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Abstract

This paper considers the problem of inferring
a discrete joint distribution from a sample
subject to selection, such as might arise from
a case-control study. Abstractly, we want to
identify a distribution p(x,w) from its condi-
tional p(x |w). We introduce new assump-
tions on the marginal model for p(x), un-
der which generic identification is possible.
These assumptions are quite general and can
easily be tested; they do not require pre-
cise background knowledge of p(x) or p(w),
such as proportions estimated from previous
studies. We particularly consider conditional
independence constraints, which often arise
from graphical and causal models, although
other constraints can also be used. We show
that generic identifiability of causal effects is
possible in a much wider class of causal mod-
els than had previously been known.

1 Introduction

Selection bias occurs when samples are obtained from
a population in a manner which depends upon the at-
tributes of the samples themselves. This can happen
by accident—such as survey participants self-selecting
in a way which is correlated with their responses—or
by design, for example in a case-control study.

In this paper we show that under plausible and testable
structural hypotheses about the relationships between
the variables being measured, we can recover from se-
lection bias, even without having external information
about the distribution of variables in the population.

Example 1.1. Consider a case-control study in which
participants are selected according to a disease status
W with dw = 2 levels. We are interested in the effect
of a discrete measured treatment X on W which, as-
suming no confounding is the same as estimating the
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Figure 1: A graph representing a (causal) model im-
plying a marginal independence X ⊥⊥ Y . The variable
W has been selected upon, which is represented by the
double circle.

conditional distribution p(w |x). Since our data are
selected according to disease status, what we observe,
ignoring sampling error, is the conditional distribution
p(x |w). It is well known that we can use this to obtain
the causal odds-ratio for X on W , which is one mea-
sure of the causal effect, but that the full conditional
distribution p(w |x) is generally not identifiable.

However, suppose that we also measure a covariate Y ,
which is known to be marginally independent of X
(see Figure 1). For example if X represents a genetic
variant, then Y might be an environmental exposure
known to be unrelated to X in the population under
study (such assumptions are common in practice, see
e.g. [15]). The marginal independence means p(x, y) =
p(x) · p(y), so∑

w

p(w)p(x, y |w)

=

(∑
w

p(w)p(x |w)

)(∑
w

p(w)p(y |w)

)
(1)

for each value of x, y; letting dx, dy be the number
of levels of X and Y respectively, this gives at most
(dx − 1)(dy − 1) non-redundant equations. Since W
is binary, each equation is quadratic in the single un-
known p(w = 0) and can have at most two solutions.
The true marginal distribution of W must be a solu-
tion to each equation, so the distribution is identifiable
up to at most two solutions1.

1Provided that Y 6⊥⊥ W |X; see the discussion in the



To be concrete, suppose X and Y are binary, and
we are given the following conditional distributions
p(x, y |w):

W = 0 0 1 W = 1 0 1

0 2
5

1
10 0 1

5
3
10

1 1
10

2
5 1 3

10
1
5

Since X and Y are positively correlated given W = 0,
and negatively correlated given W = 1, it is clear that
by taking some appropriate convex combination, we
should find a table for independence. In fact, choosing
p(w = 0) = 1

4 gives the marginal table:

0 1

0 1
4

1
4

1 1
4

1
4

Having recovered p(w = 0) we obtain the entire joint
distribution p(x, y, w) = p(w) · p(x, y |w) and there-
fore any causal effects identifiable from it, including
p(w |x).

Note that no information external to the study was re-
quired (e.g. background knowledge of the distribution
of p(x)) other than the marginal independence X ⊥⊥ Y .
In addition, we will see that this condition is in princi-
ple testable by equality and inequality constraints. In
particular (1) may have no solution, so the model can
be refuted.

Intuitively the above method works because the inde-
pendence X ⊥⊥ Y is ‘destroyed’ if the marginal distri-
bution of W is specified incorrectly (except in certain
degenerate cases). Hence a correct specification of the
marginal p(w) results in a distribution in the marginal
model for (X,Y ), and an incorrect specification usu-
ally does not.

1.1 Previous Work and Set-Up

Selection bias has received significant attention in the
statistical literature for many decades, dating back at
least to [5]. The term is now used to refer to a very
wide range of problems: bias can occur due to selection
into the sample, drop-out, missingness or due to pos-
sibly inadvertently and inappropriately stratifying the
statistical analysis. When using DAGs to represent the
situation, selection bias can often be illustrated as the
result of conditioning on a variable that is a common
child of other variables, sometimes called “collider-
stratification bias” [12]. In some of these cases, the

next section.

bias can be avoided e.g. by inverse-probability weight-
ing given a sufficiently informative set of covariates
[13]. Further, in the context of a case-control study
it is well known that the odds-ratio can be recovered
under very mild assumptions, see [11] for a recent ap-
plication relying on an argument based on conditional
independences in DAGs. However, many popular sta-
tistical methods aiming to attenuate selection bias rely
on specific assumptions about the selection mechanism
or external (quantitative) information, see e.g. [6] in
the context of meta-analyses. Here, we aim to exploit
conditional or marginal independences and the con-
straints they impose on the model. Our approach is
similar in spirit to [20], who use ‘distortions’ in mul-
tivariate Gaussian distributions caused by selection to
identify the parameters of the original model.

Recently, a number of papers have considered the spe-
cific question of identifying causal effects under selec-
tion. [8] give conditions for identification of causal
odds-ratios as well as the testability of the causal null
hypothesis based on assumptions that can be read off
DAGs with unobservable variables. [1] extend these re-
sults and additionally propose a method of controlling
selection bias using instrumental variables to enable
recovery of effect measures other than odds-ratios.

Regarding general causal inference under selection,
[3, 2] provide results showing the impossibility of full
identification of causal effects under selection in a large
class of Markovian models. In contrast, we achieve
a much wider range of identification results by using
the weaker notion of ‘generic identifiability’ (defined
in Section 2). We exploit equality and inequality con-
straints derived from known conditional or marginal
independences. This is closely related to ancestral
graph models, which fully characterize the conditional
independence constraints implied by selection in DAG
models [17]. Similarly, [14] noted such constraints and
showed that selection in DAGs could be used to gen-
erate arbitrary hierarchical models.

Several of the above authors formalise the problem of
selection by including a binary random indicator S of
whether or not an individual is selected in the sample.
The available data then comes from the conditional
distribution p(x,w|s = 1), where X,W may be vectors
of random variables. There is little we can do without
further assumptions, but suppose that X ⊥⊥ S |W , i.e.
the selection only depends upon the variables in W ;
in this case, provided p(w | s = 1) > 0, we can recover
p(x |w) = p(x |w, s = 1). If the distribution of W in
the population is known, say from a previous study,
then we can obtain p(x,w) and in effect ‘recover’ from
the selection bias. In this paper we will assume that
no such information is available, and ask what assump-
tions allow p(x,w) to be recovered from p(x |w). We



assume throughout that we observe p(x |w) and that
p(x,w) > 0.

The rest of the paper is structured as follows. After
formally defining generic identifiability in Section 2,
we address in Section 3 the role of constraints on the
marginal model p(x) for recovering p(x,w). In Section
4 we then consider special cases where the marginal
constraints arise from various independence assump-
tions. While we use directed acyclic graphs (DAGs)
throughout to depict marginal or conditional indepen-
dences, Section 5 formally addresses situations where
the model is explicitly defined by a DAG, such as is
typical for causal models. It turns out that it is an im-
portant prerequisite for identification that the model
be non-decomposable. Further implications and ex-
amples for causal inference are discussed in Section 6,
and practical considerations given in Section 7.

2 Identifiability

We distinguish ‘strict’ (sometimes called ‘global’) and
‘generic’ identifiability. The latter allows identifiabil-
ity to fail on a lower dimensional subset O of the model
M. It can be argued that, under certain assumptions,
observations are ‘unlikely’ to lie exactly in such a sub-
set.

Consider random variables (X,W ) taking values in a
finite discrete product space X ×W. Let

∆ = ∆XW ≡ {p > 0 :
∑
x,w

p(x,w) = 1}

be the strictly positive probability simplex of distri-
butions over X × W. We consider models M ⊆ ∆
defined by a finite collection of polynomial constraints
in the probabilities p(x,w). For example, the model
M under which X ⊥⊥W is the set of p ∈ ∆ such that

p(x,w)−

(∑
w′

p(x,w′)

)(∑
x′

p(x′, w)

)
= 0, ∀w, x.

Consider the act of conditioning on W , defined by the
rational map φ : p(x,w) 7→ p(x,w)/p(w). Let N =
φ(M) be the image of the model under this operation,
which is also an irreducible algebraic variety in the
invariants p(x |w) [7, Proposition 4.5.6].

Define the fibre of φ at p ∈M as the set

Fφ(p) = {q ∈M : φ(q) = φ(p)}.

An injective map is one for which all fibres have car-
dinality one.

Definition 2.1. Let k ∈ N. We say that M is gener-
ically k-identifiable if the fibres Fφ(p) have cardinality

at most k for all p ∈ M \ O, where O is some proper
(i.e. lower dimensional) algebraic subset of M.

In the case k = 1 then φ is just generically identifiable.
If a model is not generically k-identified for any k ∈ N
then it is unidentifiable.

In other words, generic k-identifiability requires the
map to be at most k-to-one on a set that contains
‘almost all’ the distributions. Generic identifiability
corresponds to the map being injective on M \ O.
Throughout this article we use ‘generically’ to mean
‘at all but a strict sub-variety of the parameter values
within the model (M)’.

If O = ∅ then this is sometimes referred to as strict
(k-)identifiability. Strict identifiability of p(x,w) is a
very stringent condition and essentially never occurs
in our framework. If W ⊥⊥ X, for example, it is clear
that p(x |w) = p(x) does nothing to help us identify
p(w), nor therefore p(x,w). We consider the weaker
notion of generic identifiability so that identifiability
may fail on a small (i.e. measure zero) subset O.

We say a model on X,W is algebraically testable if it
places non-trivial equality constraints on p(x |w), i.e.
N is a strict sub-variety of the set of all conditional
distributions p(x |w). We will work throughout the
paper as though we can observe p(x |w) itself; in prac-
tice we would instead have a consistent estimator with
asymptotically correct standard errors.

3 General Marginal Models

In this section we consider the possibility of using con-
straints on the marginal model of X to recover p(x,w)
from p(x |w). The first result gives us a necessary con-
dition for identifiability.

Lemma 3.1. Suppose that MX is a marginal model
for X, and let A be the (dx × dw)-matrix with entries
ax,w = p(x |w). Then p(x,w) is k-identifiable from
p(x |w) for some k ∈ N only if A has rank dw.

If W ⊥⊥ X then, as previously noted, the rank condi-
tion will not be satisfied. It may fail in a more subtle
way if, for example, there is a lower dimensional vari-
able that mediates the relationship between X and W ;
see Example 6.3.

In general it is difficult to characterize exactly when
a model will be generically identifiable, but an impor-
tant special case comes when W ’s dependence on X
is completely unrestricted: that is, our model makes
no restriction on p(w |x) no matter what the value of
p(x). This variation independence is known as a ‘pa-
rameter cut’, or simply a cut [4].

Theorem 3.2. Let M be a model for (X,W ) with a



cut between X and W |X, such that p(w |x) is unre-
stricted and the marginal model for p(x) is a variety
of dimension dx − 1− l.

Then given p(x|w), the variety defined by the fibre

F (p) ≡ {q(x,w) ∈M : q(x |w) = p(x |w)}

generically has dimension max(0, dw − 1− l). In par-
ticular, p(x,w) is generically k-identifiable for some
k ∈ N if and only if dw ≤ l + 1.

The quantity l is the number of independent con-
straints on the marginal model for X. We note that
Theorem 3.2 implies that some constraints on p(x) are
needed; when l = 0 the inequality in Theorem 3.2 is
only satisfied if W is constant, meaning that there is
in fact no selection.

Proof. Since p(x |w) is known, it is equivalent to con-
sider the set α(w) such that α(w)p(x |w) ∈ F (p). That
is, we need α(w) such that q(x) =

∑
w α(w)p(x |w)

is contained in the marginal model for X; this is pre-
cisely those points q(x) which are in both the marginal
model for X and the column span of the matrix C with
(x,w)th entry cxw = p(x |w).

Let q(x) be a point in both the marginal model for
X and the column span of C. The tangent space of
MX at q(x) is generically of dimension dx − 1 − l by
assumption. Proposition A.1 implies that any l + 1
columns of C are transverse to Tq(MX) (i.e. so that
combining them we recover the entire space), so the di-
mension of the tangent space of the intersection is the
number of remaining columns (all of which are linearly
independent). Of course, if dw < l + 1 then there are
no columns left, so the dimension of the intersection is
max(0, dw − l − 1).

Now, the fibre of interest is the preimage of this in-
tersection under the linear map C. When dw ≤ dx
the map is generically injective, so the dimension of
the preimage under the full rank linear map is also
max(0, dw − l − 1).

On the other hand, if dw > dx then the linear map is
generically surjective, so the intersection is just MX ,
which has dimension dx− l−1 and codimension l. The
preimage of this set under C also has codimension l,
so the dimension of the preimage is dw − l − 1. Note
that dw < dx ≤ l + 1, so in this case dw − l − 1 > 0
and we cannot have identifiability.

It is important to keep in mind that generic identifi-
ability allows for identifiability to fail on interesting
sub-models. It may, therefore, be a serious problem if
W is (conditionally) independent of some part of X.

Y

Z

X W

Figure 2: A graphical model in which p(x, y, z, w) is
not identifiable under selection on W .

Example 3.3. Consider the graphical model in Figure
2, which implies

p(x, y, z, w) = p(y |x)p(z |x)p(x |w)p(w).

In this case Y ⊥⊥ Z |X is a marginal constraint, how-
ever W does not depend arbitrarily on X,Y, Z so we
cannot apply Theorem 3.2. In fact W ⊥⊥ Y, Z |X so

p(x, y, z) = p(y |x)p(z |x)
∑
w

p(w)p(x |w),

which satisfies the required marginal constraint for any
p(w). We cannot, therefore, use this constraint to
identify p(w).

This phenomenon is generalized in the following
lemma.

Lemma 3.4. Suppose distributions in M are of the
form p(x, y, w) = p(y, w)p(x | y, w), where p(x | y, w)
is variation independent of p(y, w). Then p(x, y, w)
is identifiable from p(x, y |w) if and only if p(y, w) is
identifiable from p(y |w).

Proof. We have

p(x, y |w) = p(x | y, w) · p(y |w),

so the two factors are recoverable from p(x, y |w).
Variation independence is a graphoid: p(x | y, w) is
variation independent of p(y, w), so applying the weak
union axiom it is also variation independent of p(w)
given p(y |w) (since these are functions of p(y, w)).
It follows that no restriction is placed on p(w) by
p(x | y, w).

Setting Y to be almost surely constant, the Lemma
above reduces to stating that if p(w) and p(x |w) are
variation independent (i.e. there is a parameter cut
between W and X |W ) then p(x,w) is not identifiable
from p(x |w). In effect no information is shared be-
tween p(w) and p(x |w), so it is fruitless to try to use
one to learn about the other.

In fact our method relies strongly on variation depen-
dence between p(w) and p(x |w). This is related to
the observation of [19] that semi-supervised learning
appears to work well in an ‘anti-causal’ setting (i.e.
W ← X) but not in a causal one (W → X). In



Figure 3: The surface of independence for a 2× 2 con-
tingency table in the probability simplex. The plot-
ted line is the set of convex combinations of the two
marked points; it intersects the surface twice within
the simplex, illustrating the possibility of obtaining
two solutions to the all-binary version of equation (1).

semi-supervised learning one effectively uses the mar-
gin p(w) to provide information about the conditional
p(x |w), but if W is a cause of X then we might ex-
pect that this ‘input’ p(w) is unrelated to the causal
‘mechanism’ p(x |w) and hence do not gain anything
by doing so.

4 Independences

Marginal and conditional independence constraints of-
ten arise in statistical models, commonly from Markov
assumptions such as those implied by causal models.
In this section we shall focus on when p(x,w) is iden-
tifiable in this context.

4.1 Marginal Independence

Consider again Example 1.1 in which X ⊥⊥ Y but we
can only directly observe p(x, y |w). Consider each
p(x, y |w) for w ∈W as a single distribution for X,Y ;
we need to find a convex combination of these distri-
butions which satisfies the independence constraint.

If all the variables are binary we have two 2× 2-tables
in the 3-dimensional probability simplex, and want to
find a point on the line segment between these tables
which lies on the surface of marginal independence.
This is illustrated in Figure 3. Assuming that neither
table lies exactly on the surface, there are three possi-
bilities:

1. the two conditional tables have opposite signed
correlations (or log-odds-ratios), in which case

there is exactly one convex combination that sat-
isfies marginal independence;

2. the two tables have the same sign, and there is no
solution which satisfies the independence;

3. the two tables have the same sign, but there are
one or two convex combinations which satisfy the
independence.

Situation 2 allows the assumption of X ⊥⊥ Y to be
refuted, and corresponds to an inequality constraint
on p(x, y |w). This is the only constraint on this model
in the binary case.

The possibility of two solutions is due to the quadratic
nature of the independence constraint. A line segment
which intersects the surface of independence twice is
shown in Figure 3. If there are two distinct solutions
then there is no way to identify the true distribution
uniquely without further assumptions. However, this
situation can only occur if the joint distribution ex-
hibits a form of Simpson’s paradox: X and Y are posi-
tively (or negatively) correlated within each level ofW ,
but are independent after collapsing across the levels
of W . It has been argued that this happens relatively
rarely in practice [16], and one can see from Figure 4
that it requires the conditional tables to lie in specific
corners of the simplex.

The method extends readily to non-binary X and Y ;
we obtain (dx − 1)(dy − 1) separate quadratics in the
unknown p(w = 0), and they will generically have dis-
tinct solutions; it follows that p(w = 0) is the common
solution to these quadratics, and that the model is
generically identifiable. If W is non-binary then we
obtain quadratic equations in multiple variables, but
analogous results are available.

Lemma 4.1. Consider the modelM on discrete vari-
ables X,Y,W such that X ⊥⊥ Y . Then p(w, x, y) is
generically k-identifiable from p(x, y |w) if and only if
dw − 1 ≤ (dx − 1)(dy − 1). Identifiability fails if either
X ⊥⊥ Y,W or Y ⊥⊥ X,W .

If dw = 2 then p(w, x, y) is 2-identifiable from
p(x,w | y) if X 6⊥⊥ Y |W , and unidentifiable otherwise.

The proof is in the appendix.

Note that, under the causal graphical model in Fig-
ure 1, the causal effect of X on W is given by
p(w | do(x)) = p(w |x). This quantity is never strictly
identifiable from p(x |w), but it is generically identifi-
able from p(x, y |w) under the marginal independence
model.

Note that, although we lose identifiability of p(w) if
(for example) X ⊥⊥ W |Y , we can still test this as a



X Z Y

W

Figure 4: A graph representing a (causal) model im-
plying a conditional independence X ⊥⊥ Y |Z.

causal null hypothesis because it is observable directly
from p(x, y |w).

In the all-binary case, the marginal independence
model is not ‘algebraically testable’ in the sense that
it places no equality constraints on p(x, y |w): thus for
some distributions p(x, y, w) which do not satisfy the
marginal independence, we can follow the procedure
given above and fallaciously ‘recover’ some other dis-
tribution q(w)p(x, y |w) which does satisfy the model.
However in the case where dx = 3, there are two inde-
pendent constraints, so we can use one to recover p(w)
and the other to check the model.

4.2 Conditional Independence

Consider the model defined by the graph in Figure 4,
which implies that X ⊥⊥ Y |Z. Under selection bias
on W we can only observe the conditional distribu-
tion p(x, y, z |w). Following the same approach as in
Example 1.1 we obtain

p(z) · p(x, y, z)− p(x, z) · p(y, z) = 0, ∀x, y, z;

if W is binary we obtain p(x, y, z) = αp(x, y, z|w =
0) + (1− α)p(x, y, z|w = 1), so each factor is linear in
the unknown α = p(w = 0). This gives us quadratic
equations in α, which are generically distinct for each
level of Z.

Lemma 4.2. Let M be the model on X,Y, Z,W de-
fined by X ⊥⊥ Y |Z. Then p(x, y, z, w) is gener-
ically k-identifiable from p(x, y, z |w) if and only if
dw − 1 ≤ (dx − 1)(dy − 1)dz.

If dw = 2 the model is unidentifiable if and only if
X ⊥⊥ Y |Z,W .

The result is really just an application of Lemma 4.1
to separate models for each level of Z. If Z is trivial it
reduces to the marginal independence case. Note that
the condition X ⊥⊥ Y |W,Z for non-identifiability is
testable directly from the observed conditional distri-
bution. The unidentifiability arises because any choice
of p(w) will give the required conditional indepen-
dence.

Particular cases of unidentifiability arise when either
X ⊥⊥ Y,W |Z or Y ⊥⊥ X,W |Z (see Figure 5(a), Ex-
ample 3.3); in fact if W is binary then unidentifiability

X Z Y

W

(a)

X Z Y

W

(b)

Figure 5: Two graphs representing sub-models of the
model in Figure 4. The problem in (a) is not identifi-
able, but (b) is.

is equivalent to at least one of these constraints holding
[9]. In these instances, selecting on W does not destroy
the conditional independence we are using to recover
the joint distribution: we can observe it directly in the
conditional distribution. In a sense, because no struc-
ture is lost, we cannot try to recover it by choosing the
correct margin p(w).

As the next example illustrates, we can find that extra
independences give ‘reduced’ identifiability by mak-
ing some constraints redundant, without leading to
full unidentifiability. In particular, although the all-
binary case of a conditional independence under se-
lection generically gives two non-redundant quadratic
equations, in degenerate cases these equations may
have the same roots.

Example 4.3. Consider the model in Figure 5(b), in
which Z ⊥⊥W |X,Y as well as X ⊥⊥ Y |Z. In this case

p(x, y, z |w) = p(z |x, y) · p(x, y |w).

In order to have X ⊥⊥ Y |Z we need p(x, y, z) =
p(x, z)p(y | z). So since p(x, y, z) = p(z |x, y)p(x, y) =
p(z |x, y)

∑
w p(x, y |w)p(w), we need to pick p(w) so

that the odds-ratio between X and Y exactly cancels
out the x, y factor of p(z |x, y). This gives a single
quadratic equation; and solution to this gives p(w = 0)
such that p(w)p(x, y, z |w) is inside the model, so we
have generic 2-identifiability. Note that although there
is only one equation to solve in one unknown, un-
like the marginal independence model this one is alge-
braically testable, since Z ⊥⊥ W |X,Y can be checked
directly from the observed conditional p(x, y, z |w).

The example shows that no three-way interaction
is present between X,Y, Z in p(x, y, z |w), and that
this remains true for any weighted combination∑
w α(w)p(x, y, z |w). If the three-way interaction is

zero then the two constraints X ⊥⊥ Y |Z = 0 and
X ⊥⊥ Y |Z = 1 become equivalent, thus we have a
partial degeneracy: there is only one non-redundant
constraint to fulfil. This issue is explored more gener-
ally in Section 5.1.



5 Directed Acyclic Graph Models

In the previous sections, we used directed acyclic
graphs (DAGs), also known as Bayesian networks,
to represent marginal and conditional independences.
Here we give explicit results for situations where the
model is defined by a DAG, such as is typical for causal
models. A DAG model is defined by a recursive fac-
torization according to the structure of a graph, or
equivalently a collection of conditional independence
constraints. Let G be a directed acyclic graph with
disjoint sets of vertices V ∪̇W representing vectors of
random variables XV , XW . We make use of the fairly
standard terminology of parents (paG), children, an-
cestors (anG), etc. See, for example, [17].

We will assume that our distribution obeys the Markov
property with respect to a DAG G, so that

p(xV , xW ) =
∏

v∈V ∪W
p(xv |xpa(v)).

No other constraints are imposed.

Our first result notes that for the purposes of recover-
ing from selection on XW , we can ignore any variables
which are not ancestors of W in G.

Lemma 5.1. Let p(xV |xW ) be a conditional distribu-
tion from a DAG. Then p(xV , xW ) is identifiable from
p(xV |xW ) if and only if p(xan(W )\W , xW ) is identifi-
able from p(xan(W )\W |xW ).

Proof. If V 6= anG(W ) \ W then there exists some
childless v ∈ V in G. Hence there is a parame-
ter cut between W ∪ V \ {v} and {v}|W ∪ V \ {v},
so p(xV , xW ) = p(xv |xV \v, xW ) · p(xV \v, xW ) where
p(v |xV \v, xW ) = p(xv |xpa(v)) is variation indepen-
dent of p(xV \v, xW ). The result then follows from
Lemma 3.4 and repeating over all v 6∈ anG(W ).

In light of this result, we henceforth assume that all
variables are ancestors of the selection variables W .

5.1 Hierarchical Models

A hierarchical model overXV is the set of distributions
p(xV ) which factorize as

p(xV ) =
∏
C∈C

φC(xC)

for some collection of inclusion maximal sets C; undi-
rected graphical models and decomposable models
are special cases. Note that if p(xV , xW ) is hier-
archical with maximal sets C, then p(xV |xW ) =
p(xV , xW )/p(xW ) also factorizes into functions over
the maximal sets C ∪ {W}. Any DAG model is con-
tained in the hierarchical model with maximal sets

{v} ∪ paG(v), which has consequences for our condi-
tional distributions.

Lemma 5.2. Let p(xV , xW ) obey the global Markov
property for a DAG G on V ∪W . Then p(xV |xW ) is
of the form

p(xV |xW ) = φW (xW )
∏

v∈V ∪W
φv(xv, xpa(v)). (2)

That is, a hierarchical function with maximal sets W
and {v} ∪ paG(v), v ∈ V ∪W .

This follows directly from writing out the factorization
for DAGs.

Note that (2) yields algebraically testable constraints
on p(xV |xW ), but these constraints do not give any
way to identify p(xW ). Clearly the true p(xV , xW )
must satisfy the same hierarchical model, but so will
any distribution of the form q(xW )p(xV |xW ).

Proposition 5.3. Let M be the model implied by a
DAG G, and M the hierarchical model with maximal
sets

C =
{
{v} ∪ paG(v) : v ∈ V ∪W

}
.

Then p(xV , xW ) is generically k-identifiable from
p(xV |xW ) only if dw − 1 ≤ d(M)− d(M).

In particular p(xV , xW ) is generically k-identifiable
from p(xV |xW ) only if G is not decomposable.

The proof is given in the appendix. Proposition 5.3 is
illustrated by Example 3.3 where the model is indeed
decomposable, while in Example 4.3 it is not decom-
posable. We conjecture that the converse of Proposi-
tion 5.3 also holds, so that if dw − 1 ≤ d(M)− d(M)
then generic k-identifiability follows. We can obtain
the following weaker result from Theorem 3.2, how-
ever.

Proposition 5.4. Let G be a DAG with vertices V ∪
{w} such that paG(w) = V , and such that G imposes
l independent constraints on XV . Then p(xV , xw) is
identifiable from p(xV |xw) if and only if dw ≤ l + 1.

6 Causal Models and Examples

In the context of causal inference, our results will be
useful when it is known a priori that the causal effect
of interest is identified from p(x,w), p(x), or p(w|x).
Before quantifying a causal effect, one may first want
to test the null hypothesis of no causal effect. As no-
ticed before, when the null translates into a condi-
tional independence (or absence of a directed edge in
a DAG), this may actually hamper identification, but
we conjecture that in these cases the null can always be
checked directly from a factorization of p(x|w) itself;
the result from [8] is an example of this.



Example 6.1. It may be plausible that the causal
effect of X on W , p(w|do(x)), is identified given a
sufficient set of covariates C, e.g. by the back-door
formula. In the context of a case control study, how-
ever, one would then often just estimate the (condi-
tional) causal odds-ratio between X and W given C
as the most straightforward causal quantity. Our re-
sults would be useful if data on additional covariates
Z is available, where it is known that, for example,
X ⊥⊥ Z |C because subject matter tells us that X
is only determined by C. The conditional indepen-
dence then imposes the sort of constraints which may
enable identification of p(x, c, z, w). Hence we can ob-
tain other causal effect measures, such as risk differ-
ences or risk ratios. In particular we can obtain the
intervention distribution p(y|do(x)) by integrating out
C, so that unconditional causal parameters can be re-
ported which are more easily compared with results
from randomized controlled trials. However, problems
may occur: if the association between Z and W is
weak, identification becomes unstable, as with a weak
instrument in instrumental variable methods. Addi-
tionally, if W represents a very rare disease, then the
marginal distribution of X is approximately the same
as that for the controls, p(x) ≈ p(x|w = 0), so recov-
ering p(x) exactly will typically not lead to interesting
new insights. However, our method could still be used
for sensitivity analysis in such situations.

Example 6.2. Consider the causal model represented
by the graph in Figure 6 under selection on X4. This
model arises in the context of dynamic treatment
regimes, where X1, X3 are treatments, X2, X4 out-
comes, and X0 covariates. A typical quantity of in-
terest is p(x4 | do(x1, x3)), which can be expressed as
(for example) either of

p(x4 | do(x1, x3)) =
∑
x0

p(x4 |x1, x3, x0)p(x0)

=
∑
x2

p(x4 |x1, x2, x3)p(x2 |x1).

However neither of these quantities is a function of
p(x0123 |x4), so we need to recover the distribution
p(x4) before proceeding. The graph exhibits the
conditional independence constraints X0 ⊥⊥ X1 and
X0, X1 ⊥⊥ X3 |X2 and these independences are not
visible after selection on X4, so they provide a method
for recovering p(x4).

The conditional distribution has the form of a hierar-
chical model

p(x0123 |x4) = φ(x0, x1, x2)φ(x2, x3)φ(x0, x1, x3, x4),

and so q(x4)p(x0123 |x4) factorizes in the same way for
any margin q(x4). Notice that the constraints which
are lost are precisely that X0 ⊥⊥ X1 and X0 ⊥⊥ X3 |X2.

1 2 3

0

4

Figure 6: Directed acyclic graph in which certain con-
ditional distributions are identifiable after selecting on
X4.

X Z Y

U

W

Figure 7: A graph with a ‘choke point’ for identifica-
tion.

These constitute (d0−1)(d1−1) and (d0−1)(d3−1)d2
constraints respectively, but the three-way interaction
X0, X2, X3 is not present in the hierarchical model,
so in fact there are only (d0 − 1)(d3 − 1) additional
constraints from the conditional independence (this is
essentially the same as what happens in Example 4.3).
Thus we can generically identify the model only if

(d0 − 1)(d1 + d3 − 2) ≥ d4 − 1.

In the all-binary case this corresponds to two con-
straints to resolve one parameter.

Example 6.3. The ability to identify distributions in
DAG models may suffer from ‘choke points’ caused by
lower dimensional variables. Consider the model in
Figure 7 with selection on W . Then p(x, y, z, u |w) =
p(x, y, z |u)p(u |w), so that provided du − 1 ≤ (dx −
1)(dy − 1)dz we can generically identify p(u) from
the first factor. However, knowing p(u) and p(u |w)
will not allow us to generically identify p(w) unless
dw ≤ du. Such a lack of identification is because
p(w |x, y, z) is not unrestricted if dw > du, leading to a
rank deficiency of the matrix with entries p(x, y, z |w)
and violating the conditions of Lemma 3.1. Note, how-
ever, that this rank problem is detectable even if U is
unobserved.

7 Discussion

We envisage that the practical application of our re-
sults will work as follows. In a given data situation,
we would need to know that sampling was subject to
selection and which variable(s) this affected. Then, a
set of marginal or conditional independences the true



distribution should obey needs to be postulated. Iden-
tifiability can then be checked using our results and if
it holds the full model can be fitted with appropriate
numerical procedures. Note that if these postulated
constraints are just enough to enable identifiability
they cannot empirically be tested and must be based
on subject matter knowledge which will typically be
informed by causal assumptions.

In principle it is a relatively straightforward matter
to fit these models; to perform maximum likelihood
estimation we need to maximize the conditional log-
likelihood

lX|W (p) ≡
∑
x,w

nxw log p(x |w)

=
∑
x,w

nxw log p(x,w)−
∑
x,w

nxw log p(w)

= lXW (p)− lW (p).

The TM algorithm of [10] deals with this computation
by linearizing the marginal log-likelihood lW (p) at each
iteration; this may be useful if the marginal likelihood
is hard to calculate but finding its gradient at a single
point is not. Näıve numerical methods can also work.

The likelihood behaves much like that of a latent vari-
able model, with some parameter values leading to
poor identifiability in finite samples. The stronger
the dependence between W and the variable(s) in the
marginal model, the better. If identification fails, this
will be manifested as slow convergence and a flat log-
likelihood. The likelihood may be multi-modal, so try-
ing different starting points would be advisable.

7.1 Testability and Constraints

The all-binary conditional independence model from
Section 4.2 requires the existence of a common root to
two separate quadratic equations. This corresponds
to a single polynomial constraint on the conditional
probabilities p(x, y, z |w), which can be used to test
the model. Using the computational algebra software
Singular we can compute this polynomial, and deter-
mine that it is homogeneous of degree 8, but it does
not obviously admit a simple interpretation.

Such constraints may be considered analogous to
the Verma constraints of [18, 21], which arise from
marginal distributions of models defined by condi-
tional independence constraints.

7.2 Extensions

All the variables in our causal models were assumed
to be observed, but in principle an extension could be
made to conditional independence or other constraints

which arise in the presence of latent variables. We
conjecture that distributions arising from the graph in
Figure 6 are recoverable even if X0 is unobserved, for
example (this is the Verma model [18, 21]).

Although this paper only considers discrete variables,
some of the results here could be extended to the
case where the marginal model involves continuous
variables, provided the selection variable W is still
discrete. In the marginal independence case (Exam-
ple 1.1), for example, the problem then becomes one
of mixing a finite number of densities fw(x, y) with
weights α(w) such that

∑
w α(w)fw(x, y) factorizes

over x and y. This will not be possible for general
fw so, as in the discrete case, we obtain a testable
constraint on the model.
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A Proofs

Proof of Lemma 4.1. The first part follows from The-
orem 3.2 with l = (dx − 1)(dy − 1), and the failure
under the additional independence from Lemma 3.4.

Suppose dw = 2, write α = p(w = 0). Marginal inde-
pendence entails that p(x, y) − p(x)p(y) = 0 for each
x, y, so using

p(x, y) = αp(x, y |w) + (1− α)p(x, y | w̄)

(here w is used as an abbreviation for w = 0, and w̄ for
w = 1) leads to a quadratic equation axyα

2 + bxyα +
cxy = 0 with coefficients

axy ≡ (p(x |w)− p(x | w̄))(p(y |w)− p(y | w̄))

bxy ≡ −axy − cxy − p(x, y|w) + p(x|w)p(y|w)

cxy ≡ p(x, y|w̄)− p(x|w̄)p(y|w̄).

We have complete unidentifiability if and only if axy =
bxy = cxy = 0 for all x, y. From the forms of cxy and
bxy it is clear that this occurs only if X ⊥⊥ Y |W .

Conversely, if X ⊥⊥ Y |W and X ⊥⊥ Y then for binary
W this implies that either X ⊥⊥W,Y or Y ⊥⊥W,X [9],
so identifiability fails if and only if X ⊥⊥ Y |W .

Proof of Proposition 5.3. We prove the case W =
{w}, from which the main result is a fairly easy ex-
tension.

The map φ : p(xV , xw) 7→ p(xV |xw) mapsM into the
d(M)−dw+1 dimensional space of hierarchical models
after conditioning on Xw; therefore the image ofM⊂
M also lies in a d(M)− dw + 1 dimensional space. It
follows that generic fibres of φ when applied only toM
must have dimension at least d(M)− d(M) + dw − 1,
and in particular have positive dimension if d(M) −
d(M) < dw−1; it follows that d(M)−d(M) ≥ dw−1
is necessary for generic identifiability.

In particular, if G is decomposable then M = M, so
there is no identifiability for any dw ≥ 2.

A.1 Generic Identifiability

Proof of Lemma 3.1. Suppose we find p(w) such that
p(x) =

∑
w p(w) · p(x |w) is contained inMX . This is

simply a sum over the columns of A, so if it is not of full
column rank then we can clearly add any vector in the
kernel of A to p(w) and obtain the same distribution.
Hence p(w) is not identifiable.

Let V be a vector space, and A,B two subspaces of V .
We say A and B are transverse if A+B = V .

Proposition A.1. Let M be a model for (X,W ) in
which there is a parameter cut between X and W |X,
and such that p(w |x) is unrestricted. The matrix C
with entries cxw = p(x |w) generically has full rank
r = min(dx, dw).

In addition, let Cr be any r ≤ dw columns of C, and
E any dx − r dimensional linear space. Generically,
Cr and E are transverse.

Proof. Fix p(x) ∈ MX . Since p(w |x) is unrestricted,
the matrix A with entries axw = p(w |x) satisfies this
conditions asserted for C.

Now let C ′ be the matrix with entries c′xw = axw ·
p(x) = cxw · p(w). This clearly has the same column
span as C. Since C ′ is obtained is just DA, where D
is the non-singular diagonal matrix with entries p(x).
Any restriction of (any subset of) the columns of C ′

to a subspace would imply a similar restriction on A,
so by contradiction no such restriction exists.


