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Causal Claims are Ubiquitous

A varied diet may NOT be healthy: Eating
different types of food causes people to
take in MORE calories that could lead to
weight gain and health problems Ca use, N ot

A new advisory published H e a |th
by the American Heart
Association has warned
Americans that eating a
diet with many food options
can actually lead to you

consuming more calories -
and to obesity. g
e |

- Drinking most days may
‘_ ) protect against diabetes -
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can afford quality
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Distinguishing Between Causal Models

Causality is best inferred from experiments.
But doing experiments is hard (expensive, impractical, unethical...)

Observational data is cheap and readily available. Using it to rule out
some causal models could save a lot of time and effort.

Can it be done?
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Not always... but sometimes!

This is the basis of some causal search algorithms (e.g. PC, FCI).



The Holy Grail: Structure Learning

Given a distribution P from true model (or rather data from P)...
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...and a set of possible causal models...
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...return list of models which are compatible with data.
[Some models are not observationally distinguishable.]

Question for today: is this feasible? How easy/difficult is it?
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Undirected Gaussian Graphical Models
Suppose we have data Xy = (X1, Xa,..., Xp)" ~ N,(0, K~1).

vertex random variable
<
O, X,
graph G model M

If i and j are not joined by an edge, then k; = 0:

— M(G) = {K satisfying (*)}

Xi L X | Xw\gijy- (*)



Undirected Graphs

Undirected graphical models have a lot of nice properties:

e Exponential family of models;

@ convex log-likelihood function, relevant submodels all convex (linear
subspaces);

@ closed under intersection;

rep o

As a consequence, model selection in this class is highly feasible, even
when p > n.



Graphical Lasso

For example, the graphical Lasso and several other methods can be used
to perform automatic model selection via a convex optimization
(Meinshausen and Biihlmann, 2006; Friedman et al., 2008):

minimizexs g — IogdetK+tr(KS)+)\Z|klj|~

i<j

Convexity doesn’t always mean a problem is easy, but...

From Hsieh et al. (2013):

State-of-the-art methods thus do not scale to problems with more
than 20,000 variables. In this paper, we develop an algorithm
..which can solve 1 million dimensional {1-regularized Gaussian
MLE problems.



Directed Graphical Models

graph G model M

— M(G) = {P satisfying (1)}

If i and j are not joined by an edge, then for a certain set C C V' \ {i,j}
we have

Xi L X | Xc. (1)

[Note: can always pick parents of either i or j.]



Directed Acyclic Graphs

Selection in the class of discrete Directed Acyclic Graphs is known to be
NP Complete, i.e. ‘computationally difficult’ (Chickering, 1996).

Guarantees are hard: Cussens uses integer programming to find optimal
discrete BNs for moderate (/50 variables).

Various attempts to develop a ‘directed graphical lasso’ have been made:

@ Shojaie and Michailidis (2010) and Ni et al. (2015) assume a known
causal ordering—reduces to edges being present or missing;

e Fu and Zhou (2013), Gu et al. (2014), Aragam and Zhou (2015)
provide a procedure that is non-convex.

In this talk:

@ We show that it is ‘statistically’ difficult to perform this model
selection.

@ We also show that, even far from ¥ =/ it may be surprisingly
difficult to distinguish between models.



Directed Acyclic Graphs

Selection in the class of discrete Directed Acyclic Graphs is known to be
NP Complete, i.e. ‘computationally difficult’ (Chickering, 1996).

| claim it can also be ‘statistically’ difficult. E.g.: how do we distinguish
these two Gaussian graphical models?

R P Qp

Pxy = 0 Pxy-z = 0

But we have

Pxy-z = 0 — Pxy — Pxz * Pzy = 0

so—if one of p,, or p,, is small—the models will be very similar.



Marginal and Conditional Independence
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Gaussian Graphical Models
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For X 1L Y, we can have any small 7, ¢, and need p,, = 0.

The model X L Y | Z is similar but we need p,, = €.

This is clearly only O(en) from the X L Y model, so we have
2-near-equivalence at the identity matrix.

This extends to any two Gaussian graphical models with the same
skeleton.



A Picture

Suppose we have two sub-models (red and blue).

We intuitively expect to have power to test against alternatives long as
our effect sizes are of order n=1/2.

This applies to testing against the smaller intersection model and also
against the red model.



A Slightly Different Picture

Suppose we have two sub-models with the same tangent space:

~1/2
1/4

This time we still need 6 ~ n
intersection model, but § ~ n™
model!

to obtain constant power against the
to have constant power against the red



Hausdorff Distance
Hausdorff distance is a ‘maximin’ version of distance.

Given two sets A, B the Hausdorff distance between A and B is

(4, 8) = max {sup it |2~ | sup inf 2 b} }

= max {sup d(a, B), sup d(b, A)}
acA beB

sup inf d(z, 1
ze)r;yéy ( y)

Examples

sup inf d(zx,
up Inf d(.y)



k-equivalence

k-equivalence at # amounts to the Hausdorff distance shrinking faster
than X in an e-ball.

Definition (Ferraroti et al., 2002)
We say ©; and ©, are k-equivalent at § € ©; N O, if

dr(©1 N N.(), ©2 N N.(8)) = o(").
They are k-near-equivalent if

dr(©1 N N.(F), ©2 N N.(8)) = O(£X).

Examples.
Intersecting = 1-near-equivalent.

Same tangent cone <= l-equivalent.

For regular models
k-equivalence = (k + 1)-near-equivalence. (k € N)



Statistical Consequences of k-(near-)equivalence

Suppose that regular models ©1,0, C © are k-near-equivalent at 6.

Consider a sequence of local ‘alternatives’ in ©; of the form
0, =00+ n""7" +o(n7);
then:

@ we have limiting power to distinguish ©; from ©; N ©, only if
v < 1/2 (i.e. the usual parametric rate);

@ we have limiting power to distinguish ©; from ©; only if v < 1/(2k).

So if effect size is halved, we need 4% times as much data to be sure we
pick ©; over ©,!



Submodels

Many classes of model (e.g. undirected graphs) are closed under
intersection, so there is some nice submodel M; , = M; N M.

However, suppose that this intersection is not so simple, but contains
several distinct submodels...

Theorem

Let My, M, be algebraic models, regular at 6. Suppose we have
algebraic models N, ..., Ny (also regular at 0) such that

NN My =N;N My, foreachi=1,...,k,

and the spaces TSy(N;)* all have linearly independent bases.

Then My and M, are k-near-equivalent at 0.




Marginal and Conditional Independence

X1LY|Z XLy

These models coincide if X 1L Z or Y L Z (the axes).



Gaussian Verma Constraint

From Drton, Sullivant and Sturmfels (2009), the Verma constraint for a
Gaussian version of this model is given by zeroes of

f(R) = p1a — p1apls — P1aP33 + P1ap12P13023
— p13p3a + p13p23pas + Plap13psa — P12pispos
= (p14 — p13p3a)(1 — piy — po3 + p23p12pas) + - -

— p13(p3ap23 — p24)(p23 — p12p13)-

This collapses to X; L Xy | X5 if any of
p13 =0 p24.3 =10 p23.1 = 0.

Hence theorem satisfied with k = 3.

In this case we would generally need effect sizes ~ n=1/6(1)



Angle of Surfaces

What happens if we instead consider the angle between these two
surfaces?

We can simulate ‘typical’ covariances by sampling uniformly from the
space of correlation matrices (Joe, 2006).

Unfortunately, this leads to matrices with small eigenvalues.

We get around this by sampling using a beta distribution with a=b =2
(and scaling suitably).

We can set p1o =0
p = 3: need either p13 = 0 or py3 = 0, so pick the former arbitrarily.

p = 4: can use the Jacobian to fix p12.32 = 0 (but keep p12 = 0).



Angles (p = 3)

For the 3-variate case, this gives the set of principal angles shown below:
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Angles (p = 3)

We shift using the Jacobian of pi2.3, but keep within the model p1, = 0.
The changes in deviance are shown on this histogram.
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We made moves in correlation space of magnitude 0.001, and selected
n = 1,000 as the sample size.



Angles (p = 4)

For |V| = 4 we choose a = b = 10 to get more plausible covariance

matrices.
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Angles (p = 4)

This gives the following power on the deviance scale:
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For a movement of 0.001 in correlation space, with n = 1,000.



Moral

More or less wherever the models p12 = 0 and p12.3 = 0 intersect, it's
hard to tell which one is right.

The same story holds for p1o = 0 and p12.34 = 0.

So be careful!



Summary

@ Model selection in some classes of graphical models is harder than in
others; this is at least partly explained by the local geometry of the
model classes.

@ Most Gaussian graphical models with the same skeleton are at least
‘2-near-equivalent’, and are therefore statistically hard to distinguish.

@ Even relatively far from diagonal ¥, it can be tricky to tell which of
several models is most likely.



Thank you!
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Tangent Cones
Definition
The tangent cone of © (at ), is the set of vectors TCy(©) of the form

lim (0, — 0),

for sequences 6,, — 6.

For regular models this a vector space (the tangent space), the
derivative of © at 6.




Chain Graphs

For LWF chain graphs, distinct models may may be k-near-equivalent for
arbitrarily large k.

Xi L Xy | X2, X X1 L X4 | X, X3
Xo L X3 | X1, X Xo 1L X3 | X1, Xs
X1 L X X1 L Xo | Xa, X

Their shared tangent cones are A1z @ A3q & Npg.

These models are identical whenever any of X; 1L X3, X3 L X4, or
Xo 1L X, holds.



Other Kinds of Overlap

Note it is not necessary for two models to share submodels in order to
have k-equivalence for any k > 1.




Nested Models

T OB

Recall the constraints distinguishing these models:

ZP(X4 | x1,X2,x3) - p(x2 | x1,x3) is independent of x;
X2
Zp(m | x1,%2,x3) - p(x2 | x1) is independent of xi.
X2

Note, the two models will become equivalent if either

("] XQJ.LX3|X]_,0I’
(*] X4 JLXQ | Xl,X3.

Hence the Theorem is satisfied with k = 2.



Time Series

Time series models may also be 2-near-equivalent:

An MA(1) and AR(1) model have respective correlation matrices:

1 p 0 0 - 1 60 6 ¢
p 1 p 0 - 6 1 6 62
0 p 1 6 1 0

p 0

So for small 6 or p these may be hard to distinguish.
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