Model Selection and Local Geometry

Robin Evans, University of Oxford

CRM Montréal
20th June 2018

Causal Claims are Ubiquitous

Distinguishing Between Causal Models

Observational data is cheap and readily available. Using it to rule out some causal models could save a lot of time and effort.

Can it be done?

$p(t, s, d)=p(t) p(d) p(s \mid t, d)$ $T \Perp D$

$$
\begin{gathered}
p(t, s, d)=p(t) p(s \mid t) p(d \mid s) \\
T \Perp D \mid S
\end{gathered}
$$

Not always... but sometimes!

This is the basis of some causal search algorithms (e.g. PC, FCI).

The Holy Grail: Structure Learning

Given a distribution P from true model (or rather data from P)...

...and a set of possible causal models...

(Z)

(2)

...return list of models which are compatible with data. [Some models are not observationally distinguishable.]

Question for today: is this feasible?

An Example

Model on left satisfies $X_{1} \Perp X_{4} \mid X_{3}$, in other words:

$$
\sum_{x_{2}} p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \cdot p\left(x_{2} \mid x_{1}, x_{3}\right) \quad \text { is independent of } x_{1}
$$

Model on right satisfies the Verma constraint:

$$
\sum_{x_{2}} p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \cdot p\left(x_{2} \mid x_{1}\right) \quad \text { is independent of } x_{1} .
$$

Hence, the two models can be distinguished, and direction of the $2-3$ edge identified.

However, empirically this seems to be difficult to do correctly (Shpitser et al., 2013). Why?

Outline

(1) Introduction
(2) Graphical Models
(3) The Problem

4 Tangent Cones and k-Equivalence
(5) Overlap
(6) Methods

Undirected Gaussian Graphical Models

Suppose we have data $X_{V}=\left(X_{1}, X_{2}, \ldots, X_{p}\right)^{T} \sim N_{p}\left(0, K^{-1}\right)$.
vertex

(a) | random variable |
| :---: |

graph \mathcal{G}

$$
\mathcal{M}(\mathcal{G})=\{K \text { satisfying }(*)\}
$$

If i and j are not joined by an edge, then $k_{i j}=0$:

$$
\begin{equation*}
X_{i} \Perp X_{j} \mid X_{V \backslash\{i, j\}} \tag{*}
\end{equation*}
$$

Undirected Gaussian Graphical Models

So in an undirected Gaussian graphical model represents zeroes in a concentration matrix by missing edges in an undirected graph:

$$
\left(\begin{array}{ccc}
k_{x x} & 0 & k_{x z} \\
0 & k_{y y} & k_{y z} \\
k_{x z} & k_{y z} & k_{z z}
\end{array}\right) \quad\left(\begin{array}{ccc}
k_{x x} & k_{x y} & 0 \\
k_{x y} & k_{y y} & k_{y z} \\
0 & k_{y z} & k_{z z}
\end{array}\right) \quad\left(\begin{array}{ccc}
k_{x x} & 0 & 0 \\
0 & k_{y y} & k_{y z} \\
0 & k_{y z} & k_{z z}
\end{array}\right)
$$

Undirected Graphs

Undirected graphical models have a lot of nice properties:

- Exponential family of models;
- convex log-likelihood function, relevant submodels all convex (linear subspaces);
- closed under intersection;

As a consequence, model selection in this class is highly feasible, even when $p \gg n$.

Graphical Lasso

For example, the graphical Lasso and several other methods can be used to perform automatic model selection via a convex optimization (Meinshausen and Bühlmann, 2006; Friedman et al., 2008):

$$
\operatorname{minimize}_{K \succ 0} \quad-\log \operatorname{det} K+\operatorname{tr}(K S)+\lambda \sum_{i<j}\left|k_{i j}\right| .
$$

Convexity doesn't always mean a problem is easy, but...
From Hsieh et al. (2013):
State-of-the-art methods thus do not scale to problems with more than 20,000 variables. In this paper, we develop an algorithm ... which can solve 1 million dimensional ℓ_{1}-regularized Gaussian MLE problems.

Directed Graphical Models

graph \mathcal{G}

$$
\mathcal{M}(\mathcal{G})=\{P \text { satisfying }(\dagger)\}
$$

We do not allow directed cycles: $v \rightarrow \cdots \rightarrow v$.
If $i \rightarrow j$ say i is a parent of j. Denote

$$
\operatorname{pa}_{\mathcal{G}}(j)=\{i: i \rightarrow j \text { in } \mathcal{G}\}
$$

If i and j are not joined by an edge, and introducing $i \rightarrow j$ does not create a directed cycle, then

$$
X_{i} \Perp X_{j} \mid X_{\mathrm{pa}_{\mathcal{G}}(j)}
$$

Algebraic Models

Example:

$$
\begin{aligned}
& X_{2} \Perp X_{1} \\
& X_{3} \Perp X_{1} \mid X_{2} \\
& X_{4} \Perp X_{3} \mid X_{1}, X_{2} \\
& X_{5} \Perp X_{1} \mid X_{3}, X_{4} \\
& X_{5} \Perp X_{2} \mid X_{3}, X_{4} .
\end{aligned}
$$

For Gaussian models, $X_{i} \Perp X_{j} \mid X_{C}$ means

$$
\begin{aligned}
\rho_{i j \cdot C} & \equiv \operatorname{Cor}\left(X_{i}, X_{j} \mid X_{C}\right)
\end{aligned}=0 .
$$

These are polynomial constraints, so this is an algebraic model.

Markov Equivalence

Sometimes two graphs imply the same set of independences: these are said to be Markov equivalent.

Two directed acyclic graphs are Markov equivalent if and only if they have the same skeleton, and the same unshielded colliders: $\rightarrow \leftarrow$

Directed Acyclic Graphs

Selection in the class of discrete Directed Acyclic Graphs is known to be NP Complete, i.e. 'computationally difficult' (Chickering, 1996).

Guarantees are hard: Cussens uses integer programming to find optimal discrete BNs for moderate (≈ 50 variables).

Various attempts to develop a 'directed graphical lasso' have been made:

- Shojaie and Michailidis (2010) and Ni et al. (2015) assume a known causal ordering—reduces to edges being present or missing;
- Fu and Zhou (2013), Gu et al. (2014), Aragam and Zhou (2015) provide a procedure that is non-convex.

In this talk:

- We show that it is not possible to develop such a convex, 'lasso-like' procedure to select directed graphical models.
- In fact we will show that (for similar reasons) it is also 'statistically' difficult to perform this model selection.

Directed Acyclic Graphs

Selection in the class of Directed Acyclic Graphs is known to be NP Complete, i.e. 'computationally difficult' (Chickering, 1996).

I claim it can also be 'statistically' difficult. E.g.: how do we distinguish these two Gaussian graphical models?

$$
\rho_{x y}=0
$$

$$
\rho_{x y \cdot z}=0
$$

But we have

$$
\rho_{x y \cdot z}=0 \quad \Longleftrightarrow \quad \rho_{x y}-\rho_{x z} \cdot \rho_{z y}=0
$$

so-if one of $\rho_{x z}$ or $\rho_{z y}$ is small-the models will be very similar.

Marginal and Conditional Independence

$X \Perp Y \mid Z$

A Picture

Suppose we have two sub-models (red and blue).

We intuitively expect to have power to test against alternatives long as our effect sizes are of order $n^{-1 / 2}$.

This applies to testing against the smaller intersection model and also against the red model.

A Slightly Different Picture

Suppose we have two sub-models with the same tangent space:

This time we still need $\delta \sim n^{-1 / 2}$ to obtain constant power against the intersection model, but $\delta \sim n^{-1 / 4}$ to have constant power against the red model!

Hausdorff Distance

Hausdorff distance is a 'maximin' version of distance.
Given two sets A, B the Hausdorff distance between A and B is

$$
\begin{aligned}
d_{H}(A, B) & =\max \left\{\sup _{a \in A} \inf _{b \in B}\|a-b\|, \sup _{b \in B} \inf _{a \in A}\|a-b\|\right\} \\
& =\max \left\{\sup _{a \in A} d(a, B), \sup _{b \in B} d(b, A)\right\}
\end{aligned}
$$

Examples

k-equivalence

k-equivalence at θ amounts to the Hausdorff distance shrinking faster than ε^{k} in an ε-ball.

Definition (Ferraroti et al., 2002)

We say Θ_{1} and Θ_{2} are k-equivalent at $\theta \in \Theta_{1} \cap \Theta_{2}$ if

$$
d_{H}\left(\Theta_{1} \cap N_{\varepsilon}(\theta), \Theta_{2} \cap N_{\varepsilon}(\theta)\right)=o\left(\varepsilon^{k}\right)
$$

They are k-near-equivalent if

$$
d_{H}\left(\Theta_{1} \cap N_{\varepsilon}(\theta), \Theta_{2} \cap N_{\varepsilon}(\theta)\right)=O\left(\varepsilon^{k}\right) .
$$

Examples.

Intersecting \Longrightarrow 1-near-equivalent.
Same tangent cone \Longleftrightarrow 1-equivalent.
For regular models
k-equivalence $\Longrightarrow(k+1)$-near-equivalence. $(k \in \mathbb{N})$

Gaussian Graphical Models

$$
\begin{gathered}
X \Perp Y \\
\left(\begin{array}{ccc}
1 & 0 & \eta \\
& 1 & \varepsilon \\
& & 1
\end{array}\right)
\end{gathered}
$$

$$
X \Perp Y \mid Z
$$

$$
\left(\begin{array}{ccc}
1 & \varepsilon \eta & \eta \\
& 1 & \varepsilon \\
& & 1
\end{array}\right)
$$

For $X \Perp Y$, we can have any small η, ε, and need $\rho_{x y}=0$.
The model $X \Perp Y \mid Z$ is similar but we need $\rho_{x y}=\varepsilon \eta$.
This is clearly only $O(\varepsilon \eta)$ from the $X \Perp Y$ model, so we have 2-near-equivalence at the identity matrix.

This extends to any two Gaussian models with the same skeleton.

Time Series

Time series models may also be 2-near-equivalent:
An MA(1) and $A R(1)$ model have respective correlation matrices:

$$
\left(\begin{array}{ccccc}
1 & \rho & 0 & 0 & \cdots \\
\rho & 1 & \rho & 0 & \cdots \\
0 & \rho & 1 & \rho & \\
\vdots & & & \ddots &
\end{array}\right) \quad\left(\begin{array}{ccccc}
1 & \theta & \theta^{2} & \theta^{3} & \cdots \\
\theta & 1 & \theta & \theta^{2} & \cdots \\
\theta^{2} & \theta & 1 & \theta & \\
\vdots & & & \ddots &
\end{array}\right)
$$

So for small θ or ρ these may be hard to distinguish.

Statistical Consequences of k-(near-)equivalence

Suppose that models $\Theta_{1}, \Theta_{2} \subseteq \Theta$ are k-near-equivalent at θ_{0}.

Consider a sequence of local 'alternatives' in Θ_{1} of the form

$$
\theta_{n}=\theta_{0}+\delta n^{-\gamma}+o\left(n^{-\gamma}\right)
$$

then:

- we have limiting power to distinguish Θ_{1} from $\Theta_{1} \cap \Theta_{2}$ only if $\gamma \leq 1 / 2$ (i.e. the usual parametric rate);
- we have limiting power to distinguish Θ_{1} from Θ_{2} only if $\gamma \leq 1 /(2 k)$.

So if effect size is halved, we need 4^{k} times as much data to be sure we pick Θ_{1} over Θ_{2} !

Submodels

Suppose that we have two models $\mathcal{M}_{1}, \mathcal{M}_{2}$.
Many classes of model (e.g. undirected graphs) are closed under intersection, so there is some nice submodel $\mathcal{M}_{12}=\mathcal{M}_{1} \cap \mathcal{M}_{2}$.

However, suppose that this intersection is not so simple, but contains several distinct submodels...

Theorem

Suppose we have submodels $\mathcal{N}_{1}, \ldots, \mathcal{N}_{k}$ such that

$$
\mathcal{N}_{i} \cap \mathcal{M}_{1}=\mathcal{N}_{i} \cap \mathcal{M}_{2}, \quad \text { for each } i=1, \ldots, k,
$$

and the spaces $\mathrm{TC}_{\theta}\left(\mathcal{N}_{i}\right)^{\perp}$ are all linearly independent.
Then \mathcal{M}_{1} and \mathcal{M}_{2} are k-near-equivalent at any $\theta \in \mathcal{M}_{1} \cap \mathcal{M}_{2} \cap \mathcal{N}_{1} \cap \cdots \cap \mathcal{N}_{k}$.

Marginal and Conditional Independence

$$
X \Perp Y \mid Z \quad X \Perp Y
$$

These models coincide if $X \Perp Z$ or $Y \Perp Z$ (the axes).

Nested Models

Recall the constraints distinguishing these models:

$$
\begin{array}{ll}
\sum_{x_{2}} p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \cdot p\left(x_{2} \mid x_{1}, x_{3}\right) & \text { is independent of } x_{1} \\
\sum_{x_{2}} p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \cdot p\left(x_{2} \mid x_{1}\right) & \text { is independent of } x_{1}
\end{array}
$$

Note, the two models will become equivalent if either

- $X_{2} \Perp X_{3} \mid X_{1}$, or
- $X_{4} \Perp X_{2} \mid X_{1}, X_{3}$.

Hence the Theorem is satisfied with $k=2$.

Discriminating Paths

In fact things can get much worse.

$$
\begin{aligned}
& x_{1} \Perp x_{3} \\
& x_{4} \Perp x_{1} \mid x_{2}, x_{3}
\end{aligned}
$$

$X_{1} \Perp X_{3}$
$X_{4} \Perp X_{1} \mid X_{2}$

These graphs become Markov equivalent if either:

- $X_{1} \Perp X_{2}$ (so $\rho_{12}=0$);
- $X_{2} \Perp X_{3}$ (so $\rho_{23}=0$);
- $X_{3} \Perp X_{4} \mid X_{1}, X_{2}$ (so $\rho_{34 \cdot 12}=0$).

So the theorem is satisfied with $k=3$.

Discriminating Paths

This can be generalized into a discriminating path of arbitrary length.

In principle, one can distinguish:

$$
\begin{array}{ll}
\leftrightarrow k \leftrightarrow & X_{1} \Perp X_{k+1} \mid X_{2}, \ldots, X_{k-1} \\
\leftarrow k \rightarrow & X_{1} \Perp X_{k+1} \mid X_{2}, \ldots, X_{k-1}, X_{k} .
\end{array}
$$

But: these graphs become Markov equivalent if any of:

- $X_{i} \Perp X_{i+1}$ for any $i=1, \ldots, k-1$;
- $X_{k+1} \Perp X_{k} \mid X_{1}, \ldots, X_{k-1}$.

These are k distinct submodels, so the two models are k-near-equivalent.

Simulation

Take the discriminating path model:

We generate data from the relevant Gaussian conditional independence model.

Fit the two models, and pick one with the smaller deviance.
We fix $\psi=0.5$, let $\rho \rightarrow 0$, and see what sample size is required to maintain power.
Our results predict we will need $n \sim \rho^{-2 k}$.

Discriminating Paths

effect size $\rho_{s}=0.4 \times 2^{-s}$, sample size $n=n_{\text {init }} \times 2^{2 s k}$.

Required Sample Sizes

Sample sizes used for solid lines at $s=1$ and $s=2$.

k	$\rho=0.2$	$\rho=0.1$
2	512	8,192
3	16000	1024000
4	204800	52428800
5	5.1 million	5.24 billion

Discrete DAG Models

For discrete, fully observed models, the situation is slightly different.

$$
X \Perp Y
$$

$X \Perp Y \mid Z$

These models correspond to zero log-linear parameters

$$
\lambda_{X Y}^{X Y}=0 \quad \lambda_{X Y}^{X Y Z}=\lambda_{X Y Z}^{X Y Z}=0,
$$

and clearly have different dimensions.
Even though $\lambda_{X Y}^{X Y}$ and $\lambda_{X Y}^{X Y Z}$ are 'similar' in the same manner as before, we have an extra parameter to play with.

Sketch

Qualitatively, the two discrete models look a bit like this:

$$
X \Perp Y \mid Z \quad X \Perp Y
$$

Discrete Directed Graphs

Proposition

For any two discrete DAGs, either the models are identical or they are not 1-equivalent*.
*Actually, set of points at which they are 1-equivalent for any sensible polynomial submodel is measure zero.

In fact this result extends to ancestral graph models (Richardson and Spirtes, 2002), but not nested models.

Statistically we have a reprieve: there is always at least one parameter that we can use to distinguish between any two models.

Overlap

However, models that are not 1-equivalent can still be problematic.

Definition

Say that two models Θ_{1}, Θ_{2} overlap at $\theta \in \Theta_{1} \cap \Theta_{2}$ if

$$
\mathrm{TC}_{\theta}\left(\Theta_{1} \cap \Theta_{2}\right) \subset \mathrm{TC}_{\theta}\left(\Theta_{1}\right) \cap \mathrm{TC}_{0}\left(\Theta_{2}\right) .
$$

So in other words, there are directions of approaching θ in each model separately, but not in the intersection.

Overlap is weaker than 1-equivalence:

Proposition

If two regular algebraic models are 1 -equivalent at θ, then either they are identical in a neighbourhood of θ, or the models overlap.

Computational Consequences of Overlap

Theorem
Suppose that models $\Theta_{1}, \Theta_{2} \subseteq \Theta$ overlap (and are regular) at θ_{0}. Then there is no smooth reparameterization of Θ such that Θ_{1} and Θ_{2} are both convex.

This means that we can't adapt methods like the Lasso without making the problem non-convex (or using a more drastic relaxation).

Lack of Convexity

Example. For usual undirected Gaussian graphical models, one can solve use the graphical Lasso, which solves the convex program:

$$
\operatorname{minimize}_{K \succ 0} \quad-\log \operatorname{det} K+\operatorname{tr}(K S)+\lambda \sum_{i<j}\left|k_{i j}\right| .
$$

Example. For graphical models of marginal independence, the parameter spaces are defined by constraints of the form $\left\{\rho_{i j}=0\right.$ whenever $\left.i \nsim j\right\}$.
The likelihood not convex in terms of covariance, but one can instead solve a problem like

$$
\operatorname{minimize}_{\Sigma \succ 0} \quad\|\Sigma-S\|^{2}+\lambda \sum_{i, j}\left|\sigma_{i j}\right|
$$

[Less efficient, but consistent for model selection and estimation has $n^{1 / 2}$-rate.]

This approach cannot be taken for models with overlap, because the angle between the models is always zero.

Towards Methods

An idea: can we use the fact that other marginal log-linear parameters are 'close', to deduce the correct log-linear representation?

If we 'blur' our likelihood by the right amount, we could obtain the correct sparsity level.

Then:

- learn the tangent space model;
- use that with earlier result to reconstruct the DAG.

Penalised Selection

Consider the usual Lasso approach:

$$
\arg \min _{\boldsymbol{\lambda}}\left\{-l(\boldsymbol{x}, \boldsymbol{\lambda})+\nu_{n} \sum_{A \subseteq V}\left|\lambda_{A}\right|\right\}
$$

if $\nu_{n} \sim n^{\gamma}$ for $\frac{1}{2} \leq \gamma<1$ then the maxima $\hat{\lambda}^{n}$ are consistent for model selection.

Theorem

Let

$$
\boldsymbol{\lambda}^{n}=\mathbf{0}+\boldsymbol{\lambda} n^{-c}+o\left(n^{-c}\right)
$$

be a sequence of points inside the DAG model for \mathcal{G}. If $\frac{1}{4}<c<\frac{1}{2}$, the lasso will be consistent for the 'representation' of \mathcal{G}.

Asymptotic regime may not be realistic, but one can specify a sparsity level to choose penalization level in practice.

Summary

- Model selection in some classes of graphical models is harder than in others; this is at least partly explained by the local geometry of the model classes.
- Most Gaussian graphical models with the same skeleton are at least ' 2 -near-equivalent', and are therefore statistically hard to distinguish.
- Discrete directed acyclic graph models are not 1-equivalent, but do 'overlap': this leads to computational problems.
- In particular, no 'directed graphical lasso' can exist.
- New methods could be created to use this information about the model geometry.

Thank you!

References I

Aragam and Zhou. Concave penalized estimation of sparse Gaussian Bayesian networks. Journal of Machine Learning Research, 16:2273-2328, 2015.
Bergsma and Rudas. Marginal log-linear parameters, Ann. Statist., 2002.
Chickering. Learning Bayesian networks is NP-complete, Learning from data. Springer New York, 121-130, 1996.
Evans. Model selection and local geometry. arXiv:1801.08364, 2018.
Evans and Richardson. Marginal log-linear parameters for graphical Markov models, JRSS-B, 2013.

Ferrarotti, Fortuna, and Wilson. Local approximation of semialgebraic sets. Annali della Scuola Normale Superiore di Pisa, 1:1-11, 2002.
Fu and Zhou. Learning sparse causal Gaussian networks with experimental intervention: regularization and coordinate descent. JASA, 108(501):288-300, 2013
Gu, Fu and Zhou. Adaptive penalized estimation of directed acyclic graphs from categorical data. arXiv:1403.2310, 2014.
Hsieh et al. BIG \& QUIC: Sparse inverse covariance estimation for a million variables. NIPS, 2013.

Meinshausen and Bühlmann. High-dimensional graphs and variable selection with the lasso. Annals of Statistics, 1436-1462, 2006.

References II

Ni, Stingo and Baladandayuthapani. Bayesian nonlinear model selection for gene regulatory networks. Biometrics, 71(3):585-595, 2015
Robins. A new approach to causal inference in mortality studies with a sustained exposure period-application to control of the healthy worker survivor effect, Math. Modelling, 1986.

Shojaie and Michailidis. Penalized likelihood methods for estimation of sparse high-dimensional directed acyclic graphs. Biometrika, 97(3):519-538, 2010.
Uhler, Raskutti, Bühlmann, Yu. Geometry of the faithfulness assumption in causal inference, Annals of Statistics, 2013.

Zwiernik, Uhler and Richards. Maximum likelihood estimation for linear Gaussian covariance models. JRSS-B, 2016.

Tangent Cones

Definition

The tangent cone of Θ (at θ), is the set of vectors $\mathrm{TC}_{\theta}(\Theta)$ of the form

$$
\lim _{n} \alpha_{n}\left(\theta_{n}-\theta\right),
$$

for sequences $\theta_{n} \rightarrow \theta$.

For regular models this a vector space (the tangent space), the derivative of Θ at θ.

Chain Graphs

For LWF chain graphs, distinct models may may be k-near-equivalent for arbitrarily large k.

$$
\begin{gathered}
X_{1} \Perp x_{4} \mid X_{2}, X_{3} \\
X_{2} \Perp x_{3} \mid x_{1}, x_{4} \\
X_{1} \Perp x_{2}
\end{gathered}
$$

$$
\begin{aligned}
& X_{1} \Perp x_{4} \mid X_{2}, x_{3} \\
& X_{2} \Perp x_{3} \mid X_{1}, x_{4} \\
& X_{1} \Perp x_{2} \mid X_{3}, X_{4}
\end{aligned}
$$

Their shared tangent cones are $\Lambda_{13} \oplus \Lambda_{34} \oplus \Lambda_{24}$.
These models are identical whenever any of $X_{1} \Perp X_{3}, X_{3} \Perp X_{4}$, or $X_{2} \Perp X_{4}$ holds.

Other Kinds of Overlap

Note it is not necessary for two models to share submodels in order to have k-equivalence for any $k \geq 1$.

Discrete Verma Constraint

Consider the two models:

The are defined by the constraints:

$$
\begin{array}{ll}
\sum_{x_{2}} p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \cdot p\left(x_{2} \mid x_{1}, x_{3}\right) & \text { is independent of } x_{1} \\
\sum_{x_{2}} p\left(x_{4} \mid x_{1}, x_{2}, x_{3}\right) \cdot p\left(x_{2} \mid x_{1}\right) & \text { is independent of } x_{1}
\end{array}
$$

Though distinct, these constraints become identical if either:

$$
X_{2} \Perp X_{3}\left|X_{1} \quad X_{4} \Perp X_{2}\right| X_{1}, X_{3} .
$$

This satisfies the theorem, so the models are 2-near-equivalent.

Gaussian Verma Constraint

From Drton, Sullivant and Sturmfels (2009), the Verma constraint for a Gaussian model on four variables is given by zeroes of fourth order polynomial on correlations:

$$
\begin{aligned}
f(R)= & \rho_{14}-\rho_{14} \rho_{12}^{2}-\rho_{14} \rho_{23}^{2}+\rho_{14} \rho_{12} \rho_{13} \rho_{23} \\
& \quad-\rho_{13} \rho_{34}+\rho_{13} \rho_{23} \rho_{24}+\rho_{12}^{2} \rho_{13} \rho_{34}-\rho_{12} \rho_{13}^{2} \rho_{24} \\
= & \left(\rho_{14}-\rho_{13} \rho_{34}\right)\left(1-\rho_{12}^{2}-\rho_{23}^{2}+\rho_{23} \rho_{12} \rho_{13}\right)+\cdots \\
& \quad-\rho_{13}\left(\rho_{34} \rho_{23}-\rho_{24}\right)\left(\rho_{23}-\rho_{12} \rho_{13}\right) \\
= & \rho_{14}-\rho_{13} \rho_{34}+O\left(\varepsilon^{3}\right) \\
= & \rho_{14}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Model is not only locally linearly equivalent to the model of $X_{1} \Perp X_{4}$, but also quadratically equivalent to the model $X_{1} \Perp X_{4} \mid X_{3}$.
In this case we would generally need effect sizes $\sim n^{-1 / 6}($! $)$

