a uniform random tree on [n] and Xn is its depth-first walk,
then

(n−1/2Xn(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1).

So by the continuous mapping theorem,

∫ 1

0
n−1/2Xn(bnuc)du d→

∫ 1

0
e(u)du.
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Taking limits for the tree

Use the change of measure to get from X̃ k
n to Xn: for any bounded

continuous function f ,

E
[
f
(
n−1/2X̃ k

n (bntc), 0 ≤ t ≤ 1
)]

=

E
[
f
(
n−1/2Xn(bntc), 0 ≤ t ≤ 1

)(n3/2
∫ 1

0 n−1/2Xn(bnuc)du
k

)]

E
[(

n3/2
∫ 1

0 n−1/2Xn(bnuc)du
k

)]

We have

n−3k/2

(
n3/2

∫ 1
0 n−1/2Xn(bnuc)du

k

)
d→

(∫ 1
0 e(s)ds

)k

k!
as n→∞.
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Taking limits for the tree

We also have uniform integrability, so we obtain

E
[
f
(
n−1/2X̃ k

n (nt), 0 ≤ t ≤ 1
)]
→

E
[
f (e)

(∫ 1
0 e(u)du

)k]

E
[(∫ 1

0 e(u)du
)k]

= E
[
f (ẽk)

]
.

This (after converting to the height process) entails that

1√
n
T̃ k
n

d→ T̃ k .
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Taking limits for the surplus edges

The permitted edges are in bijective correspondence with the
integer points under the graph of the depth-first walk.

Since we
pick a uniform k-set from among these points, in the limit what we
see is just k points picked independently and uniformly from the
area under the limit curve.
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Taking limits for the surplus edges
Surplus edges almost go to ancestors... In fact, they always go to
younger children of ancestors of the current vertex.
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Taking limits for the surplus edges

When we rescale, the distance between a vertex and one of its
children vanishes and so, in the limit, surplus “edges” do go to
ancestors of the current vertex (i.e. vertices on the path down to
the root).

The marks corresponding to the surplus edges, when rescaled,
straightforwardly converge to the required independent uniform
points.

Taking care over the details, this completes the proof.
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A limiting component can have quite a complicated cycle structure:

What more can we say about it?
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Cycle structure of a graph

Fix a connected graph G . The core C (G ) consists of the edges in
cycles and those joining the cycles. If G is a tree, C (G ) is empty.



Cycle structure: an example

Graph G
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Cycle structure of a graph

The kernel K (G ) is the multigraph which gives the “shape of the
core”:

take the vertices of the core of degree 3 or more; contract
the paths between them to a single edge.

By convention, the kernel of a tree or unicyclic component is
empty.
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Cycle structure: an example

Vertices of degree at least 3 in the core



Cycle structure: an example

Contract paths between them



Cycle structure: an example

Kernel K (G )

Note that the kernel has the same surplus as the original graph.
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Cycle structure of a real tree with vertex identifications

It still makes sense to talk about the degree of a point in a real
tree with vertex identifications.

It’s not hard to see that the core and kernel also make sense in the
real tree context as a path metric space and a discrete multigraph
respectively.

Cycle structure of a limit component

A limiting component can have quite a complicated cycle structure:

What more can we say about it?
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Law of the kernel

The kernel is distributed as a 3-regular multigraph sampled from
the configuration model, conditioned to be connected.

In other words, take the vertices of the kernel, attach 3 half-edges
to each, and take a uniformly random pairing of the half-edges to
create full edges. Condition the resulting multigraph to be
connected.

[S. Janson, D.E. Knuth, T.  Luczak & B. Pittel, The birth of the giant component, Random Structures and
Algorithms 4, 1993, pp.233–358]



Alternative construction of a limit component

Sample a kernel according to the 3-regular configuration model,
conditioned to be connected and to have surplus k . Such a kernel
always has 3k − 3 edges.



Alternative construction of a limit component
Sample independent rooted Brownian CRT’s T1, T2, . . . , T3k−3.



Alternative construction of a limit component
Sample a uniform point in each.



Alternative construction of a limit component
Randomly rescale so that the mass of Ti becomes Xi , where
(X1,X2, . . . ,X3k−3) ∼ Dir( 1

2 , . . . ,
1
2 ).



Alternative construction of a limit component

Glue the trees to the kernel.

This has the same distribution as (Gk , dk , µk).
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The core

We get core paths of lengths

√
Γ× Dir(1, 1, . . . , 1︸ ︷︷ ︸

3k−3

),

where the two factors are independent and

Γ ∼ Gamma((3k − 2)/2, 1/2).

(Compare to the random k-dimensional distributions in the
Brownian CRT, where we had

√
Γk with Γk ∼ Gamma(k , 1/2),

k ≥ 1.)
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Line-breaking construction

Starting from the core, it turns out we can give a line-breaking
construction for the rest of the limit component.

Take an inhomogeneous Poisson process of rate t at time t,
conditioned to have its first point at

√
Γ. Write C0 =

√
Γ;

subsequent points occur at times C1,C2, . . ..

Consider the line-segments [C0,C1), [C1,C2), . . . and proceed
inductively.

For i ≥ 0, attach [Ci ,Ci+1) at a random point chosen uniformly
over the existing structure.

Take the completion of the metric space obtained.
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8. PERSPECTIVES

[Picture by Evilbish (https://commons.wikimedia.org/wiki/File:Mam_Tor.jpg) ”Mam Tor”,
https://creativecommons.org/licenses/by/3.0/legalcode]

https://commons.wikimedia.org/wiki/File:Mam_Tor.jpg
https://creativecommons.org/licenses/by/3.0/legalcode


(a) Unicellular random maps

Let S be an arbitrary compact surface without boundary. Let Mn

be a uniform random map drawn on S with n vertices and a single
face. (Mn is unicellular.)

If S is the sphere then Mn is a uniform random plane tree, and has
the Brownian CRT as its scaling limit.

Note: this is a very different object to the Brownian surfaces,
which are the scaling limits of random maps with diverging
numbers of faces!
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Unicellular random maps

If S is a torus, we generically get:

This is an embedded version of a graph conditioned to have
“theta” kernel (which is one of the two possible kernels with 2
surplus edges). The scaling limit can then be constructed out of
three independent randomly rescaled Brownian CRT’s.



Unicellular random maps
On any surface, we get as a scaling limit (a copy of Gk for some k ,
conditioned to have one or a mixture of kernels).

(
Mn,

1√
n
dn, µn

)
d→ (M, d , µ).

M can always be constructed out of randomly rescaled
independent Brownian CRT’s.

Genus 2:

[Picture by Igor Kortchemski]



A generalisation of our Voronoi theorem
Theorem. (Addario-Berry, Angel, Chapuy, Fusy & G. (2018+))
For any compact surface S without boundary, the continuum
random unicellular map (M, d , µ) has uniform Voronoi
mass-partitions.

Genus 2, k = 5:

[Picture by Igor Kortchemski]



(b) The critical Erdős-Rényi random graph

Consider the Erdős-Rényi random graph G (n, p). There is a phase
transition for the emergence of a giant component at p = 1/n.
Aldous (1997) gives a description of the component sizes and
surpluses in the critical window p = 1/n + λn−4/3. Here, the
component sizes are on the order of n2/3 and the surpluses are
finite random variables.

Using the fact that components of the Erdős-Rényi random graph
are uniform on their vertex-sets with the number of edges
determined by the size of the vertex-set and the surplus, we can
obtain a metric-space scaling limit for the whole graph.

[D. Aldous, Brownian excursions, critical random graphs and the multiplicative coalescent, Annals of Probability
25, 1997, pp.812–854.]

[L. Addario-Berry, N. Broutin & C. Goldschmidt, The continuum limit of critical random graphs, Probability
Theory and Related Fields 152(3-4), 2012, pp.367–406.]



The critical Erdős-Rényi random graph

Let p = 1/n + λn−4/3 for fixed λ ∈ R. Let Cn
1 ,C

n
2 , . . . be the

components of G (n, p) listed in decreasing order of size, and let
dn

1 , d
n
2 , . . . be the graph distances and µn1, µ

n
2, . . . be the counting

measures on Cn
1 ,C

n
2 , . . . respectively.

Theorem. (Addario-Berry, Broutin & G. (2012))
As n→∞,

((
Cn

1 ,
dn

1

n1/3
,

1

n2/3
µn1

)
,

(
Cn

2 ,
dn

2

n1/3
,

1

n2/3
µn2

)
, . . .

)

d→ ((C1, d1, µ1), (C2, d2, µ2), . . .)

in an `4 version of GHP.

Here, the limit spaces are randomly scaled i.i.d. copies of
(Gk , dk , µk) with a certain random surplus k .



The critical Erdős-Rényi random graph

[Picture by Nicolas Broutin]



Universality

[S. Bhamidi, N. Broutin, S. Sen & X. Wang, Scaling limits of random graph models at criticality: Universality
and the basin of attraction of the Erdős-Rényi random graph, arXiv:1411.3417, 2014+.]

[S. Bhamidi & S. Sen, Geometry of the vacant set left by random walk on random graphs, Wright’s constants,
and critical random graphs with prescribed degrees, arXiv:1608.07153, 2016+.]

[S. Bhamidi, S. Sen & X. Wang, Continuum limit of inhomogenous random graphs, Probability Theory and
Related Fields, to appear; arXiv:1404.4118, 2014+.]

[S. Bhamidi, R. van der Hofstad & J. van Leeuwaarden, Scaling limits for critical inhomogeneous random graphs
with finite third moments, Electronic Journal of Probability 15, 2010, paper no. 54, pp.1682–1703.]

[S. Dhara, R. van der Hofstad, J. van Leeuwaarden & S. Sen, Critical window for the configuration model: finite
third moment degrees, arXiv:1605.02868, 2016+.]



(c) Critical random transposition random walk

Generate a random permutation of {1, 2, . . . , n} by composing
i.i.d. uniform random transpositions. This gives a Markov chain on
Sn called the random transposition random walk (RTRW).

There is a natural coupling with the Erdős-Rényi random graph
process, whereby we include an edge {i , j} in the graph iff we have
multiplied by the transposition (i , j). We can use our
understanding of the graph process to deduce properties of the
RTRW.

[O. Schramm, Compositions of random transpositions, Israel Journal of Mathematics 147, 2005, pp.221–243.]

[N. Berestycki, Emergence of giant cycles and slowdown transition in random transpositions and k-cycles,
Electronic Journal of Probability 16, paper no. 5, 2011, pp.152–173.]
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Critical random transposition random walk

Each component of the graph corresponds to at least one cycle of
the permutation. So, for example, there cannot be giant cycles
below the point of the phase transition.

Question. What are the lengths of the cycles of the RTRW walk
in the critical window?

There are many tree components, each of which corresponds to a
single cycle of the permutation. The other components all have
finite surplus. Given a graph component, notice that all
edge-arrival orders are equally likely.

So it is sufficient to consider what happens for a uniform random
connected graph on n vertices with surplus k and a uniform
ordering of the edges. [→ Dominic’s talk]
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Critical random transposition random walk

Example: n = 19, surplus 2, single permutation cycle.
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Within a single such component, the limiting cycle-lengths can
then be understood in terms of (Gk , dk , µk).



(d) The scaling limit of the minimum spanning tree of the
complete graph

Consider the complete graph on n vertices with independent
edge-weights which are uniformly distributed on [0, 1].
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The scaling limit of the minimum spanning tree of the
complete graph

Find the minimum spanning tree (MST).

to make everything sit in
the right place
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The scaling limit of the minimum spanning tree of the
complete graph

Question. Does the MST of the complete graph on n vertices
possess a scaling limit?

[Picture by Louigi Addario-Berry]



The scaling limit of the minimum spanning tree of the
complete graph

Let Mn be the MST of the complete graph on n vertices, let dn be
its graph distance, and µn its uniform measure.

Theorem. (Addario-Berry, Broutin, G. & Miermont (2017))
There exists a random compact measured real tree (M, d , µ) such
that (

Mn,
dn
n1/3

, µn

)
d→ (M, d , µ)

as n→∞, in GHP. M is binary and has Minkowski dimension 3
almost surely.

The key to understanding this result is a connection between the
Erdős-Rényi random graph and Kruskal’s algorithm for
constructing the MST.

[L. Addario-Berry, N. Broutin, C. Goldschmidt & G. Miermont, The scaling limit of the minimum-spanning tree of
the complete graph, Annals of Probability 45(5), 2017, pp.3075–3144.]



(e) The stable trees

Recall that the α-stable tree, for α ∈ (1, 2), is the scaling limit of a
Galton-Watson tree with critical offspring distribution in the
domain of attraction of an α-stable law.

There is an analogue of Rémy’s algorithm due to Marchal (2008)
and there is also a (more complicated) line-breaking construction.

[P. Marchal, A note on the fragmentation of a stable tree, Fifth Colloquium on Mathematics and Computer
Science (DMTCS), 2008, pp.489–500.]

[C. Goldschmidt & B. Haas, A line-breaking construction of the stable trees, Electronic Journal of Probability 20,
2015, Paper no. 16, pp.1–24.]



The stable graphs

[Picture by Delphin Sénizergues]



The stable graphs

The natural graph model whose scaling limit involves the stable
trees is the configuration model with i.i.d. power-law degrees.
Work in progress...

[G. Conchon-Kerjan & C. Goldschmidt, The stable graph: the metric space scaling limit of a critical random
graph with i.i.d. power-law degrees, in preparation]

[C. Goldschmidt, B. Haas and D. Sénizergues, Stable graphs: distributions and line-breaking construction, in
preparation.]

[A. Joseph, The component sizes of a critical random graph with given degree sequence, Annals of Applied
Probability 24(6), 2014, pp.2560–2594.]

Related work:
[S. Bhamidi, S. Dhara, R. van der Hofstad & S. Sen, Universality for critical heavy-tailed network models: metric
structure of maximal components, arXiv:1703.07145, 2017.]

[S. Bhamidi, R. van der Hofstad & J. van Leeuwaarden, Novel scaling limits for critical inhomogeneous random
graphs, Annals of Probabilty 40(6), 2012, pp.2299–2361.]

[S. Dhara, R. van der Hofstad, J. van Leeuwaarden & S. Sen, Heavy-tailed configuration models at criticality,
arXiv:1612.00650, 2016+.]



Thank you!


