Scaling limits of random trees and graphs: exercises

Please send any comments or corrections to goldschm@stats.ox.ac.uk.
For reference: the Dirichlet distribution with parameters $a_{1}, a_{2}, \ldots, a_{n}>0$ has density

$$
\frac{\Gamma\left(\sum_{i=1}^{n} a_{i}\right)}{\prod_{i=1}^{n} \Gamma\left(a_{i}\right)} x_{1}^{a_{1}-1} \ldots x_{n}^{a_{n}-1}
$$

with respect to the Lebesgue measure on

$$
\left\{\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}: \sum_{i=1}^{n} x_{i}=1\right\} .
$$

1. (Rémy's algorithm) Show that after n steps, Rémy's algorithm indeed generates a uniform random element of \mathbb{T}_{n}^{*}, the set of planted plane binary trees with leaves labelled by $1,2, \ldots, n$.
2. (Urns and martingales: the distance between 0 and 1 in Rémy's algorithm) Consider the urn process which starts with a single black ball, such that when we pick a black ball, we put it back in the urn with one further black and one white ball, and when we pick a white ball, we put it back with a further two white balls. For $n \geq 1$, let B_{n} be the number of black balls at step 1 , so that $B_{1}=1$. Let $b_{1}=1$ and $b_{n+1}=\frac{2^{2 n}(n!)^{2}}{(2 n)!}$ for $n \geq 1$.
(a) Show that $b_{n+1}=\frac{2 n}{2 n-1} b_{n}$ for $n \geq 1$.
(b) Deduce that the process $\left(M_{n}\right)_{n \geq 1}$ defined by $M_{n}=B_{n} / b_{n}$ is a martingale.
(c) Show that $\mathbb{E}\left[M_{n+1}^{2}\right] \leq \mathbb{E}\left[M_{n}^{2}\right]+\frac{1}{2 n b_{n}}$ and deduce that $\left(M_{n}\right)_{n \geq 1}$ is bounded in L^{2}.
3. (Urns and martingales: the proportions of leaves in the different subtrees) Suppose that an urn initially contains one red ball, one green ball and one blue ball. At each time-step, pick a ball uniformly at random from the urn, look at its colour, and put it back into the urn with two extra balls of the same colour. Let R_{n}, G_{n}, B_{n} denote the number of red, green and blue balls respectively at step $n \geq 0$, so that $\left(R_{0}, G_{0}, B_{0}\right)=(1,1,1)$. Observe that at step n, there are $2 n+3$ balls in the urn.
(a) Show that $\left.\frac{1}{2 n+3}\left(R_{n}, G_{n}, B_{n}\right), n \geq 0\right)$ is a (vector-valued) martingale.
(b) Deduce that

$$
\frac{1}{2 n+3}\left(R_{n}, G_{n}, B_{n}\right) \rightarrow\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) \text { a.s. as } n \rightarrow \infty,
$$

for some non-negative random vector $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right)$ such that $\Delta_{1}+\Delta_{2}+\Delta_{3}=1$.
(c) For $n \geq 1$, let C_{n} denote the index of the colour picked at step n (red $=1$, green $=2$, blue $=3$). Show that for $n_{1}, n_{2}, n_{3} \geq 0$ such that $n_{1}+n_{2}+n_{3}=n$,

$$
\begin{aligned}
\mathbb{P}\left(C_{1}\right. & \left.=\cdots=C_{n_{1}}=1, C_{n_{1}+1}=\cdots=C_{n_{1}+n_{2}}=2, C_{n_{1}+n_{2}+1}=\cdots=C_{n}=3\right) \\
& =\frac{2\left(2 n_{1}\right)!\left(2 n_{2}\right)!\left(2 n_{3}\right)!(n+1)!}{n_{1}!n_{2}!n_{3}!(2 n+2)!} .
\end{aligned}
$$

(d) Show that for a fixed sequence $\mathbf{c}=\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in\{1,2,3\}^{n}$ and any permutation $\sigma:\{1,2, \ldots, n\} \rightarrow\{1,2, \ldots, n\}$,

$$
\mathbb{P}\left(C_{1}=c_{1}, C_{2}=c_{2}, \ldots, C_{n}=c_{n}\right)=\mathbb{P}\left(C_{\sigma(1)}=c_{1}, C_{\sigma(2)}=c_{2}, \ldots, C_{\sigma(n)}=c_{n}\right) .
$$

This shows that the random variables $\left(C_{1}, \ldots, C_{n}\right)$ are exchangeable.
(e) Deduce that

$$
\mathbb{P}\left(R_{n}=2 n_{1}+1, G_{n}=2 n_{2}+1, B_{n}=2 n_{3}+1\right)=\frac{\binom{2 n_{1}}{n_{1}}\binom{2 n_{2}}{n_{2}}\binom{2 n_{3}}{n_{3}}}{(n+1)\binom{2 n+2}{n+1}} .
$$

(f) Now fix $x_{1}, x_{2}, x_{3} \geq 0$ such that $x_{1}+x_{2}+x_{3}=1$. Using Stirling's formula, show that

$$
\begin{aligned}
& \mathbb{P}\left(R_{n}=2\left\lfloor n x_{1}\right\rfloor+1, G_{n}=2\left\lfloor n x_{2}\right\rfloor+1, B_{n}=2\left\lfloor n x_{3}\right\rfloor+1\right) \\
& \quad \sim C n^{-2} x_{1}^{-1 / 2} x_{2}^{-1 / 2} x_{3}^{-1 / 2},
\end{aligned}
$$

where C is a constant.
(g) Deduce that $\left(\Delta_{1}, \Delta_{2}, \Delta_{3}\right) \sim \operatorname{Dirichlet}(1 / 2,1 / 2,1 / 2)$.

For a fascinating account of exchangeability and its consequences, see the classic paper by J. F. C. Kingman, Uses of exchangeability, Annals of Probability, 6(2), pp.183-197 (1978).

4. (Dirichlet and gamma distributions)

(a) Show that if

$$
\left(D_{1}, D_{2}, \ldots, D_{n}\right) \sim \operatorname{Dirichlet}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

and $G \sim \operatorname{Gamma}\left(\sum_{i=1}^{n} a_{i}, 1\right)$ are independent then

$$
G \times\left(D_{1}, D_{2}, \ldots, D_{n}\right) \stackrel{d}{=}\left(G_{1}, G_{2}, \ldots, G_{n}\right),
$$

where $G_{1} \sim \operatorname{Gamma}\left(a_{1}, 1\right), G_{2} \sim \operatorname{Gamma}\left(a_{2}, 1\right), \ldots, G_{n} \sim \operatorname{Gamma}\left(a_{n}, 1\right)$ are independent.
(b) Show, moreover, that

$$
\left(\frac{G_{1}}{\sum_{i=1}^{n} G_{i}}, \frac{G_{2}}{\sum_{i=1}^{n} G_{i}}, \ldots, \frac{G_{n}}{\sum_{i=1}^{n} G_{i}}\right) \stackrel{d}{=}\left(D_{1}, D_{2}, \ldots, D_{n}\right)
$$

and is independent of $\sum_{i=1}^{n} G_{i} \sim \operatorname{Gamma}\left(\sum_{i=1}^{n} a_{i}, 1\right)$.

5. (Inhomogeneous Poisson processes)

(a) Suppose that $(P(t), t \geq 0)$ is an inhomogeneous Poisson process of rate $\lambda=(\lambda(t), t \geq$ $0)$, and let $(Q(t), t \geq 0)$ be an ordinary Poisson process of rate 1 . Show that

$$
(P(t), t \geq 0) \stackrel{d}{=}(Q(\Lambda(t)), t \geq 0)
$$

where $\Lambda(t):=\int_{0}^{t} \lambda(x) d x$.
(b) Suppose that C_{1}, C_{2}, \ldots are the points of an inhomogeneous Poisson process of rate $\lambda(t)=t, t \geq 0$. Use (a) to show that if E_{1}, E_{2}, \ldots are i.i.d. Exponential $(1 / 2)$ then

$$
\left(C_{k}, k \geq 1\right) \stackrel{d}{=}\left(\sqrt{\sum_{i=1}^{k} E_{i}}, k \geq 1\right)
$$

For much more about general Poisson processes, see the classic book by J. F. C. Kingman, Poisson processes, Oxford University Press (1993).
6. (Uniform random labelled trees) Let T be a BGW tree with Poisson(1) offspring distribution and total progeny N.
(a) Fix a particular rooted ordered tree t with n vertices having numbers of children $c_{v}, v \in$ t . What is $\mathbb{P}(T=\mathrm{t})$?
(b) Condition on the event $\{N=n\}$. Assign the vertices of T a uniformly random labelling by $[n]$, and let \tilde{T} be the labelled tree obtained by forgetting the ordering and the root. Show that \tilde{T} has the same distribution as T_{n}, a uniform random tree on n vertices.
Hint: it suffices to show that the probability of obtaining a particular tree t is a function of n only.
7. (Other combinatorial trees) Let T be a BGW tree with offspring distribution $(p(k), k \geq 0)$ and total progeny N.
(a) Show that if $p(0)=1 / 2$ and $p(2)=1 / 2$ then, conditional on $N=2 n-1, T$ is uniform on the set of rooted (unplanted!) plane binary trees with n leaves.
(b) Show that if $p(k)=2^{-k-1}, k \geq 0$ then, conditional on $N=n, T$ is uniform on the set of ordered rooted trees with n vertices.
8. (Height process and depth-first walk) Let $(X(k), 0 \leq k \leq n)$ be the depth-first walk of a tree T of size n, and let $(H(k), 0 \leq k \leq n-1)$ be its height process. Convince yourself (e.g. by drawing a picture) that for $0 \leq i \leq n-1$,

$$
H(i)=\#\left\{0 \leq j \leq i-1: X(j)=\min _{j \leq k \leq i} X(k)\right\} .
$$

9. (Contour function and convergence to the Brownian CRT) In Lecture 1, we discussed the depth-first walk and the height function of a tree. A third encoding which is often used is the so-called contour function $(C(i), 0 \leq i \leq 2(n-1))$. For a rooted ordered tree \mathbf{t}, we imagine a particle tracing the outline of the tree from left to right at speed 1. (The picture below is for a labelled tree, with a planar embedding given by the labels.) Notice that we visit every vertex a number of times given by its degree.

Let T_{n} be a BGW tree with Geometric offspring distribution $p(k)=\left(\frac{1}{2}\right)^{k+1}, k \geq 0$, conditioned to have total progeny $N=n$, as in Question 7(b). Let ($\left.C^{n}(i), 0 \leq i \leq 2(n-1)\right)$ be its contour function. It will be convenient to define a somewhat shifted version: let $\tilde{C}^{n}(0)=0$, $\tilde{C}^{n}(2 n)=0$ and, for $1 \leq i \leq 2 n-1, \tilde{C}^{n}(i)=1+C(i-1)$. As usual, we write d_{n} for the graph distance in T_{n}. The Gromov-Hausdorff distance between (isometry classes of) compact metric spaces (X, d) and $\left(X^{\prime}, d^{\prime}\right)$ is defined to be

$$
\mathrm{d}_{\mathrm{GHP}}\left((X, d),\left(X^{\prime}, d^{\prime}\right)\right)=\frac{1}{2} \inf _{R} \operatorname{dis}(R),
$$

where the infimum is over correspondences R between X and X^{\prime}.
(a) Show that $\left.\left(\tilde{C}^{n}(i), 0 \leq i \leq 2 n\right)\right)$ has the same distribution as a simple symmetric random walk (i.e. a random walk which makes steps of +1 with probability $1 / 2$ and steps of -1 with probability $1 / 2$) conditioned to return to the origin for the first time at time $2 n$.
Hint: first consider the unconditioned BGW tree with this offspring distribution.
(b) It's straightforward to interpolate linearly to get a continuous function $\tilde{C}^{n}:[0,2 n] \rightarrow$ \mathbb{R}_{+}. Let ($\left.\tilde{T}_{n}, \tilde{d}_{n}\right)$ be the \mathbb{R}-tree encoded by this linear interpolation. Show that

$$
\mathrm{d}_{\mathrm{GH}}\left(\left(T_{n}, d_{n}\right),\left(\tilde{T}_{n}, \tilde{d}_{n}\right)\right) \leq 1 .
$$

Hint: notice that $\left(T_{n}, d_{n}\right)$ has only n points, whereas $\left(\tilde{T}_{n}, \tilde{d}_{n}\right)$ is an \mathbb{R}-tree and consists of uncountably many points. Draw a picture and find a correspondence.
(c) Suppose that we have continuous excursions $f:[0,1] \rightarrow \mathbb{R}_{+}$and $g:[0,1] \rightarrow \mathbb{R}_{+}$which encode \mathbb{R}-trees $\left(\mathcal{T}_{f}, d_{f}\right)$ and $\left(\mathcal{T}_{g}, d_{g}\right)$. For $t \in[0,1]$, let $p_{f}(t)$ be the image of t in the tree \mathcal{T}_{f} and similarly for $p_{g}(t)$. Now define a correspondence

$$
R=\left\{(x, y) \in \mathcal{T}_{f} \times \mathcal{T}_{g}: x=p_{f}(t), y=p_{g}(t) \text { for some } t \in[0,1]\right\}
$$

Show that $\operatorname{dis}(R) \leq 4\|f-g\|_{\infty}$.
Hint: recall how the metric in an \mathbb{R}-tree is related to the function encoding it.
(d) Observe that the variance of the step-size in a simple symmetric random walk is 1 . Hence, by Kaigh's theorem, we have

$$
\begin{equation*}
\frac{1}{\sqrt{2(n-1)}}\left(C^{n}(2(n-1) t), 0 \leq t \leq 1\right) \xrightarrow{d}(e(t), 0 \leq t \leq 1) \tag{*}
\end{equation*}
$$

as $n \rightarrow \infty$. Use this, (b) and (c) to prove directly that $\left(T_{n}, \frac{d_{n}}{\sqrt{n}}\right)$ converges to a constant multiple of the Brownian CRT in the Gromov-Hausdorff sense.
Hint: you may want to use Skorokhod's representation theorem in order to work on a probability space where the convergence (*) occurs almost surely.

An exposition of this approach is given by Jean-François Le Gall \& Grégory Miermont, Scaling limits of random trees and planar maps, Lecture notes for the Clay Mathematical Institute Summer School in Buzios, July 11 to August 7, 2010, available at http://perso.ens-lyon. fr/gregory.miermont/Cours_Buzios.pdf.
10. (The total population of a BGW process) Let N be the total population size in a BGW branching process with offspring distribution $(p(k), k \geq 0)$. Recall that $N=\inf \{k \geq 0$: $X(k)=-1\}$, where the depth-first walk $(X(k), k \geq 0)$ is a random walk with $X(0)=0$ and step distribution $v(k)=p(k+1), k \geq-1$.
(a) Consider a possible path for X which first hits -1 at time n. There are n different cyclic rearrangements of the n steps

$$
X(1)-X(0), X(2)-X(1), \ldots, X(n)-X(n-1)
$$

of X i.e.

$$
X(i+1)-X(i), X(i+2)-X(i+1), \ldots, X(i+n)-X(i+n-1)
$$

for $0 \leq i \leq n-1$, where the indices are taken $\bmod n$. We always have $\sum_{k=0}^{n-1}(X(i+k+$ 1) $-X(i+k))=-1$. Show that only one of these cyclic rearrangements results in the walk hitting -1 for the first time at n.
(b) Use this to argue that

$$
\mathbb{P}(N=n)=\frac{1}{n} \mathbb{P}(X(n)=-1)
$$

(c) Suppose that we have $p(0)=p(2)=1 / 2$, so that X is a simple symmetric random walk. What is $\mathbb{P}(N=2 n-1)$ for $n \geq 1$? Deduce, using the bijection between lattice excursions and planted plane binary trees, that $\left|\mathbb{T}_{n}\right|=\frac{1}{n}\binom{2 n-2}{n-1}$.
(d) Suppose that we have $p(k)=e^{-1} / k!, k \geq 0$. Show that

$$
\mathbb{P}(N=n)=\frac{(\lambda n)^{n-1} e^{-\lambda n}}{n!}, \quad n \geq 1
$$

This is known as the Borel distribution.

