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Scaling limits of random trees and graphs: exercises

Please send any comments or corrections to goldschm@stats.ox.ac.uk.

For reference: the Dirichlet distribution with parameters a1, a2, . . . , an > 0 has density

Γ(∑n
i=1 ai)

∏n
i=1 Γ(ai)

xa1−1
1 . . . xan−1

n

with respect to the Lebesgue measure on{
x = (x1, . . . , xn) ∈ Rn

+ :
n

∑
i=1

xi = 1

}
.

1. (Rémy’s algorithm) Show that after n steps, Rémy’s algorithm indeed generates a uni-
form random element of T∗n, the set of planted plane binary trees with leaves labelled by
1, 2, . . . , n.

2. (Urns and martingales: the distance between 0 and 1 in Rémy’s algorithm) Consider the
urn process which starts with a single black ball, such that when we pick a black ball, we
put it back in the urn with one further black and one white ball, and when we pick a white
ball, we put it back with a further two white balls. For n ≥ 1, let Bn be the number of black
balls at step 1, so that B1 = 1. Let b1 = 1 and bn+1 = 22n(n!)2

(2n)! for n ≥ 1.

(a) Show that bn+1 = 2n
2n−1 bn for n ≥ 1.

(b) Deduce that the process (Mn)n≥1 defined by Mn = Bn/bn is a martingale.

(c) Show that E
[
M2

n+1

]
≤ E

[
M2

n
]
+ 1

2nbn
and deduce that (Mn)n≥1 is bounded in L2.

3. (Urns and martingales: the proportions of leaves in the different subtrees) Suppose that
an urn initially contains one red ball, one green ball and one blue ball. At each time-step,
pick a ball uniformly at random from the urn, look at its colour, and put it back into the
urn with two extra balls of the same colour. Let Rn, Gn, Bn denote the number of red, green
and blue balls respectively at step n ≥ 0, so that (R0, G0, B0) = (1, 1, 1). Observe that at step
n, there are 2n + 3 balls in the urn.

(a) Show that
( 1

2n+3 (Rn, Gn, Bn), n ≥ 0
)

is a (vector-valued) martingale.

(b) Deduce that
1

2n + 3
(Rn, Gn, Bn)→ (∆1, ∆2, ∆3) a.s. as n→ ∞,

for some non-negative random vector (∆1, ∆2, ∆3) such that ∆1 + ∆2 + ∆3 = 1.
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(c) For n ≥ 1, let Cn denote the index of the colour picked at step n (red = 1, green = 2,
blue = 3). Show that for n1, n2, n3 ≥ 0 such that n1 + n2 + n3 = n,

P (C1 = · · · = Cn1 = 1, Cn1+1 = · · · = Cn1+n2 = 2, Cn1+n2+1 = · · · = Cn = 3)

=
2(2n1)!(2n2)!(2n3)!(n + 1)!

n1!n2!n3!(2n + 2)!
.

(d) Show that for a fixed sequence c = (c1, c2, . . . , cn) ∈ {1, 2, 3}n and any permutation
σ : {1, 2, . . . , n} → {1, 2, . . . , n},

P (C1 = c1, C2 = c2, . . . , Cn = cn) = P
(

Cσ(1) = c1, Cσ(2) = c2, . . . , Cσ(n) = cn

)
.

This shows that the random variables (C1, . . . , Cn) are exchangeable.

(e) Deduce that

P (Rn = 2n1 + 1, Gn = 2n2 + 1, Bn = 2n3 + 1) =

( 2n1
n1

) ( 2n2
n2

) ( 2n3
n3

)
(n + 1)

( 2n+2
n+1

) .

(f) Now fix x1, x2, x3 ≥ 0 such that x1 + x2 + x3 = 1. Using Stirling’s formula, show that

P (Rn = 2bnx1c+ 1, Gn = 2bnx2c+ 1, Bn = 2bnx3c+ 1)

∼ Cn−2x−1/2
1 x−1/2

2 x−1/2
3 ,

where C is a constant.

(g) Deduce that (∆1, ∆2, ∆3) ∼ Dirichlet(1/2, 1/2, 1/2).

For a fascinating account of exchangeability and its consequences, see the classic paper by J. F. C.
Kingman, Uses of exchangeability, Annals of Probability, 6(2), pp.183–197 (1978).

4. (Dirichlet and gamma distributions)

(a) Show that if
(D1, D2, . . . , Dn) ∼ Dirichlet(a1, a2, . . . , an)

and G ∼ Gamma(∑n
i=1 ai, 1) are independent then

G× (D1, D2, . . . , Dn)
d
= (G1, G2, . . . , Gn),

where G1 ∼ Gamma(a1, 1), G2 ∼ Gamma(a2, 1), . . . , Gn ∼ Gamma(an, 1) are indepen-
dent.

(b) Show, moreover, that(
G1

∑n
i=1 Gi

,
G2

∑n
i=1 Gi

, . . . ,
Gn

∑n
i=1 Gi

)
d
= (D1, D2, . . . , Dn)

and is independent of ∑n
i=1 Gi ∼ Gamma(∑n

i=1 ai, 1).
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5. (Inhomogeneous Poisson processes)

(a) Suppose that (P(t), t ≥ 0) is an inhomogeneous Poisson process of rate λ = (λ(t), t ≥
0), and let (Q(t), t ≥ 0) be an ordinary Poisson process of rate 1. Show that

(P(t), t ≥ 0) d
= (Q(Λ(t)), t ≥ 0),

where Λ(t) :=
∫ t

0 λ(x)dx.

(b) Suppose that C1, C2, . . . are the points of an inhomogeneous Poisson process of rate
λ(t) = t, t ≥ 0. Use (a) to show that if E1, E2, . . . are i.i.d. Exponential(1/2) then

(Ck, k ≥ 1) d
=


√√√√ k

∑
i=1

Ei, k ≥ 1

 .

For much more about general Poisson processes, see the classic book by J. F. C. Kingman, Poisson
processes, Oxford University Press (1993).

6. (Uniform random labelled trees) Let T be a BGW tree with Poisson(1) offspring distribu-
tion and total progeny N.

(a) Fix a particular rooted ordered tree t with n vertices having numbers of children cv, v ∈
t. What is P (T = t)?

(b) Condition on the event {N = n}. Assign the vertices of T a uniformly random la-
belling by [n], and let T̃ be the labelled tree obtained by forgetting the ordering and
the root. Show that T̃ has the same distribution as Tn, a uniform random tree on n
vertices.
Hint: it suffices to show that the probability of obtaining a particular tree t is a function of n
only.

7. (Other combinatorial trees) Let T be a BGW tree with offspring distribution (p(k), k ≥ 0)
and total progeny N.

(a) Show that if p(0) = 1/2 and p(2) = 1/2 then, conditional on N = 2n− 1, T is uniform
on the set of rooted (unplanted!) plane binary trees with n leaves.

(b) Show that if p(k) = 2−k−1, k ≥ 0 then, conditional on N = n, T is uniform on the set
of ordered rooted trees with n vertices.

8. (Height process and depth-first walk) Let (X(k), 0 ≤ k ≤ n) be the depth-first walk of a
tree T of size n, and let (H(k), 0 ≤ k ≤ n− 1) be its height process. Convince yourself (e.g.
by drawing a picture) that for 0 ≤ i ≤ n− 1,

H(i) = #
{

0 ≤ j ≤ i− 1 : X(j) = min
j≤k≤i

X(k)
}

.
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9. (Contour function and convergence to the Brownian CRT) In Lecture 1, we discussed the
depth-first walk and the height function of a tree. A third encoding which is often used
is the so-called contour function (C(i), 0 ≤ i ≤ 2(n − 1)). For a rooted ordered tree t, we
imagine a particle tracing the outline of the tree from left to right at speed 1. (The picture
below is for a labelled tree, with a planar embedding given by the labels.) Notice that we
visit every vertex a number of times given by its degree.
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Let Tn be a BGW tree with Geometric offspring distribution p(k) =
( 1

2

)k+1
, k ≥ 0, condi-

tioned to have total progeny N = n, as in Question 7(b). Let (Cn(i), 0 ≤ i ≤ 2(n− 1)) be its
contour function. It will be convenient to define a somewhat shifted version: let C̃n(0) = 0,
C̃n(2n) = 0 and, for 1 ≤ i ≤ 2n− 1, C̃n(i) = 1 + C(i − 1). As usual, we write dn for the
graph distance in Tn. The Gromov-Hausdorff distance between (isometry classes of) compact
metric spaces (X, d) and (X′, d′) is defined to be

dGHP((X, d), (X′, d′)) =
1
2

inf
R

dis(R),

where the infimum is over correspondences R between X and X′.

(a) Show that (C̃n(i), 0 ≤ i ≤ 2n)) has the same distribution as a simple symmetric ran-
dom walk (i.e. a random walk which makes steps of +1 with probability 1/2 and steps
of −1 with probability 1/2) conditioned to return to the origin for the first time at time
2n.
Hint: first consider the unconditioned BGW tree with this offspring distribution.

(b) It’s straightforward to interpolate linearly to get a continuous function C̃n : [0, 2n] →
R+. Let (T̃n, d̃n) be the R-tree encoded by this linear interpolation. Show that

dGH((Tn, dn), (T̃n, d̃n)) ≤ 1.

Hint: notice that (Tn, dn) has only n points, whereas (T̃n, d̃n) is an R-tree and consists of
uncountably many points. Draw a picture and find a correspondence.

(c) Suppose that we have continuous excursions f : [0, 1]→ R+ and g : [0, 1]→ R+ which
encode R-trees (T f , d f ) and (Tg, dg). For t ∈ [0, 1], let p f (t) be the image of t in the
tree T f and similarly for pg(t). Now define a correspondence

R =
{
(x, y) ∈ T f × Tg : x = p f (t), y = pg(t) for some t ∈ [0, 1]

}
.

Show that dis(R) ≤ 4‖ f − g‖∞.
Hint: recall how the metric in an R-tree is related to the function encoding it.
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(d) Observe that the variance of the step-size in a simple symmetric random walk is 1.
Hence, by Kaigh’s theorem, we have

1√
2(n− 1)

(Cn(2(n− 1)t), 0 ≤ t ≤ 1) d→ (e(t), 0 ≤ t ≤ 1) (*)

as n → ∞. Use this, (b) and (c) to prove directly that (Tn, dn√
n ) converges to a constant

multiple of the Brownian CRT in the Gromov-Hausdorff sense.
Hint: you may want to use Skorokhod’s representation theorem in order to work on a probability
space where the convergence (*) occurs almost surely.

An exposition of this approach is given by Jean-François Le Gall & Grégory Miermont, Scaling
limits of random trees and planar maps, Lecture notes for the Clay Mathematical Institute
Summer School in Buzios, July 11 to August 7, 2010, available at http://perso.ens-lyon.
fr/gregory.miermont/Cours_Buzios.pdf.

10. (The total population of a BGW process) Let N be the total population size in a BGW
branching process with offspring distribution (p(k), k ≥ 0). Recall that N = inf{k ≥ 0 :
X(k) = −1}, where the depth-first walk (X(k), k ≥ 0) is a random walk with X(0) = 0 and
step distribution ν(k) = p(k + 1), k ≥ −1.

(a) Consider a possible path for X which first hits −1 at time n. There are n different
cyclic rearrangements of the n steps

X(1)− X(0), X(2)− X(1), . . . , X(n)− X(n− 1)

of X i.e.

X(i + 1)− X(i), X(i + 2)− X(i + 1), . . . , X(i + n)− X(i + n− 1),

for 0 ≤ i ≤ n− 1, where the indices are taken mod n. We always have ∑n−1
k=0 (X(i + k +

1)− X(i + k)) = −1. Show that only one of these cyclic rearrangements results in the
walk hitting −1 for the first time at n.

(b) Use this to argue that

P (N = n) =
1
n

P (X(n) = −1) .

(c) Suppose that we have p(0) = p(2) = 1/2, so that X is a simple symmetric random
walk. What is P (N = 2n− 1) for n ≥ 1? Deduce, using the bijection between lattice
excursions and planted plane binary trees, that |Tn| = 1

n

( 2n−2
n−1

)
.

(d) Suppose that we have p(k) = e−1/k!, k ≥ 0. Show that

P (N = n) =
(λn)n−1e−λn

n!
, n ≥ 1.

This is known as the Borel distribution.


