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1. WHAT IS A SCALING LIMIT?



Scaling limits

Suppose we have a sequence of random objects R1,R2, . . . and we
can find a sequence α1, α2, . . . such that

αnRn
d→ R

as n→∞ for some limiting random variable R. Then we call R
the scaling limit of the sequence (Rn, n ≥ 1).

Central limit theorem. Suppose that Z1,Z2, . . . are independent
and identically distributed random variables with mean 0 and
variance 0 < σ2 <∞. Then as n→∞,

1

σ
√
n

n∑
i=1

Zi
d→ X ,

where X ∼ N(0, 1).
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Universality

This scaling limit is universal, in that it doesn’t depend on the
precise details of the distribution of Z1,Z2, . . . (as long as the
distribution has finite variance).

(Aside: what happens if var(Z1) =∞? Or even if E [|Z1|] =∞?)
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Another (related) scaling limit
Suppose that Z1,Z2, . . . are independent and identically distributed
random variables with mean 0 and variance σ2. Let X (0) = 0 and
X (k) =

∑k
i=1 Zi . Then (X (k), k ≥ 0) is a random walk.

Donsker’s theorem. As n→∞,

1

σ
√
n

(X (bntc), t ≥ 0)
d→ (W (t), t ≥ 0),

where (W (t), t ≥ 0) is a standard Brownian motion.

[Picture by Louigi Addario-Berry]
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Convergence in distribution

The convergence in distribution in the CLT means that

P

(
1

σ
√
n

n∑
i=1

Zi ≤ x

)
→ Φ(x)

as n→∞ for all x ∈ R.

However, we are going to want to deal with random objects which
are not real-valued; for example, the random walk is a
function-valued object. In this case, an equivalent definition
generalises better:

E

[
f

(
1

σ
√
n

n∑
i=1

Zi

)]
→ E [f (X )]

for all functions f : R→ R which are bounded and continuous.
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Convergence in distribution

So Donsker’s theorem means that for all bounded continuous
real-valued functions f ,

E
[
f

(
1

σ
√
n

(X (bntc), t ≥ 0)

)]
→ E [f (W (t), t ≥ 0)] .

(Here, f is continuous for the metric on càdlàg functions D(R+,R)
given by

d(x , y) =
∞∑
k=1

2−k
(

sup
t∈[0,k]

|x(t)− y(t)| ∧ 1

)
,

yielding uniform convergence on compact time-intervals).
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2. THE UNIFORM RANDOM TREE

Key references:

David Aldous, The continuum random tree I,
D. Aldous, Annals of Probability 19 (1991) pp.1-28.

David Aldous, The continuum random tree II. An overview,
in Stochastic analysis (Durham 1990), vol. 167 of London
Mathematical Society Lecture Note Series (1991) pp.23-70.



Uniform random trees

We start with perhaps the simplest model of a random tree.

Let Tn be the set of unordered trees on n vertices labelled by
[n] := {1, 2, . . . , n}.

For example, T3 consists of the trees
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Uniform random trees

Unordered means that these trees are all the same:
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but this one is different:
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Uniform random trees

Cayley’s formula: |Tn| = nn−2.

Write Tn for a tree chosen uniformly from Tn.
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What happens as n grows?

It’s useful to have an algorithm for building Tn.
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The Aldous-Broder algorithm

Take the complete graph on n vertices.

The Aldous-Broder algorithm

1

2

3

4

5

6

I Pick a uniform vertex to be the starting point.

I Run a simple random walk (Sk)k≥0 on the graph (i.e. at each
step, move to a neighbour chosen uniformly at random).

I Anytime the walk visits a new vertex, keep the edge along
which it was reached.

I Stop when all vertices have been visited.

The resulting tree is uniformly distributed on Tn.
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The Aldous-Broder algorithm: proof

The random walk (Sk)k≥0 has a uniform stationary distribution,
and is reversible, so that it makes sense to talk about a stationary
random walk (Sk)k∈Z.

The dynamics of the random walk give rise to Markovian dynamics
on T•n, the set of trees labelled by [n] with a distinguished root.

Why? Let τk be the tree constructed from the random walk
started at time k , rooted at Sk .

τk depends on Sk ,Sk+1, . . . through first hitting times of vertices.
These can only occur later if we start from a later time. So, given
τk , τk+1 is independent of τk−1, τk−2, . . ..
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The Aldous-Broder algorithm: proof

Since the random walk is stationary, the tree must be also.

It remains to show that the stationary distribution π for (τk)k∈Z is
uniform on T•n. It turns out to be easier to work with the
time-reversed chain.

Consider the transition probabilities q(τ, τ ′) for the time-reversed
chain (which must have the same stationary distribution).
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The Aldous-Broder algorithm: proof

τ0
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The Aldous-Broder algorithm: proof
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S−1 = S2 = S6

1

2

3

4

5

6



The Aldous-Broder algorithm: proof

Taking one step backwards in time (say from time 0 to time −1)
inserts an edge from S0 to S−1 in τ0. This creates a cycle, from
which we must delete the unique other edge in that cycle which
connects to S−1 in order to obtain τ−1.

There are n − 1 different places that S0 might move to and so
n − 1 possible rooted trees we can reach going backwards in time,
each equally likely.

So for fixed τ , q(τ, τ ′) = 0 or 1/(n − 1).



The Aldous-Broder algorithm: proof

Given τ−1, how many possibilities are there for τ0? S0 must be one
of the neighbours of S−1. The possible values for τ0 are generated
by adding one the n − 1 possible edges from S−1 to a different
vertex. This creates a cycle, from which we remove the edge from
S−1 to its neighbour in τ−1, which is S0.

So there are n − 1 possible trees τ0 from which we can reach τ−1
going backwards in time. These moves all must have probability
1/(n − 1).

So for fixed τ ′, q(τ, τ ′) = 0 or 1/(n − 1).



The Aldous-Broder algorithm: proof

So the matrix Q = (q(τ, τ ′)) is doubly stochastic and so must
have uniform stationary distribution on the set of rooted trees.

It’s straightforward to show that the chain is irreducible and since
the root is uniformly distributed, it follows that τ0 is a uniform
random rooted tree. The result follows from forgetting the root.

Remark. There is a more general version of this result, for
weighted trees.
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A variant due to Aldous

“Do the labelling as we go, then relabel at the end.”

Let U2, . . . ,Un be uniform on [n].

1. Start from the vertex labelled 1.

2. For 2 ≤ i ≤ n, connect vertex i to vertex Vi = min{Ui , i − 1}.
3. Take a uniform random permutation of the labels.
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Vi =

{
i − 1 with probability 1− i−2

n−1
uniform on {1, 2, . . . , i − 2} otherwise.

3. Take a uniform random permutation of the labels.
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Aldous’ algorithm

Consider n = 10.

1



Aldous’ algorithm

V2 = 1 with probability 1

21



Aldous’ algorithm

V3 =

{
1 with probability 1/9

2 with probability 8/9

1 2 3



Aldous’ algorithm

V4 =

{
j with probability 1/9, 1 ≤ j ≤ 2

3 with probability 7/9

41 2 3



Aldous’ algorithm

V5 =

{
j with probability 1/9, 1 ≤ j ≤ 3

4 with probability 6/9

321 4

5



Aldous’ algorithm

V6 =

{
j with probability 1/9, 1 ≤ j ≤ 4

5 with probability 5/9
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Aldous’ algorithm

V7 =

{
j with probability 1/9, 1 ≤ j ≤ 5
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Aldous’ algorithm

V8 =

{
j with probability 1/9, 1 ≤ j ≤ 6
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Aldous’ algorithm

V9 =

{
j with probability 1/9, 1 ≤ j ≤ 7

8 with probability 2/9
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Aldous’ algorithm

V10 =

{
j with probability 1/9, 1 ≤ j ≤ 8

9 with probability 1/9
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Aldous’ algorithm

Permute.
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9
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2

1 4

56
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Typical distances
Consider the tree before we permute. Let

Cn
1 = inf{i ≥ 2 : Vi 6= i − 1}.

We can use Cn
1 to give us an idea of typical distances in the tree.

In our example, C 10
1 = 5:
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Typical distances

For 2 ≤ i ≤ n, connect vertex i to vertex Vi such that

Vi =

{
i − 1 with probability 1− i−2

n−1
uniform on {1, 2, . . . , i − 2} otherwise.

Cn
1 = inf{i ≥ 2 : Vi 6= i − 1}

Proposition. n−1/2Cn
1 converges in distribution as n→∞. I



Typical distances

Once we have built this first stick of consecutive labels, we pick a
uniform starting point along that stick and attach a new stick with
a random length, and so on.

Imagine now that edges in the tree have length 1. The proposition
suggests that rescaling edge-lengths by n−1/2 will give some sort of
limit for the whole tree. The limiting version of the algorithm is as
follows.
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Line-breaking procedure

Let C1,C2, . . . be the points of an inhomogeneous Poisson process
on R+ of intensity t at t. Equivalently, take E1,E2, . . . to be i.i.d.

Exponential(1) and set Ck =
√

2
∑k

i=1 Ek .

...
6

C
5

C
3

C
4

C
2

C
1

C

 

0

(Note that
P (C1 > x) = exp

(
−
∫ x
0 tdt

)
= exp(−x2/2) = P

(
E1 > x2/2

)
.)
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Line-breaking procedure

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively. For i ≥ 1, sample Bi

uniformly from [0,Ci ) and attach [Ci ,Ci+1) at the corresponding
point of the tree constructed so far (this is a point chosen
uniformly at random over the existing tree).
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Line-breaking procedure

Start from [0,C1) and proceed inductively.

For i ≥ 1, sample Bi uniformly from [0,Ci ) and attach [Ci ,Ci+1)
at the corresponding point of the tree constructed so far (this is a
point chosen uniformly at random over the existing tree).

Take the union of all the branches, thought of as a metric space,
and then take its completion.

This procedure gives (slightly informally expressed) definition of
Aldous’ Brownian continuum random tree (CRT) which will be the
key object in this minicourse.
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A first look at the Brownian CRT

[Picture by Igor Kortchemski]



The scaling limit of the uniform random tree

Theorem. (Aldous (1991)) As n→∞,

1√
n
Tn

d→ T ,

where T is the Brownian CRT.



A very brief idea of a proof

Recall that we had

Cn
1 = inf{i ≥ 2 : Vi 6= i − 1}.

More generally, for k ≥ 1, define Cn
k to be the kth element of the

set {i ≥ 2 : Vi 6= i − 1} i.e. the kth cut-time.

Let Bn
k = VCn

k
, the kth branch-point.

Then the heart of the proof is the fact that(
1√
n

(Cn
1 ,B

n
1 ),

1√
n

(Cn
2 ,B

n
2 ), . . .

)
d→ ((C1,B1), (C2,B2), . . .)

as n→∞.



The scaling limit of the uniform random tree

Theorem. (Aldous (1991)) As n→∞,

1√
n
Tn

d→ T ,

where T is the Brownian CRT.

Of course, before we can really make sense of this theorem, we
need to know what sort of objects we’re really dealing with, and
what is the topology in which the convergence occurs.

We will, in fact, sketch a proof of a more general result.



The scaling limit of the uniform random tree

Theorem. (Aldous (1991)) As n→∞,

1√
n
Tn

d→ T ,

where T is the Brownian CRT.

Of course, before we can really make sense of this theorem, we
need to know what sort of objects we’re really dealing with, and
what is the topology in which the convergence occurs.

We will, in fact, sketch a proof of a more general result.



2. DISCRETE TREES

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.



Ordered trees

It turns out to be helpful to work with rooted, ordered trees (also
called plane trees).

This is not too much of a restriction if what we’re really interested
in is labelled unordered trees, since it’s always possible to obtain a
rooted ordered tree from a labelled one: for example, root at the
vertex labelled 1 and order the children of a vertex from left to
right in increasing order of label.
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Ordered trees
We will use the Ulam-Harris labelling. Let N = {1, 2, 3, . . .} and

U =
∞⋃
n=0

Nn,

where N0 = {∅}.

An element u ∈ U is a sequence
u = (u1, u2, . . . , un) of natural numbers representing a point in an
infinitary tree:

3,2
3,1

2,2
2,1

1,2
1,1

1

;

32

Thus the label of a vertex indicates its genealogy.
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Ordered trees

Write |u| = n for the generation of u.

u has parent p(u) = (u1, u2, . . . , un−1).

u has children u1, u2, . . . where, in general,
uv = (u1, u2, . . . , un, v1, v2, . . . , vm) is the concatenation of
sequences u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vm).

We root the tree at ∅.



Ordered trees

A (finite) rooted, ordered tree t is a finite subset of U such that

I ∅ ∈ t

I for all u ∈ t such that u 6= ∅, p(u) ∈ t

I for all u ∈ t, there exists c(u) ∈ Z+ such that for j ∈ N,
uj ∈ t iff 1 ≤ j ≤ c(u).

c(u) is the number of children of u in t.

Write #(t) for the size (number of vertices) of t and note that

#(t) = 1 +
∑
u∈t

c(u).

Write T for the set of all rooted ordered trees.
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Two ways of encoding a tree

Consider a rooted ordered tree t ∈ T.

It will be convenient to encode this tree in terms of discrete
functions which are easier to manipulate.

We will do this is two different ways:

I the height function

I the depth-first walk.
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Height function

Suppose that t has n vertices. Let them be v0, v1, . . . , vn−1, listed
in lexicographical order.

Then the height function is defined by

H(k) = |vk |, 0 ≤ k ≤ n − 1.
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We can recover the tree from its height function.



Depth-first walk

Recall that c(v) is the number of children of v , and that
v0, v1, . . . , vn−1 is a list of the vertices of t in lexicographical order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi )− 1, 0 ≤ i ≤ n − 1.



Depth-first walk

Recall that c(v) is the number of children of v , and that
v0, v1, . . . , vn−1 is a list of the vertices of t in lexicographical order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi )− 1, 0 ≤ i ≤ n − 1.



Depth-first walk

Recall that c(v) is the number of children of v , and that
v0, v1, . . . , vn−1 is a list of the vertices of t in lexicographical order.

Define

X (0) = 0,

X (i) =
i−1∑
j=0

(c(vj)− 1), for 1 ≤ i ≤ n.

In other words,

X (i + 1) = X (i) + c(vi )− 1, 0 ≤ i ≤ n − 1.



Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1

1 1 1 2

1 2 11 1 21 1 1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1

1 1 1 2

1 2 11 1 21 1 1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2



Depth-first walk

1 1 1 1 1 2 1 2 1

1 21 1

1

;

3

7

X(k)

k

42 6531
−1

0

1

2

It is less easy to see that the depth-first walk also encodes the tree.

Proposition. For 0 ≤ i ≤ n − 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
. I



Random discrete trees

From a probabilistic perspective, a natural probability measure on
trees is that generated by the usual Galton-Watson branching
process. We will see in a moment that this is a good thing to do
from a combinatorial perspective too!



Galton-Watson process

A Galton-Watson branching process (Zn)n≥0 describes the size of a
population which evolves as follows:

I Start with a single individual.

I This individual has a number of children distributed according
to the offspring distribution p, where p(k) gives the
probability of k children, k ≥ 0.

I Each child reproduces as an independent copy of the original
individual.

Zn gives the number of individuals in generation n (in particular,
Z0 = 1).
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Galton-Watson trees

A Galton-Watson tree is the family tree arising from a
Galton-Watson branching process.

We will think of this as a
rooted ordered tree.

We will consider the case where the offspring distribution p is
critical i.e. ∞∑

k=1

kp(k) = 1.

This ensures, in particular, that the resulting tree, T , is finite.

Since the tree is random, we will refer to the height process rather
than function.
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Uniform random trees revisited

Proposition. Let T be a (rooted, ordered) Galton-Watson tree,
with Poisson(1) offspring distribution and total progeny N.

Assign
the vertices labels uniformly at random from {1, 2, . . . ,N} and
then forget the ordering and the root. Let T̃ be the labelled tree
obtained. Then, conditional on N = n, T̃ has the same
distribution as Tn, a uniform random tree on n vertices. I
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Other combinatorial trees (in disguise)

Let T be a Galton-Watson tree with offspring distribution p and
total progeny N.

I If p(k) = 2−k−1, k ≥ 0 (i.e. Geometric(1/2) offspring
distribution) then conditional on N = n, the tree is uniform on
the set of ordered trees with n vertices.

I If p(0) = 1/2 and p(2) = 1/2 then, conditional on N = n (for
n odd), the tree is uniform on the set of (complete) binary
trees.
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The depth-first walk of a Galton-Watson process is a
stopped random walk

Recall that p is a distribution on Z+ such that
∑∞

k=1 kp(k) = 1.

Proposition. Let (R(k), k ≥ 0) be a random walk with initial
value 0 and step distribution ν(k) = p(k + 1), k ≥ −1. Set

M = inf{k ≥ 0 : R(k) = −1}.

Now suppose that T is a Galton-Watson tree with offspring
distribution p and total progeny N. Then

(X (k), 0 ≤ k ≤ N)
d
= (R(k), 0 ≤ k ≤ M).

[Careful proof: see Le Gall.]
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Galton-Watson trees conditioned on their total progeny:
finite variance case

Suppose now that we have offspring variance
σ2 :=

∑∞
k=1(k − 1)2p(k) ∈ (0,∞).

The depth-first walk X is a random walk with step mean 0 and
variance σ2, stopped at the first time it hits −1. The underlying
random walk has a Brownian motion as its scaling limit, by
Donsker’s theorem.

The total progeny N is equal to inf{k ≥ 0 : X (k) = −1}. We want
to condition on the event {N = n}.

Standing assumption: P (N = n) > 0 for all n sufficiently large.
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Galton-Watson trees conditioned on their total progeny:
finite variance case

Write (X n(k), 0 ≤ k ≤ n) for the depth-first walk conditioned on
{N = n}. Then there is a conditional version of Donsker’s theorem:

Theorem. As n→∞,

1

σ
√
n

(X n(bntc), 0 ≤ t ≤ 1)
d→ (e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

[See W.D. Kaigh, An invariance principle for random walk
conditioned by a late return to zero, Annals of Probability 4
(1976) pp.115-121.]



Brownian excursion
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[Picture by Igor Kortchemski]



Brownian excursion
There are several (equivalent) definitions of this process.

For example, let W be a standard Brownian motion.

Fix s > 0. Let

gs = sup{t ≤ s : W (t) = 0} and ds = inf{t ≥ s : W (t) = 0}.
Note that W (s) 6= 0 with probability 1, so that
P (gs < s < ds) = 1. Then for t ∈ [0, 1] define

e(t) =
|W (gs + t(ds − gs))|√

ds − gs
.

It turns out that the distribution of (e(t), 0 ≤ t ≤ 1) is
independent of s.
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Convergence of the coding processes

Let (Hn(i), 0 ≤ i ≤ n) be the height process of a critical
Galton-Watson tree with offspring variance σ2 ∈ (0,∞),
conditioned to have total progeny n.

Theorem. As n→∞,

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2 (e(t), 0 ≤ t ≤ 1)) ,

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.
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Actually, I’m going to cheat...

Consider the unconditioned random walk (X (k), k ≥ 0) (without
stopping) and, as usual, let the height process be H, where
H(0) = 0 and, for i ≥ 1,

H(i) = #

{
0 ≤ j ≤ i − 1 : X (j) = min

j≤k≤i
X (k)

}
.

(A little thought shows that this is the height process of a
sequence of i.i.d. unconditioned Galton-Watson trees.)

We have
1

σ
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n

(X (bntc), t ≥ 0)
d→ (W (t), t ≥ 0)

as n→∞.
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An unconditioned result

Proposition. As n→∞,

σ√
n

(H(bntc), t ≥ 0)→ 2

(
W (t)− min

0≤s≤t
W (s), t ≥ 0

)
in the sense of finite-dimensional distributions, i.e. if
0 ≤ t1 ≤ t2 ≤ · · · ≤ tm then

σ√
n

(H(bnt1c), . . . ,H(bntmc))

d→ 2

(
W (t1)− min

0≤s≤t1
W (s), . . . ,W (tm)− min

0≤s≤tm
W (s)

)
. I

[Approach due to Marckert & Mokkadem, The depth first
processes of Galton-Watson trees converge to the same
Brownian excursion, Annals of Probability 31 (2003),
pp.1655-1678]



Lecture 2



Aim: the scaling limit of a critical Galton-Watson tree with
finite offspring variance

Theorem. (Aldous (1993), Le Gall (2005)) Let Tn be a
Galton-Watson tree with critical offspring distribution and finite
offspring variance σ2 ∈ (0,∞), conditioned to have total progeny
n. Then as n→∞,

σ√
n
Tn

d→ T ,

where T is the Brownian CRT.
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Conditioned version

Let (Hn(i), 0 ≤ i ≤ n) be the height process of a critical
Galton-Watson tree with offspring variance σ2 ∈ (0,∞),
conditioned to have total progeny n.

Theorem. As n→∞,

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2 (e(t), 0 ≤ t ≤ 1)) ,

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.



3. R-TREES

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.



Continuous trees

We want a continuous notion of a tree. We don’t really care about
vertices: the important aspects are the shape of the tree and the
distances. So it makes sense to think in terms of metric spaces.



R-trees

Definition. A compact metric space (T , d) is an R-tree if for all
x , y ∈ T ,

I There exists a unique shortest path [[x , y ]] from x to y (of
length d(x , y)).

(There is a unique isometric map fx ,y from
[0, d(x , y)] into T such that f (0) = x and f (d(x , y)) = y .
We write fx ,y ([0, d(x , y)]) = [[x , y ]].)

I The only non-self-intersecting path from x to y is [[x , y ]].

(If
g is a continuous injective map from [0, 1] into T , such that
g(0) = x and g(1) = y , then g([0, 1]) = [[x , y ]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that v /∈ [[ρ,w ]] for any w 6= v .
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g is a continuous injective map from [0, 1] into T , such that
g(0) = x and g(1) = y , then g([0, 1]) = [[x , y ]].)

An element v ∈ T is called a vertex.
A rooted R-tree has a distinguished vertex ρ called the root.
The height of a vertex v is its distance d(ρ, v) from the root.
A leaf is a vertex v such that v /∈ [[ρ,w ]] for any w 6= v .
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Coding R-trees
Let h : [0, 1]→ R+ be an excursion, that is a continuous function
such that h(0) = h(1) = 0 and h(x) > 0 for x ∈ (0, 1). h will play
the role of the height process for an R-tree.



Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together...
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Coding R-trees

Now put glue on the underside of the excursion and push the two
sides together to get a tree.



Coding R-trees

Formally, use h to define a distance:

dh(x , y) = h(x) + h(y)− 2 inf
x∧y≤z≤x∨y

h(z).



Coding R-trees

Let y ∼ y ′ if dh(y , y ′) = 0 and take the quotient Th = [0, 1]/ ∼.



Coding R-trees

Theorem. For any excursion h, (Th, dh) is an R-tree.

[Proof: see Le Gall.]

We will always take the equivalence class of 0 to be the root, ρ.

Definition. The Brownian continuum random tree is (T2e , d2e),
where e is a standard Brownian excursion.
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Theorem. For any excursion h, (Th, dh) is an R-tree.
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Definition. The Brownian continuum random tree is (T2e , d2e),
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The Brownian continuum random tree T2e

[Picture by Igor Kortchemski]



Discrete trees as metric spaces
We want to think of (Tn, n ≥ 1) as metric spaces.

The vertices of Tn come equipped with a natural metric: the graph
distance dgr.

1

2
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98 112
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. . .

We sometimes write aTn for the metric space (Tn, adgr) given by
the vertices of Tn with the graph distance scaled by a.



Convergence in distribution

What is the the sense of the convergence in distribution

(Tn, σdgr/
√
n)

d→ (T2e , d2e) as n→∞?



Convergence in distribution

Consider the space, M, of compact metric spaces up to isometry.
We’ll define a metric dGH on M in a moment. Then

(Tn, σdgr/
√
n)

d→ (T2e , d2e) as n→∞

will mean that for any bounded function f : M→ R which is
continuous with respect to dGH, we have

E
[
f
(
(Tn, σdgr/

√
n)
)]
→ E [f ((T2e , d2e))] as n→∞.



Measuring the distance between compact metric spaces
Suppose that (X , d) and (X ′, d ′) are compact metric spaces.

A correspondence R is a subset of X × X ′ such that for every
x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.
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x ∈ X , there exists x ′ ∈ X ′ with (x , x ′) ∈ R and vice versa.



Measuring the distance between compact metric spaces

The distortion of R is

dis(R) = sup{|d(x , y)− d ′(x ′, y ′)| : (x , x ′), (y , y ′) ∈ R}.



Measuring the distance between compact metric spaces

The Gromov-Hausdorff distance between (X , d) and (X ′, d ′) is

dGH((X , d), (X ′, d ′)) =
1

2
inf
R

dis(R).

(There exists an equivalent definition which more closely resembles
that of the usual Hausdorff distance, but this one is easier to use.)

Recall that M is the space of compact metric spaces, up to
isometry.

Theorem. (M, dGH) is a complete separable metric space.

[Proof: see Evans, Pitman and Winter, Rayleigh processes, real
trees, and root growth with re-grafting, Probability Theory and
Related Fields 134 (2006) pp.81-126.]
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Convergence to the Brownian CRT

Let Tn be our Galton-Watson tree conditioned to have size n.

Write Hn for its height process and recall that

σ√
n

(Hn(bntc), 0 ≤ t ≤ 1)
d→ 2(e(t), 0 ≤ t ≤ 1),

where (e(t), 0 ≤ t ≤ 1) is a standard Brownian excursion.

Theorem. (Aldous (1993), Le Gall (2005)) As n→∞,(
Tn,

σ√
n
dgr

)
d→ (T2e , d2e),

where convergence is in the Gromov-Hausdorff sense. I

[Approach due to Grégory Miermont.]
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Universality

We started with the uniform random labelled tree, and then
generalised to conditioned critical Galton-Watson trees with finite
offspring variance. So the Brownian CRT is the universal scaling
limit of a whole class of trees. In fact, this class is much larger!



Universality

Some other examples of trees (and graphs!) with the Brownian
CRT as their scaling limit are:

I uniform unordered unlabelled rooted trees

I uniform unordered unlabelled unrooted trees

I critical multi-type Galton-Watson trees

I random trees with a prescribed degree sequence satisfying
certain conditions

I random dissections

I random graphs from subcritical classes.

See Benedikt Stufler’s talk on Thursday for more details.



Applications

Universal scaling limits often show up in other places, and the
Brownian CRT is no exception. It appears, for example, in

I the scaling limit of random planar maps [Le Gall, Miermont];

I the scaling limit of the critical Erdős-Rényi random graph
[Addario-Berry, Broutin, G. (2010)].



4. THE BROWNIAN CONTINUUM
RANDOM TREE

Key references:

David Aldous, The continuum random tree III,
Annals of Probability 21 (1993) pp.248-289.

Jim Pitman, Combinatorial stochastic processes,
Lecture notes in mathematics 1875, Springer-Verlag, Berlin
(2006).



What is a continuum random tree?!

A continuum tree is a triple (T , d , µ) where (T , d) is an R-tree
with leaves L(T ) and µ is a Borel probability measure on T which
is non-atomic and satisfies

I µ(L(T )) = 1;

I for every v ∈ T of degree k ≥ 2, let T1, . . . , Tk be the
connected components of T \ {v}. Then µ(Ti ) > 0 for all
1 ≤ i ≤ k .



What is a continuum random tree?!

We can endow the set of continuum trees with a generalisation of
the Gromov-Hausdorff topology, the Gromov-Hausdorff-Prokhorov
topology, which takes account of the measure also.

Idea: take two compact measured metric spaces, and find a
correspondence between them. In addition to minimising the
distortion of the correspondence, find a coupling of the two
measures which puts as small mass as possible outside the
correspondence.

A continuum random tree (CRT) is a random variable taking
values in the set of continuum trees.
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The mass measure of the Brownian CRT

Let µ2e be the push-forward of Lebesgue measure on [0, 1] onto
T2e .

Consider a uniform random tree Tn. Put mass 1/n at each vertex.
Call the resulting probability measure µn. It is not hard to show
that (

(Tn, dgr/
√
n, µn

) d→ (T2e , d2e , µ2e)

as n→∞.

Lemma. µ2e(L(T2e)) = 1.

[Intuition: non-leaf vertices of Tn are typically at distance o(
√
n)

from a leaf. Proof: see Aldous (1991).]
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The root of the Brownian CRT

Moreover, since the law of Tn is invariant under uniform random
re-rooting (i.e. choosing a new root according to µn), the same
must be true for T2e if we re-root according to a sample from µ2e .



The branch-points of the Brownian CRT

The branch-points of T2e correspond to the local minima of the
Brownian excursion e. With probability 1, there are no repeated
local minima, which tells us that the branch-points all have degree
3 i.e. the tree is binary.

(Note that Tn is not binary. The fact that T2e is tells us that there
cannot be more than two children of a vertex in Tn whose family
trees grow to

√
n height.)



Characterising a CRT via sampling

Take a CRT (T , d , µ) and suppose that U1,U2, . . . are i.i.d.
samples from the measure µ.

(Note: these are a.s. leaves.) For
m ≥ 2, let R(m) be the subtree of T spanned by U1,U2, . . . ,Um.
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Characterising a CRT via sampling

For every m ≥ 2, R(m) can be regarded as a discrete tree with
edge-lengths and labelled leaves, and so its distribution is specified
by its tree-shape, t, an unrooted unordered tree with m labelled
leaves, and its edge-lengths. The reduced trees are clearly
consistent, in that R(m) is a subtree of R(m + 1).

Theorem. (Aldous (1993)) The law of (T , d , µ) is specified by its
random finite-dimensional distributions, that is the laws of
(R(m),m ≥ 2).
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(R(m),m ≥ 2).



The random fdds of the Brownian CRT

Observe that R(m) must be binary since T2e is. So the tree-shape
of R(m) has 2m − 2 vertices and 2m − 3 edges.

Let t be this tree-shape and let x1, x2, . . . , x2m−3 be the
edge-lengths listed in any (arbitrary but fixed) order.

Theorem. (Aldous (1993)) R(m) has density

f (t; x1, x2, . . . , x2m−3) =

(
2m−3∑
i=1

xi

)
exp

−1

2

(
2m−3∑
i=1

xi

)2
 .

[See Le Gall (2005) for a direct proof from the Brownian excursion.]

This implies that t is uniform on the set of binary unordered trees
with m labelled leaves and that the edge-lengths are exchangeable.
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Lecture 3



Recap: characterising the Brownian CRT by sampling

Take a Brownian CRT (T , d , µ) and suppose that U1,U2, . . . are
i.i.d. samples from the measure µ. (Note: these are a.s. leaves.)
For m ≥ 2, let R(m) be the subtree of T spanned by
U1,U2, . . . ,Um.
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The Dirichlet distribution

Write

Sn =

{
(s1, s2, . . . , sn) ∈ Rn

+ :
n∑

i=1

si = 1

}
.

Definition. The Dirichlet distribution with parameters
a1, a2, . . . , an > 0 (written Dir(a1, a2, . . . , an)) has density

Γ(a1 + a2 + · · ·+ an)

Γ(a1) · · · Γ(an)
xa1−11 . . . xan−1n

with respect to ((n − 1)-dimensional) Lebesgue measure on Sn.

Note: If B ∼ Beta(a1, a2) then (B, 1− B) ∼ Dir(a1, a2).

Dir(1, 1, . . . , 1) is the uniform distribution on the simplex Sn, and
is the law of the lengths of the sub-intervals into which [0, 1] is
split by n − 1 independent U(0, 1) random variables.
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Dirichlet distribution facts (size-biased sampling)

Proposition. Let D = (D1,D2, . . . ,Dn) ∼ Dir(a1, a2, . . . , an) and

P (I = i |D) = Di

(i.e. sample a size-biased co-ordinate). Then, conditionally on the
event {I = i}, we have

(D1, . . . ,Di , . . . ,Dn) ∼ Dir(a1, . . . , ai + 1, . . . , an). I



Dirichlet distribution facts (beta-gamma algebra)

Proposition. If D ∼ Dir(a1, a2, . . . , an) and
G ∼ Gamma(

∑n
i=1 ai , 1) are independent then

G × (D1,D2, . . . ,Dn)
d
= (G1,G2, . . . ,Gn),

where
G1 ∼ Gamma(a1, 1),G2 ∼ Gamma(a2, 1), . . . ,Gn ∼ Gamma(an, 1)
are independent.

Moreover,(
G1∑n
i=1 Gi

,
G2∑n
i=1 Gi

, . . . ,
Gn∑n
i=1 Gi

)
d
= (D1,D2, . . . ,Dn)

and is independent of
∑n

i=1 Gi ∼ Gamma(
∑n

i=1 ai , 1).



Dirichlet distribution facts (beta-gamma algebra)

A consequence that will be useful for us in a moment:

Proposition. If B ∼ Beta(k, 1) and
(D1, . . . ,Dk) ∼ Dir(1, 1, . . . , 1︸ ︷︷ ︸

k

) are independent then

(BD1, . . . ,BDk , 1− B) ∼ Dir(1, 1, . . . , 1︸ ︷︷ ︸
k+1

). I



The random fdds of the Brownian CRT

Recall that the edge-lengths of R(m) have joint density

f (x1, x2, . . . , x2m−3) ∝
(

2m−3∑
i=1

xi

)
exp

−1

2

(
2m−3∑
i=1

xi

)2
 . (?)

If m = 2, we get density x exp(−x2/2) for the length of the single
branch. This is the density of

√
2× Exp(1) i.e. same as the

density of the first length in the line-breaking construction...

Proposition. The line-breaking construction realises the random
fdds of the Brownian CRT.
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The random fdds of the Brownian CRT

Proof. For m ≥ 2, a simple change-of-variables argument shows
that (?) is the same as the density of√√√√2

m−1∑
i=1

Ei × (D1,D2, . . . ,D2m−3),

where the factors are independent and

E1,E2, . . . ,Em−1
i.i.d.∼ Exp(1)

and

(D1,D2, . . . ,D2m−3) ∼ Dir(1, 1, . . . , 1).



Line-breaking revisited

Recall the line-breaking construction:

Take E1,E2, . . . to be i.i.d. Exp(1) and set Ck =
√

2
∑k

i=1 Ek .

Consider the line-segments [0,C1), [C1,C2), . . ..

Start from [0,C1) and proceed inductively. For i ≥ 1, sample Bi

uniformly from [0,Ci ) and attach [Ci ,Ci+1) at the corresponding
point of the tree constructed so far (this is a point chosen
uniformly at random over the existing tree).
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Line-breaking revisited
The points B1,C1,B2,C2, . . . ,Bm−2,Cm−2 split the interval
[0,Cm−1) into 2m − 3 sub-intervals.

Cm−1
d
=
√

2
∑m−1

i=1 Ei .

Claim. The sub-intervals into which the values

B1

Cm−1
,

C1

Cm−1
, . . . ,

Bm−2
Cm−1

,
Cm−2
Cm−1

(put in increasing order) split [0, 1) have Dir(1, 1, . . . , 1)
distribution, independently of Cm−1. I

This proves the proposition.

Indeed, we can recover a Brownian CRT by taking the metric
space completion of the object constructed by line-breaking. Note:
completion can only add leaves.
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Rémy’s algorithm

Consider the tree shapes in the line-breaking construction: at step
m − 1 we have an unordered tree with m labelled leaves. We have
seen that it is uniform on the set of binary trees with m labelled
leaves, for m ≥ 2.

Implicit in the line-breaking construction, then, is an algorithm
(originally due to Rémy (1985)) for generating these trees:

I Start from an edge with end-points labelled 1 and 2.

I For m ≥ 3, pick an edge from the existing tree uniformly at
random, subdivide it into two edges and attach another edge
to the new vertex, with label m at its other end.
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Rémy’s algorithm

If Tn is the nth tree in Rémy’s algorithm, and µn is the uniform
distribution on the leaves, then it’s not hard to show that(

Tn,
1√
2n

dgr, µn

)
d→ (T2e , d2e , µ2e).

(In fact, this time the convergence is almost sure.)



Self-similarity

Consider picking three independent points U1,U2,U3 from T2e
according to µ2e . There is a unique branch-point between these
three points, and it splits the tree into three subtrees, T1, T2, T3.

Write d1, d2, d3 and µ1, µ2, µ3 for the restrictions of d2e and µ2e to
each of these subtrees respectively. Let
∆1 = µ2e(T1),∆2 = µ2e(T2),∆3 = µ2e(T3).

Theorem. (Aldous (1993))

I We have (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2).

I The rescaled subtrees (T1, d1/
√

∆1, µ1/∆1),
(T2, d2/

√
∆2, µ2/∆2), (T3, d3/

√
∆3, µ3/∆3) are i.i.d.

Brownian CRTs, independent of (∆1,∆2,∆3).

I Ui and the original branch-point are independent samples
from µi/∆i in subtree i = 1, 2, 3. I
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An operator on (laws of) CRTs

Let M be the set of probability measures on continuum trees.
Define an operator F :M→M as follows: for M ∈M,

I Sample independent trees (T1, d1, µ1), (T2, d2, µ3),
(T3, d3, µ3) having distribution M;

I For 1 ≤ i ≤ 3, sample Ui according to µi ;

I Independently sample (∆1,∆2,∆3) ∼ Dir(1/2, 1/2, 1/2);

I Rescale to obtain (T1,∆
1/2
1 d1,∆1µ1), (T2,∆

1/2
2 d2,∆2µ2),

(T3,∆
1/2
3 d3,∆3µ3).

I Identify the vertices U1,U2,U3 in order to obtain a single
larger tree T with a marked branch-point B; the metrics and
measures naturally induce a metric d and a measure µ on T .

I Forget the branch-point in order to obtain (T , d , µ).

F(M) is the distribution of (T , d , µ).



The Brownian CRT as a unique fixed point

The previous theorem told us that the law of the Brownian CRT is
a fixed point of F.

Theorem. (Albenque & G. (2015))

I [Unique fixed point] Suppose that M is a law on continuum
trees which is a fixed point of F. Then there exists α > 0 such
that if (T , d , µ) ∼ M then (T , αd , µ) is a Brownian CRT.

I [Attractive] Suppose that M is a law on continuum trees such
that if (T , d , µ) ∼ M, given (T , d , µ), V1, V2 are sampled
independently from µ, then E [d(V1,V2)] exists and is equal
to π/2. Let Mn = FnM. Then Mn converges weakly to the
law of the Brownian CRT in the sense of the
Gromov-Prokhorov topology.
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The Brownian CRT as a unique fixed point: sketch proof

Lemma. Suppose that M ∈M is a fixed point of F. Let

(T , d , µ) ∼ M and, conditionally on (T , d , µ), let V1,V2
i.i.d.∼ µ.

Then there exists a constant α > 0 such that
αd(V1,V2) ∼ Rayleigh. I

Lemma. Suppose that M ∈M is a fixed point of F. Then the
random finite dimensional distributions of M are the same as those
of the Brownian CRT, up to a strictly positive scaling factor α. I

[See Marie Albenque & Christina Goldschmidt, The Brownian
continuum random tree as the unique solution to a fixed
point equation, Electronic Communications in Probability 20
(2015), paper no. 61, pp.1-14.]
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A random fractal

The self-similarity of the Brownian CRT tells us, in particular, that
it is a random fractal.

Theorem. (Haas & Miermont (2004), Duquesne & Le Gall
(2005)) The Brownian CRT has Hausdorff dimension 2, almost
surely.
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A random fractal

Croydon & Hambly (2008) showed that it is a familiar
deterministic fractal endowed with a random metric.
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Fig. 3. Self-similar dendrite.

a µi -random vertex, Z1
i . To continue the algorithm, we pick independently for each i 2 ⌃n+1 a

second µi -random vertex, Z2
i . Note that picking this extra µi -random vertex is the equivalent of

picking the U [0, 1] random variable Vi in the excursion picture.
To complete this section, we introduce one further family of variables associated with the

decomposition of the continuum random tree. From Proposition 9(f), observe that the sets in
(Ti )i2⌃n only intersect at points of the form ⇢i or Z1

i . Consequently, it is possible to consider
the two point set {⇢i , Z1

i } to be the boundary of Ti . Denote the renormalised distance between
boundary points by, for i 2 ⌃⇤,

Di := l(i)�1dT (⇢i , Z1
i ).

By construction, we have that dT (⇢i , Z1
i ) = l(i)dW i (0, Ui ). Hence we can also write Di = dW i

(0, Ui ), and so, for each n, (Di )i2⌃n is a collection of independent random variables, independent
of Fn . Moreover, the random variables (Di )i2⌃⇤ are identically distributed as D;, which
represents the height of a µ-random vertex in T . It is known that such a random variable has
mean

p
⇡/8, and finite variance (see [9], Section 3.3). Finally, we have the following recursive

relationship

Di = w(i1)Di1 + w(i2)Di2, (14)

which may be deduced by decomposing the path from ⇢i to Z1
i at b(⇢i , Z1

i , Z2
i ), and applying

parts (c) and (d) of Proposition 9.

4. Self-similar dendrite in R2

The subset of R2 to which we will map the continuum random tree is a simple self-similar
fractal, and is described as the fixed point of a collection of contraction maps. In particular, for
(x, y) 2 R2, set

F1(x, y) := 1
2
(1 � x, y), F2(x, y) := 1

2
(1 + x, �y),

F3(x, y) :=
✓

1
2

+ cy, cx
◆

,

where c 2 (0, 1/2) is a constant, and define T to be the unique non-empty compact set satisfying
A = S3

i=1 Fi (A). The existence and uniqueness of T , which is shown in Fig. 3, is guaranteed
by an extension of the usual contraction principle for metric spaces, see [3], Theorem 1.1.4.

[Image from Croydon & Hambly (2008)]



5. THE STABLE TREES

Key reference:

Jean-François Le Gall, Random trees and applications,
Probability Surveys 2 (2005) pp.245-311.



Infinite variance

Write Tn for a Galton-Watson tree with critical offspring
distribution, conditioned to have total progeny n. We have so far
focussed on the case where the offspring distribution also has finite
variance. What if this is not true?

[Reference: Durrett, Probability theory and examples for a very
beautiful presentation of the material in the next few slides.]



Infinite variance

Write Tn for a Galton-Watson tree with critical offspring
distribution, conditioned to have total progeny n. We have so far
focussed on the case where the offspring distribution also has finite
variance. What if this is not true?

[Reference: Durrett, Probability theory and examples for a very
beautiful presentation of the material in the next few slides.]



Generalised central limit theorems
Theorem. Let Z1,Z2, . . . be i.i.d. random variables such that, for
some α ∈ (0, 2),

I limt→∞ P (Z1 > t) /P (|Z1| > t) = θ ∈ [0, 1];
I P (|Z1| > t) = t−αL(t) where L is a slowly varying function.

Let an = inf{t : P (|Z1| > t) ≤ n−1} and bn = nE
[
Z11{|Z1|≤an}

]
.

Then as n→∞,

1

an

(
n∑

i=1

Zi − bn

)
d→ Sα,

where Sα is an α-stable random variable with

E
[
e itSα

]
= exp(itc − b|t|α(1 + i(2θ − 1)sgn(t)wα(t))),

where b, c are constants and wα(t) =

{
tan(πα/2) if α 6= 1

(2/π) log |t| if α = 1.
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Generalised central limit theorems

Recall: we are interested in Galton-Watson trees with critical
offspring distribution p(k), k ≥ 0. The corresponding depth-first
walk has step distribution ν(k) = p(k + 1), k ≥ −1. We want
Z1 ∼ ν.

It’s natural then to consider p(k) ∼ k−1−α since then
P (Z1 > k) ∼ k−α. Since we need E [Z1] = 0, the mean must exist,
which restricts us to the case α ∈ (1, 2] (α = 2 gives finite
variance.)

I As P (|Z1| > k) ∼ k−α, we have
an = inf{t : P (|Z1| > t) ≤ n−1} ∼ n1/α.

I As α ∈ (1, 2), we may replace bn by nE [Z1] = 0.

I As P (Z1 < t) = 0 for t ≤ −1, we have
θ = limt→∞ P (Z1 > t) /P (|Z1| > t) = 1.
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Generalised central limit theorems

So, in our setting, we have

1

n1/α

n∑
i=1

Zi
d→ Sα,

where
E
[
e itSα

]
= exp(−ib|t|αsgn(t) tan(πα/2)).



Functional convergence

The corresponding functional convergence is as follows.

Theorem. Let X (k) =
∑k

i=1 Zk . Then

1

n1/α
(X (bntc), t ≥ 0)

d→ (Sα(t), t ≥ 0),

where Sα is a α-stable Lévy process with no negative jumps.

There is also an excursion theory for these processes. However, the
limiting relationship between X and the corresponding height
process is no longer multiplication by a constant! In particular, an
excursion of a stable Lévy process is far from a continuous function;
the corresponding limiting height process, however, is continuous.
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The limiting height process
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The stable trees

Theorem. (Duquesne & Le Gall (2002); Duquesne (2003))
Suppose that p(k) ∼ ck−1−α as k →∞ for α ∈ (1, 2). Then as
n→∞,

1

n1−1/α
Tn

d→ cαTα,

where Tα is the stable tree of parameter α and cα is a strictly
positive constant. (The convergence is in the sense of the
Gromov–Hausdorff distance.)



The stable trees
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Some futher reading

A natural question, in view of what we have seen for the Brownian
CRT, is does there exist a line-breaking construction of the stable
trees? This question is resolved in:

Christina Goldschmidt and Bénédicte Haas, A line-breaking
construction of the stable trees,
Electronic Journal of Probability 20 (2015), paper no. 16, pp.1-24.



Thank you for listening!


