
Parameterizing and Simulating
from Causal Models

Robin Evans, University of Oxford
Vanessa Didelez, Leibniz Institute, Bremen

Pacific Causal Inference Conference
11th September 2021

1 / 27



Outline

1 A Problem

2 A Solution

3 Main Results

4 Simulations

5 Conclusion

2 / 27



Causal Models

Take a simple two-step dynamic treatment model
(Havercroft and Didelez, 2012).

A Z B

U

Y

A,B treatments (randomized);

Z intermediate outcome;

Y final outcome;

U unobserved confounders.
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Identification

A Z B

U

Y

Question: how do the treatments causally affect the final outcome?
Or, if we treated everyone with (a, b), what would happen to Y ?

We want P(y | do(a, b))

We can identify this with a g-formula (Robins, 1986):

P(a, z , b, y) = P(a) · P(z | a) · P(b | a, z) · P(y | a, z , b)

P(z , y | do(a, b)) = 1 · P(z | a) · 1 · P(y | a, z , b)

then just take the margin of this quantity over y .
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Parameterizing Causal Models

We know how to identify the causal distribution

P(y | do(a, b)) =
∑
z

P(z | a) · P(y | a, z , b);

but this leaves open other questions.

1. Parameterization. How can we describe the joint distribution P
given a particular parametric form for P(y | do(a, b))?

2. Simulation. How can we obtain samples from P?

3. Fitting. How can we fit a parametric model for P(y | do(a, b)) using
data from P with likelihood-based methods?
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Obstacles

Havercroft and Didelez (2012) note
that simulating data from this model
such that P(y | do(a, b)) doesn’t
depend on a is difficult. A Z B

U

Y

In discussing marginal structural models Robins (2000, p107) notes:

“...the difficulty in performing likelihood-based inference... since
the likelihood is a computational nightmare.”

This clearly seems like a challenging problem!
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Marginal Models

Define P∗(y , z | a, b) ≡ P(y , z | do(a, b))

= P(y | a, z , b) · P(z | a).

Given interventional distribution P∗ suppose we have:

A

Z

B

U

Y

a model for P∗(y | a, b);

a model for P∗(z | a, b) = P(z | a);

These do not fully specify P∗(z , y | a, b)
so what else do we need?

Answer: some sort of dependence measure for P∗

(e.g. conditional odds ratio):

φ∗ZY |AB(z , y | a, b).

Any additional information is now redundant.
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A Principled Approach

For our problem, separately specify (nice, parametric) models for:

P(a, z , b); (‘the past’)

P(y | do(a, b)); (quantity of interest)

φ∗ZY |AB . (some dependence measure)

These quantities are variation independent∗, and have no redundancy.
Consequently we call this the frugal parameterization.

We can use techniques from marginal modelling to reconstruct the
log-likelihood for P∗, and then simply add on terms relating P and P∗.

∗Depending on choice of φ∗
ZY |AB .
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Marginal Modelling

Modelling φ∗ZY |AB is dependent on type of data, but:

discrete case: use odds ratios (Bergsma and Rudas, 2002);

Gaussian case: partial correlation ρZY ·AB ;

general A,B, continuous Y ,Z : copula models.

Note that copulas are particularly helpful for simulation, and are also
amenable to likelihood-based methods.
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Setup
In general, we consider three (or four) groups of variables:

C covariates

X treatments and effect modifiers

Y outcomes

Z other variables to be marginalized X

C

Z

Y

Note that there is not necessarily a strict causal order on X and Z :

in our example, we had X = (A,B).

X1 Z X2

U

Y
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Main Result

X Y

Z

C

Theorem
Consider an outcome Y , and causally prior variables C ,Z ,X . Then can
smoothly parameterize the joint distribution P(c , z , x , y) with models for:

P(c , z , x) P∗(y | c , x) φ∗ZY |CX (z , y | c , x).

Any of C ,Z ,X ,Y can be vector valued.

This gives us the best of both worlds: a coherent joint distribution and
a marginal specification of our choice.
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Proof Sketch

Here is a sketch of the algorithm we use:

1. Construct P∗(z | c , x) from P(c , z , x).

2. Then combine with P∗(y | c , x) and φ∗ZY |CX to obtain P∗(y , z | x , c).

(e.g. if φ∗ZY |CX is a conditional odds ratio, use IPF;

if a copula use inverse CDFs.)

3. Then obtain P(c , x , z)/P∗(z | c , x), and multiply by P∗(y , z | x , c).
This gives P(c , z , x , y).
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Cognate Probability Distributions
Definition

We say that P∗(y | x) is cognate to P(y | x) if there is some kernel
(conditional distribution) w(z | x) such that

P∗(y | x) =
∑
z

P(y | z , x) · w(z | x).

Examples.

P(y | x) =
∑
z

P(y | z , x) · P(z | x).

P(y | do(x)) =
∑
z

P(y | z , x) · P(z).

E[Y (x) | X = x ′] =
∑
z

E[Y | Z = z ,X = x ] · P(z | x ′),

so can also parameterize effect of treatment on the treated:

ETT = E[Y (1)− Y (0) | X = 1].
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Simulating Observational Data

We assume that the distribution (P∗) can be simulated from.

This is straightforward with a fully discrete or multivariate Gaussian
model, or one using a copula.

Then, for each triple (zi , xi , yi ) ∼ P∗ we use rejection sampling with the
ratio

P∗(zi , xi )

P(zi , xi )

to obtain samples from P.

Note that since only the X -Z margin is changed, it does not affect
P(y | z , x).

Hence the distribution of P∗(y | x) will be preserved within P.
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Rejection Sampling
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Copula Model Example

Take the two-step dynamic model
from Havercroft and Didelez (2012). A Z B Y

U

We choose:

A,B ∼ Bernoulli( 1
2 ) independently;

Z | A = a ∼ Exp(exp(a));

Y | do(A = a,B = b) ∼ N(−1 + a/2 + b/2, 1);

To join Y and Z , use a Gaussian copula model with correlation
2 expit(1 + a/2)− 1;

After resampling:

B | A = a,Z = z ∼ Bernoulli(expit(a/2 + z/2)).
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Copula Model Example

Take a sample of size n = 106.

We first estimate the weights by fitting a GLM for B | A,Z .

Then fit a reweighted linear model to this data; the bias is very small:

coefficient truth estimate std err. z-value p-value
intercept −1.0 −1.000 0.002 0.20 0.83
A 0.5 0.495 0.003 −1.65 0.10
B 0.5 0.498 0.003 −0.55 0.58
A · B 0.0 0.004 0.004 1.04 0.30

This suggests our simulation is very good.
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IPW Example

Bias over 1,000 fits to simulated data (n = 103).
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Näıve Model Example

Bias over 1,000 fits to simulated data (n = 103).
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Summary

Causal models are marginal models (most of the time!);

there is a large literature on marginal models to look at for other
cases.

This has applications to marginal structural models, survival models,
dynamic treatment regimes, structural nested models, stationarity,
transportability...;

can also simulate from arbitrary instrumental variables models;

as well as parametrization and simulation, we can fit models using
likelihood-based methods.

Limitation: with continuous outcomes simulation (generally) relies
on rejection sampling, which may be inefficient in higher dimensions.
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Thank you!
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Example

Suppose we wish to model

Y | do(X = x) ∼ Gamma(µx , φµ
2
x)

where E[Y | do(X = x)] = µx = exp(β0 + β1x); along with specifying
that

Z ∼ N(ν, τ 2),

logX |Z = z ∼ N(α0 + α1z , σ
2)

and that there is a Gaussian copula between Y and Z with partial
correlation 2 expit(γ0 + γ1x)− 1.

This specification is guaranteed to give a unique joint distribution, for
any values of ν, τ 2, α0, α1, β0, β1, φ, γ0, γ1 and σ2.
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Example

Suppose we pick:

α0 = −1 α1 = 1 β0 = −4 β1 = 0.5

γ0 = 0.5 γ1 = 0.02 ν = 0 σ2 = τ 2 = 1 φ = 2

Then we can simulate very quickly to obtain say 104 observations from
P∗.
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Plot of logX against Z
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Plot of logY against logX
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Copula Model Example

Suppose we simulate n = 104 observations this way.

If we fit an ordinary gamma GLM with logEY = β0 + β1a + β2b, then
the results are wrong:

coefficient truth estimate std err. p-value
intercept 0.5 0.429 0.017 2.0× 10−5

A −0.2 −0.150 0.020 0.012
B −0.3 −0.151 0.020 1.8× 10−13
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Copula Model Example

We can also use maximum likelihood estimation for the correctly
specified model to estimate these parameters directly. This gives:

coefficient truth estimate std err. p-value
intercept 0.5 0.486 0.019 0.46
A −0.2 −0.159 0.026 0.12
B −0.3 −0.276 0.029 0.41
A · B 0 0.001 0.040 0.98

The MLE where we allow the copula to depend upon A and B gives:

coefficient truth estimate std err. p-value

intercept 0.5 0.463 0.021 0.08
A −0.2 −0.144 0.028 0.05
B −0.3 −0.255 0.030 0.14
A · B 0.0 0.005 0.042 0.91
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Example: Survival Models

Young and Tchetgen Tchetgen (2014) consider survival models:

Ut−1

Lt−1

At−1

Yt−1

Ut

Lt

At

Yt

What is probability of survival (Y = 1) to next time point, given
treatment?

P(Yt = 1 |Yt−1 = 1, do(a1, . . . , at)).

No problem! What remains is the past (i.e. distribution of A’s and Z ’s)
and the dependence structure between Z ’s and Yt given A1, . . . ,At .
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Example: Survival Models

Hence simulation becomes relatively easy under a null; e.g.:

P(Yt |Yt−1 = 1, do(a1, . . . , at)) = P(Yt |Yt−1 = 1).

Young and Tchetgen Tchetgen note that this is not at all trivial.

“We therefore may be limited to simulation scenarios with the
proposed algorithm to unrealistic settings if we wish simultane-
ously to generate data under the null.”

Can also easily incorporate, for e.g., a stationarity assumption:

P(Yt |Yt−1 = 1, do(At = a)) = g(a).
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Generalising Odds Ratios

Let p be a density for X ,Y .

The odds ratio for X ,Y is the equivalence class of functions φXY such
that

φXY (x , y) = p(x , y) · u(x) · v(y).

some functions u, v > 0.

Some points to note:

defined for any distribution with a density;

p is a member of the equivalence class;

there’s no requirement for p to be positive;

iterative proportional fitting recovers the joint distribution.
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Specifying Margins

Let rXY (x , y) be a joint distribution with odds ratio φXY .

Theorem
Let pX and pY be densities such that pX � rX and pY � rY . Then there
exists a unique joint distribution with margins pX , pY and odds ratio φXY .

This follows from Csiszár (1975).

This is a form of variation independence: we can paste together
essentially any dependence structure with any margins and get a
distribution.
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Examples

For discrete variables this reduces to the ‘usual’ odds ratio;

for Gaussian variables:

φXY ∼ exp

(
ρxy

σxσy (1− ρ2)

)
multivariate t-distribution (x = (x , y)T ):

φXY ∼
(
1 + ν−1xTΣ−1x

)−ν/2−1
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Margins

Let’s think about the simplest example of this kind.

X Y

Z

P(y | do(x)) =
∑
z

P(z)P(y | x , z).

This is a ‘margin’ of the joint distribution

P∗(z , y | x) ≡ P(z)P(y | x , z).

To work with P∗ we need to model the XY -margin (because that’s the
quantity of interest) and the XZ -margin (to enforce the independence).

So what’s left to know?

39 / 27



Odds Ratios

X Y

Z

Bergsma and Rudas’ results show that the remaining information is
precisely the odds ratio between Y and Z conditional upon X .

Attempting to specify any additional information given this, P(y | do(x))
and P(x , z) doesn’t really make any sense.
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Odds Ratios

X Y

Z

But there’s nothing to stop us specifying that the parameters β and γ are
from this model:

logitP(y | x , z) = µ+ αx + βz + γxz .

But µ and α are not free.

Take home - you can have part of a nice model on X ,Y ,Z just don’t
expect all of it!
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g-null Paradox Illustration

Suppose that we have continuous
X and Y , but binary Z .

Z Y

X

An innocuous seeming model would be:

E[Y |X = x ,Z = z ] = µ+ βx + γz .

But:

E[Y |X = x ] =
∑
z

E[Y |X = x ,Z = z ] · P(Z = z | X = x)

= µ+ βx + γP(Z = 1 | X = x).

Now P(Z = 1 | X = x) can’t be a linear function of x (unless it’s
constant). So E[Y |X = x ] is only a linear function if either:

Z ⊥⊥ X ; or

γ = 0 (so Y ⊥⊥ Z | X ).

42 / 27


	A Problem
	A Solution
	Main Results
	Simulations
	Conclusion

