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Correlation does not imply causation

“Dr Matthew Hobbs, head of research for Diabetes UK, said
there was no proof that napping actually caused diabetes.”
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Distinguishing Between Causal Models
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Distinguishing Between Causal Models

In order to compare the models, we need to understand in what
ways causal models will differ, both:

observationally;

under interventions.

This question has been much studied in statistics and computer
science: e.g. Robins (1986), Verma and Pearl (1990), Richardson
and Spirtes (2002), Tian and Pearl (2002), Richardson et al.
(2017).

It has also been of interest in the quantum literature: e.g. Bell
(1964), Clauser et al. (1969), Fritz (2012), Chaves et al. (2014),
Pienaar (2016).
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Directed Acyclic Graphs

vertices

edges

no directed cycles

directed acyclic graph (DAG), G

4

21 3

5

If w → v then w is a parent of v : paG(4) = {1, 2}.

If w → · · · → v then w is a ancestor of v .
An ancestral set contains all its own ancestors.
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DAG Models (aka Bayesian Networks)

4

2

graph G

1 3

5

⇐⇒ p(x1, . . . , xk) =
∏

i p(xi | xpa(i)).

(factorization)

model M(G)

So in example above:

p(xV ) = p(x1) · p(x2) · p(x3 | x2) · p(x4 | x1, x2) · p(x5 | x3, x4)

M(G) is also precisely those distributions such that:

Xi ⊥⊥ X[i−1]\pa(i) |Xpa(i), i ∈ V ,

so is defined by polynomial constraints (algebraic variety).
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Causal Models

A DAG can also encode causal information:

4

21 3

5

If we intervene to experiment on X4, just delete incoming edges.

In distribution, just delete factor corresponding to X4:

p(x1, x2, x3, x4, x5) = p(x1) · p(x2) · p(x3 | x2) · p(x4 | x1, x2) · p(x5 | x3, x4).

p(x1, x2, x3, x5 | do(x4)) = p(x1) · p(x2) · p(x3 | x2) · p(x5 | x3, x4).

All other terms preserved.
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The Marginal Model

Can represent any causal model with hidden variables in following
compact format; we call this an mDAG (Evans, 2016).

C

E

DA

U V

W

FB

Only observed variables on graph G; latent variables represented by
red hyper edges.

Can put the latents back: call this the canonical DAG Ḡ.
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Model Description
So we can associate an mDAG with a set of models.

1 2 3 4

But the definition of the marginal model is implicit:

p(x1, x2, x3, x4) =

∫
p(u) p(x1) p(x2 | x1, u) p(x3 | x2) p(x4 | x3, u) du

Actually determining whether or not a distribution satisfies the
marginal Markov property is hard.

Our strategy:

derive some properties satisfied by the marginal model;

define a new (larger) model that satisfies these properties;

work with the larger model.
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Ancestral Sets

1 2 3

U

4

44

p(x1, x2, x3, x4)

=

∫
u
p(u) p(x1) p(x2 | x1, u) p(x3 | x2) p(x4 | x3, u) du

=

∫
u
p(u) p(x1) p(x2 | x1, u) p(x3 | x2)

∫
x4

p(x4 | x3, u) dx4 du

=

∫
u
p(u) p(x1) p(x2 | x1,u) p(x3 | x2) du

= p(x1) p(x3 | x2)

∫
u
p(u) p(x2 | x1,u) du

= p(x1) p(x3 | x2) p(x2 | x1)

.

Density has form corresponding to ancestral sub-graph.
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Factorization into Districts
A district is a maximal set connected by latent variables:

1

2

3

4

5
U

V

∫
u,v

p(u) p(x1 | u) p(x2 | u) p(v) p(x3 | x1, v) p(x4 | x2, v) p(x5 | x3) du dv

=

∫
u

p(u) p(x1 | u) p(x2 | u) du

∫
v

p(v) p(x3 | x1, v) p(x4 | x2, v) dv p(x5 | x3)

= q12(x1, x2) · q34(x3, x4 | x1, x2) · q5(x5 | x3) .

=
∏
i

qDi (xDi | xpa(Di )\Di
)

Each qD piece should come from the model based on district D
and its parents (we denote this G[D]).
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Nested Model
Using these two rules alternately leads to algorithm of Tian and Pearl
(2002).

Say (conditional) probability distribution p recursively factorizes
according to mDAG G and write p ∈ N (G) if:

1. Ancestrality. ∫
xv

p(xV | xW ) dxv ∈ N (G−v )

for each childless v ∈ V .

2. Factorization into districts.

p(xV | xW ) =
∏
D

qD(xD | xpa(D)\D)

for districts D, where qD ∈ N (G[D]).

Note that one can iterate between 1 and 2.

This defines the nested Markov model N (G). (Richardson et al., 2017)
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Example

1 2 3 44

4 is childless, so if p ∈ N (G), then

p(x1, x2, x3) = p(x1) · p(x2 | x1) · p(x3 | x2),

and therefore X1 ⊥⊥ X3 |X2.
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Example

1

1

2 3

3

4

Axiom 2:

p(x1, x2, x3, x4) = q1(x2) · q3(x3 | x2) · q24(x2, x4 | x1, x3).

Can consider the district {2, 4} and factor q24...
and then apply Axiom 1 to marginalize 2.

We see that X1 ⊥⊥ X3,X4 [q24].

This places a non-trivial constraint on p.
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Completeness
We know

M(G) ⊆ N (G).

Could there be other constraints?
For discrete observed variables, we know not.

Theorem (Evans, 2015a)

For discrete observed variables, the constraints implied by the
nested Markov model are algebraically equivalent to causal model
with latent variables (with suff. large latent state-space).

‘Algebraically equivalent’ = ‘up to inequalities’.
Any ‘gap’ M(G) ⊂ N (G) is due to inequality constraints (e.g.
Bell/CHSH inequalities).

So in particular they have the same dimension.

The same result should apply to Bayesian networks with
non-classical hidden variables.
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Getting the Picture

M

(nested) N
L (example latent
variables model)
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Smoothness and Fitting

Nested model is a good approximation to the marginal model: in
the discrete case it can be explicitly parameterized and fitted.

Theorem (Evans and Richardson, 2015)

Discrete nested models are curved exponential families (so the
models are manifolds).

This has very nice statistical implications, including for the
marginal model.

All parameters are of the form p(X | do(Y )): easily interpretable.
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The First Inequality

1 2

3 4

U

The nested model for this graph tells us that

X1 ⊥⊥ X2,X4 X2 ⊥⊥ X1,X3.

Letting (e.g.) p01|ij = P(X3 = 0,X4 = 1 | X1 = i ,X2 = j), the
CHSH inequalities are:

0 ≤ p00|ij + p11|i ′j + p11|ij ′ − p11|i ′j ′ ≤ 1

for all i , i ′, j , j ′ ∈ {0, 1}, i + i ′ = 1, j + j ′ = 1.
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The IV Model

Another important network is the instrumental variables (IV)
model.

Z X Y

U

The DAG encodes a probability factorisation:

p(x , y , z) =

∫
p(u) p(z) p(x | z , u) p(y | u, x) du.

of which we can observe the Z ,X ,Y margin.
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Instrumental Inequalities

Z X

U

Y
The assumption Z 6→ Y is important.
Can we check it?

Pearl (1995) showed that if the observed variables are discrete,

max
x

∑
y

max
z

P(X = x ,Y = y |Z = z) ≤ 1.

This is the instrumental inequality, and can be empirically tested.

Example:

P(X = x ,Y = 0 |Z = 0) + P(X = x ,Y = 1 |Z = 1) ≤ 1

No obvious graphical interpretation to Pearl’s inequalities.
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The Problem

General inequalities seem much worse:

p(1, 2 | 2) + p(1, 1 | 3) + p(1, 2 | 1) + p(2, 2 | 2) + p(2, 1 | 1) ≤ 2

where p(i , j | k) = P(X = i ,Y = j |Z = k); (Bonet, 2001).

It’s also not clear how to get
inequalities for other graphs: X

Z Y

U1 U2

Pearl’s proof does not obviously generalise.

Computational linear algebra only works for one latent variable.
Also very computationally intensive.

Finding complete bounds in general is probably intractably hard.
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A Different Interpretation

Z X Yx = 0

U

Suppose we ‘pretend’ to Y that X = 0.
Use this to define a new (fictitious) distribution P∗

p∗(x , y , z) =

∫
p(u) p(z) p(x | z , u) p(y | u, x = 0) du.

Can’t observe P∗ but:

Consistency: P(x = 0, y | z) = P∗(x = 0, y | z) for each z , y ;
and

Independence: Y ⊥⊥ Z under P∗.

These constraints give precisely the IV inequality (Evans, 2012).
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Compatibility

Probabilities may not be compatible with independences.

Consider a partial probability table p(x = 0, y | z):

X = 0 Z = 0 Z = 1

Y = 0 2/3 0

Y = 1 0 2/3

There is no way to construct a joint distribution over X ,Y | Z
with these probabilities such that Y and Z are independent.

Most likely to happen if p(x) is large for some value of x .
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A Generalisation
For a DAG G and set of variables W , let GW be the graph after
removing edges pointing away from W .

Theorem (Evans, 2012)

If X and Y are d-separated by Z in GW , then for each fixed
{W = w} the probabilities

P(x , y ,w | z), x , y , z .

are compatible with a distribution P∗, in which X ⊥⊥ Y |Z [P∗].

The simpler corollary:

Corollary

If X and Y are not joined by an edge, nor share a hidden common
cause, then a constraint is always induced on a discrete joint
distribution.
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Example

X Y

W Z

X and Y cannot be d-separated in this graph =⇒ no
independences.

Remove edges emanating from W , see that now X ⊥⊥ Y |Z .
So P(x , y ,w | z) compatible with X ⊥⊥ Y |Z for each w .

By symmetry: P(x , y , z |w) compatible with X ⊥⊥ Y |W for all z .

Lemma

Testing compatibility of a probability distribution with a
conditional independence is a convex optimisation problem.
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Limitations / Other Inequality Results

This method does not give Bell/CHSH type inequalities.

Fritz (2012) shows that pairwise latent variables do not induce
saturated model. See also Evans (2016).

1

2 3

1

2 3

Chaves et al. (2014) derive entropic inequalities: completely
non-parametric, but generally weaker. For the IV model:

I (Y : Z |X ) + I (X : Z ) ≤ H(X ).
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Equivalence on Three Variables

Markov equivalence (i.e. determining whether two models are
observably the same) is hard.

Using Evans (2016) there are 8 unlabelled marginal models on
three variables.
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But Not on Four!

On four variables, it’s still not clear whether or not the following
models are saturated: (they are of full dimension in the discrete
case)

1 2

3 4
1 2 4

3

1 2 3 4
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Fitting Marginal Models

The ‘implicit’ nature of marginal models makes them hard to
describe and to test.

We can test constraints individually, but this is very inefficient.

On the other hand

the nested model N (G) can be parameterized and fitted;

latent variable models L(G) can be parameterized and fitted;

L(G) ⊆M(G) ⊆ N (G).

So if we accept the latent variable model, or reject the nested
model, same applies to marginal model.
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That Picture Again

M

(nested) N
L (example latent
variables model)
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Example

Very often causal models include random quantities that we cannot
observe.

Wisconsin Longitudinal Study:

over 10,000 Wisconsin high-school graduates from 1957;

data on primary respondents collected in 1957, 1975, 1992,
2004.

Suppose we want to know whether drafting has impact on future
earnings, controlling for education/family background.

X family income in 1957;

E education level;

M drafted into military;

Y respondent income 1992;

U unmeasured confounding.

X E M Y

U
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Wisconsin Data Example

Take only male respondents who were either drafted or didn’t enter
military at all (before 1975).

Continuous values dichotomised close to median.

Four binary indicators:

X family income >$5k in 1957;

E education post high school;

M drafted into military;

Y respondent income >$37k in 1992.

1,676 complete cases in 24 contingency table (minimum count 16).
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Results
model deviance d.f.

(a) X E M Y (saturated) 15

(b) X E M Y 31.3 2

(c) X E M Y 5.6 6

No evidence that military service has any effect on income after
controlling for education.

Removing any edges from (c) strongly rejected.

Also find strong residual income effect:

P(Y = 1 | do(X = 0)) = 0.36 P(Y = 1 | do(X = 1)) = 0.50.
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Some Extensions
We know nested models are curved exponential families, so justifies
classical statistical theory:

likelihood ratio tests have asymptotic χ2-distribution;

BIC as Laplace approximation of marginal likelihood.

Since marginal models are the same dimension, they share these
properties (except on their boundary).

Also, latent variable models become regular if state-space is large
enough.

Can also include continuous covariates with outcome as
multivariate response. e.g.:

X E M Y

C
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Summary

(Causal) DAGs with latent variables induce non-parametric
constraints;

can use these to define nested models;

avoids some problems and assumptions of latent variable
models: non-regularity, unidentifiability;

discrete parameterization and fitting algorithms available;

solves some boundary issues (at expense of larger model
class).

Some limitations:

Complete inequality constraints seem very complicated
(though some hope exists);

nice rule for model equivalence not yet available for either
nested or marginal models.
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Thank you!
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Causal Coherence of mDAGs

If P is represented be a DAG in a causally interpreted way, then
intervening on some set of nodes C ⊆ V can be represented by
deleting incoming edges to C in G. Call that graph GC

Theorem (Evans, 2015)

If C ⊆ O then p(GC ,O) = p(G,O)C ; i.e. the projection respects
causal interventions.
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Causal Coherence

If we intervene on some observed variables, this ‘breaks’ their
dependence upon their parents.

1 2

3
u

4

w

1

−→
intervene

2

3
u

4

w

1 2

3

4

↓ project

1

−→
intervene

2

3

4

↓ project
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d-Separation

A path is a sequence of edges in the graph; vertices may not be
repeated.

A path from v to w is blocked by C ⊆ V \ {v ,w} if either

(i) any non-collider is in C :

c c

(ii) or any collider is not in C , nor has descendants in C :

d d

e

Two vertices v and w are d-separated given C ⊆ V \ {v ,w} if all
paths are blocked.
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Latent Variable Models
Traditional latent variable models would assume that the hidden
variables are (e.g.) Gaussian, or discrete with some fixed number
of states.

Advantages: can fit fairly easily (e.g. EM algorithm, Monte Carlo).

X1

X2

H1 H2 H3

X3

X4

X5

But:

assumptions may be wrong!

latent variables lead to singularities and nasty statistical
properties (see e.g. Drton, Sturmfels and Sullivant, 2009)
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