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Causal Claims are Ubiquitous
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Distinguishing Between Causal Models

Observational data is cheap and readily available. Using it to rule out
some causal models could save a lot of time and effort.

Can it be done?

O———0  O0—60—0

p(t,s,d) = p(t) p(d) p(s|t, d) p(t,s,d) = p(t) p(s|t) p(d|s)
TLD TLD|S

Not always... but sometimes!

This is the basis of some causal search algorithms (e.g. PC, FCI).
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The Holy Grail: Structure Learning

Given a distribution P from true model (or rather data from P)...

O—O—0

...and a set of possible causal models...

00 o0 °p ap op I
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...return list of models which are compatible with data. [Some models are
not observationally distinguishable.]

Question for today: is this feasible?
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An Example

DO

(YY)
D NEr O OO O35 Ond(

Model on left satisfies X; 1L X; | X3, in other words:

Zp(x4 | x1,%2,x3) - p(x2 | x1,X3) is independent of x;.
X2

Model on right satisfies the Verma constraint:

Z p(xa | x1,x2,x3) - p(x2 | x1) is independent of xj.

X2

Hence, the two models can be distinguished, and direction of the 2 — 3
edge identified.

However, empirically this seems to be difficult to do correctly (Shpitser
et al., 2013). Why?
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Undirected Gaussian Graphical Models
Suppose we have data Xy = (X1, X2, ..., Xp) " ~ N,(0, K~1).

vertex random variable

® 2

graph G model M

If i and j are not joined by an edge, then kj = 0:

= M(G) = {K satisfying (x)}

Xi L X | Xv\gijy (*)
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Undirected Gaussian Graphical Models

So in an undirected Gaussian graphical model represents zeroes in a
concentration matrix by missing edges in an undirected graph:

Y Td g
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Undirected Graphs

Undirected graphical models have a lot of nice properties:

@ Exponential family of models;

@ convex log-likelihood function, relevant submodels all convex (linear
subspaces);

@ closed under intersection;

e o

As a consequence, model selection in this class is highly feasible, even
when p > n.



Graphical Lasso

For example, the graphical Lasso and several other methods can be used
to perform automatic model selection via a convex optimization
(Meinshausen and Biihlmann, 2006; Friedman et al., 2008):

minimizek o flogdetK+tr(K5)+)\Z|kij|-

i<j

Convexity doesn't always mean a problem is easy, but...

From Hsieh et al. (2013):

State-of-the-art methods thus do not scale to problems with
more than 20,000 variables. In this paper, we develop an
algorithm ... which can solve 1 million dimensional
{1-regularized Gaussian MLE problems.



Directed Graphical Models

graph G model M

We do not allow directed cycles: v — --- — v.

= M(G) = {P satisfying (1)}

If i — j say i is a parent of j. Denote

pag(j) ={i:i—jinG}.

If i and j are not joined by an edge, and introducing i — j does not
create a directed cycle, then

Xi 1L )<J | Xpag(j) (T)
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Algebraic Models

Example:

For Gaussian models, X; L X; | Xc means

—

Xo L X;

X3 L Xi| X

Xs L X3 | X1, X
Xs 1L X1 | X3, X,
Xs 1L Xz | Xa, Xa.

pij-c = COI’(X,',)(j | Xc) =0
gij — Z/C(ch)_lzcj =0.

These are polynomial constraints, so this is an algebraic model.
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Markov Equivalence

Sometimes two graphs imply the same set of independences: these are
said to be Markov equivalent.

O— O—©®

Two directed acyclic graphs are Markov equivalent if and only if they
have the same skeleton, and the same unshielded colliders: —+

O—=—G O——-

O—0—®



Directed Acyclic Graphs
Selection in the class of discrete Directed Acyclic Graphs is known to be

NP Complete, i.e. ‘computationally difficult’ (Chickering, 1996).

Guarantees are hard: Cussens uses integer programming to find optimal
discrete BNs for moderate (~50 variables).

Various attempts to develop a ‘directed graphical lasso’ have been made:

@ Shojaie and Michailidis (2010) and Ni et al. (2015) assume a known
causal ordering—reduces to edges being present or missing;

e Fu and Zhou (2013), Gu et al. (2014), Aragam and Zhou (2015)
provide a procedure that is non-convex.

In this talk:

@ We show that it is not possible to develop such a convex, ‘lasso-like’
procedure to select directed graphical models.

o In fact we will show that (for similar reasons) it is also ‘statistically’
difficult to perform this model selection.
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Directed Acyclic Graphs

Selection in the class of Directed Acyclic Graphs is known to be NP
Complete, i.e. ‘computationally difficult’ (Chickering, 1996).

| claim it can also be ‘statistically’ difficult. E.g.: how do we distinguish
these two Gaussian graphical models?

R P Qp

Pxy = 0 Pxy-z = 0

But we have

Pryz =0 = Pry = Pxz* Pzy =0

so—if one of p,, or p,, is small—the models will be very similar.



Marginal and Conditional Independence

X1LY|Z
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A Picture

Suppose we have two sub-models (red and blue).

We intuitively expect to have power to test against alternatives long as
our effect sizes are of order n=1/2,

This applies to testing against the smaller intersection model and also
against the red model.
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A Slightly Different Picture

Suppose we have two sub-models with the same tangent space:

0(?)

—-1/2
—-1/4

This time we still need 6 ~ n
intersection model, but § ~ n
model!

to obtain constant power against the
to have constant power against the red
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Hausdorff Distance
Hausdorff distance is a ‘maximin’ version of distance.

Given two sets A, B the Hausdorff distance between A and B is

(4, 8) = max {sup inf |~ b, sup it la - bl

= max {sup d(a, B), sup d(b, A)}
acA beB

sup in}f/ d(z,y)
Examples gEX Ve

sup inf d(zx,
Sup Inf d(.y)
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k-equivalence

k-equivalence at # amounts to the Hausdorff distance shrinking faster
than £ in an e-ball.

Definition (Ferraroti et al., 2002)
We say ©; and ©, are k-equivalent at § € ©; N O, if

di(©1 N N.(A), ©2 N N.(8)) = o(£X).

They are k-near-equivalent if

dr(©1 N N.(0), ©2 N N.(0)) = O(£9).

Examples.
Intersecting = 1-near-equivalent.

Same tangent cone <= 1l-equivalent.

For regular models
k-equivalence = (k + 1)-near-equivalence. (k € N)
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Gaussian Graphical Models

S P

XLlY XLly|Z
1 0 7 1 en n
1 ¢ 1 ¢

1 1

For X L Y, we can have any small 7, ¢, and need p,, = 0.

The model X L Y | Z is similar but we need py, = en.

This is clearly only O(en) from the X 1L Y model, so we have
2-near-equivalence at the identity matrix.

This extends to any two Gaussian models with the same skeleton.
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Time Series

Time series models may also be 2-near-equivalent:

An MA(1) and AR(1) model have respective correlation matrices:

1 p0 0 - 1 0 6 ¢
p 1 p 0 - 6 1 6 62
0 p 1 1 6

P 6% 0

So for small 6 or p these may be hard to distinguish.



Statistical Consequences of k-(near-)equivalence

Suppose that models ©1,©, C © are k-near-equivalent at fq.

Consider a sequence of local ‘alternatives’ in ©; of the form
Op =00+ n""7 +o(n77);
then:

@ we have limiting power to distinguish ©; from ©; N ©, only if
v < 1/2 (i.e. the usual parametric rate);

@ we have limiting power to distinguish ©; from ©; only if
v < 1/(2k).

So if effect size is halved, we need 4% times as much data to be sure we
pick ©1 over ©,!
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Submodels

Suppose that we have two models Mj, M,.

Many classes of model (e.g. undirected graphs) are closed under
intersection, so there is some nice submodel M1, = M1 N Mo.

However, suppose that this intersection is not so simple, but contains
several distinct submodels...

Theorem
Suppose we have submodels N7, ..., N such that

NN My =N, N My, foreachi=1,...,k,

and the spaces TCy(N;)* are all linearly independent.

Then My and M, are k-near-equivalent at any
e MiNMynNN NN N




Marginal and Conditional Independence

X1Y|Z XLy

These models coincide if X L Z or Y L Z (the axes).
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Nested Models

DO D

1 2 4 1 2 4
@ ® @ ®

Recall the constraints distinguishing these models:

Z p(xa | x1,x2,x3) - p(x2 | x1,x3) is independent of x;

X2

Z p(xa | x1,x2,x3) - p(x2 | x1) is independent of x;.

X2

Note, the two models will become equivalent if either

(] X2JLX3|X1,0I‘
(] X4 _”_XQ | X17X3.

Hence the Theorem is satisfied with k = 2.
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Discriminating Paths

In fact things can get much worse.

oo\@/o @@\@/@

X1J|_X3 Xlll-X3
Xs L X1 | Xo, X Xs L X1 | X

These graphs become Markov equivalent if either:

e X1 L X5 (SO P12 = 0);
o X2 A X3 (SO P23 = 0);
] X3 A X4 | X1,X2 (SO P34.12 = 0)

So the theorem is satisfied with k = 3.
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Discriminating Paths
This can be generalized into a discriminating path of arbitrary length.

In principle, one can distinguish:

— k < XllLXk+1|X2,...,Xk_1

— k — XIJLXk+1|X2,---;Xk—1;Xk~
But: these graphs become Markov equivalent if any of:

@ X; I Xjyi forany i=1,... . k—1,
© Xiy1 L Xy | X1,y Xe—1

These are k distinct submodels, so the two models are k-near-equivalent.
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Simulation
Take the discriminating path model:

We generate data from the relevant Gaussian conditional independence
model.

Fit the two models, and pick one with the smaller deviance.

We fix ¥» = 0.5, let p — 0, and see what sample size is required to
maintain power.

Our results predict we will need n ~ p=2k.
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Discriminating Paths
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Required Sample Sizes

Sample sizes used for solid lines at s =1 and s = 2.

p=0.2 p=0.1
512 8,192

16000 1024000
204800 52428800
5.1 million 5.24 billion

g~ W NX
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Discrete DAG Models

For discrete, fully observed models, the situation is slightly different.

Y

XLy X1Y|Z

These models correspond to zero log-linear parameters

Xy _ XYZ _ \XYZ _
Axy = Axy” = Axyz =0,

and clearly have different dimensions.

Even though AXY and AXY# are 'similar’ in the same manner as before,
we have an extra parameter to play with.



Sketch

Qualitatively, the two discrete models look a bit like this:

XLY|Z XLY
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Discrete Directed Graphs

Proposition
For any two discrete DAGs, either the models are identical or they are
not 1-equivalent*.

*Actually, set of points at which they are 1-equivalent for any sensible
polynomial submodel is measure zero.

In fact this result extends to ancestral graph models (Richardson and
Spirtes, 2002), but not nested models.

Statistically we have a reprieve: there is always at least one parameter
that we can use to distinguish between any two models.
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Overlap

However, models that are not 1-equivalent can still be problematic.

Definition
Say that two models ©1,©, overlap at § € ©; N O; if

TCy(©1NOy) C TCy(O1) NTCo(O2).

So in other words, there are directions of approaching 6 in each model
separately, but not in the intersection.

Overlap is weaker than 1-equivalence:

Proposition

If two regular algebraic models are 1-equivalent at 0, then either they are
identical in a neighbourhood of 8, or the models overlap.
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Computational Consequences of Overlap
Theorem

Suppose that models ©1,0, C © overlap (and are regular) at 6.
Then there is no smooth reparameterization of © such that ©; and ©,
are both convex.

<

This means that we can’t adapt methods like the Lasso without making
the problem non-convex (or using a more drastic relaxation).
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Lack of Convexity

Example. For usual undirected Gaussian graphical models, one can solve
use the graphical Lasso, which solves the convex program:

minimizex-o  — logdet K +tr(KS) + A > [ky.

i<j
Example. For graphical models of marginal independence, the parameter
spaces are defined by constraints of the form {p; = 0 whenever i £ j}.

The likelihood not convex in terms of covariance, but one can instead
solve a problem like
minimizey. o ||Z—5H2—|—)\Z|U;j\
i
[Less efficient, but consistent for model selection and estimation has

n/2-rate.]

This approach cannot be taken for models with overlap, because the
angle between the models is always zero.



Towards Methods

An idea: can we use the fact that other marginal log-linear parameters
are ‘close’, to deduce the correct log-linear representation?

If we ‘blur’ our likelihood by the right amount, we could obtain the
correct sparsity level.

Then:

@ learn the tangent space model;
@ use that with earlier result to reconstruct the DAG.
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Penalised Selection
Consider the usual Lasso approach:

arg m)in —I(x,A) + v, Z [Aal
ACV

if v, ~ n? for % < 7y < 1 then the maxima A" are consistent for model
selection.

Theorem
Let

AT=0+An"“+o(n"°).

be a sequence of points inside the DAG model for G.
If % <c< % the lasso will be consistent for the ‘representation’ of G.

Asymptotic regime may not be realistic, but one can specify a sparsity
level to choose penalization level in practice.
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Summary

@ Model selection in some classes of graphical models is harder than in
others; this is at least partly explained by the local geometry of the
model classes.

@ Most Gaussian graphical models with the same skeleton are at least
‘2-near-equivalent’, and are therefore statistically hard to distinguish.

@ Discrete directed acyclic graph models are not 1-equivalent, but do
‘overlap’: this leads to computational problems.

@ In particular, no ‘directed graphical lasso’ can exist.

@ New methods could be created to use this information about the
model geometry.
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Thank you!
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Tangent Cones

Definition
The tangent cone of © (at 6), is the set of vectors TCy(O) of the form

lim ap(6, — 6),

for sequences 6,, — 6.

For regular models this a vector space (the tangent space), the
derivative of © at 6.
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Chain Graphs

For LWF chain graphs, distinct models may may be k-near-equivalent for
arbitrarily large k.

OBNO
O—®

X1 L X, | Xz, X3 X1 L Xy | Xo, X3
Xo L X3 | X1, X Xo L X5 | X1, X
X; L X Xi L Xo | X, Xa

Their shared tangent cones are A13 @ A3q @ Aog.

These models are identical whenever any of X; 1L X3, X3 L Xy, or
X2 A1 X4 holds.
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Other Kinds of Overlap

Note it is not necessary for two models to share submodels in order to
have k-equivalence for any k > 1.
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Discrete Verma Constraint

Consider the two models:

<0G 0

D@ ® D@ 4
The are defined by the constraints:
Zp(X4 | x1,X2,x3) - p(x2 | x1,x3) is independent of xi;
X2
Zp(X4 | x1,%2,x3) - p(x2 | x1) is independent of x;.
X2

Though distinct, these constraints become identical if either:
Xo L X3 | Xy Xy L X5 | Xy, X;.

This satisfies the theorem, so the models are 2-near-equivalent.
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Gaussian Verma Constraint

r\/r_\\O
O

From Drton, Sullivant and Sturmfels (2009), the Verma constraint for a
Gaussian model on four variables is given by zeroes of fourth order
polynomial on correlations:
f(R) = p1a — p1apTy — prapss + prapizpispas
— p13p3s + P13P23P24 + PlaP13P34 — Pr2P33024
= (p1a — p13p3a)(1 — pir — P33 + p23p12p13) + -
— p13(p3ap23 — p2a)(p23 — p12p13)
= p1a — p13pas + O(e)
= p1a + O(?).

Model is not only locally linearly equivalent to the model of X; 1L X4, but
also quadratically equivalent to the model X; 1L Xy | X;.

In this case we would generally need effect sizes ~ n=1/6(1)
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