
Model Selection and Local Geometry

Robin Evans, University of Oxford

CRM Montréal
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Causal Claims are Ubiquitous
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Distinguishing Between Causal Models

Observational data is cheap and readily available. Using it to rule out
some causal models could save a lot of time and effort.

Can it be done?

T S D

p(t, s, d) = p(t) p(d) p(s | t, d)

T ⊥⊥ D

T S D

p(t, s, d) = p(t) p(s | t) p(d | s)

T ⊥⊥ D |S

Not always... but sometimes!

This is the basis of some causal search algorithms (e.g. PC, FCI).
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The Holy Grail: Structure Learning

Given a distribution P from true model (or rather data from P)...

X Y Z

...and a set of possible causal models...
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Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

X Y

Z

...return list of models which are compatible with data. [Some models are
not observationally distinguishable.]

Question for today: is this feasible?
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An Example

1 2 3 4

U

1 2 3 4

U

Model on left satisfies X1 ⊥⊥ X4 | X3, in other words:∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1, x3) is independent of x1.

Model on right satisfies the Verma constraint:∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1) is independent of x1.

Hence, the two models can be distinguished, and direction of the 2− 3
edge identified.

However, empirically this seems to be difficult to do correctly (Shpitser
et al., 2013). Why?
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Undirected Gaussian Graphical Models
Suppose we have data XV = (X1,X2, . . . ,Xp)T ∼ Np(0,K−1).

vertex random variable

a Xa

⇐⇒

4

2

graph G

1 3

5

⇐⇒ M(G) = {K satisfying (∗)}

model M

If i and j are not joined by an edge, then kij = 0:

Xi ⊥⊥ Xj | XV\{i,j} (∗)
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Undirected Gaussian Graphical Models

So in an undirected Gaussian graphical model represents zeroes in a
concentration matrix by missing edges in an undirected graph:

X Y

Z

kxx 0 kxz
0 kyy kyz
kxz kyz kzz



X Y

Z

kxx kxy 0
kxy kyy kyz
0 kyz kzz



X Y

Z

kxx 0 0
0 kyy kyz
0 kyz kzz
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Undirected Graphs

Undirected graphical models have a lot of nice properties:

Exponential family of models;

convex log-likelihood function, relevant submodels all convex (linear
subspaces);

closed under intersection;

X Y

Z

⋂ X Y

Z

=
X Y

Z

As a consequence, model selection in this class is highly feasible, even
when p � n.
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Graphical Lasso

For example, the graphical Lasso and several other methods can be used
to perform automatic model selection via a convex optimization
(Meinshausen and Bühlmann, 2006; Friedman et al., 2008):

minimizeK�0 − log detK + tr(KS) + λ
∑
i<j

|kij |.

Convexity doesn’t always mean a problem is easy, but...

From Hsieh et al. (2013):

State-of-the-art methods thus do not scale to problems with
more than 20,000 variables. In this paper, we develop an
algorithm . . . which can solve 1 million dimensional
`1-regularized Gaussian MLE problems.
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Directed Graphical Models

4

2

graph G

1 3

5

⇐⇒ M(G) = {P satisfying (†)}

model M

We do not allow directed cycles: v → · · · → v .

If i → j say i is a parent of j . Denote

paG(j) = {i : i → j in G}.

If i and j are not joined by an edge, and introducing i → j does not
create a directed cycle, then

Xi ⊥⊥ Xj | XpaG(j) (†)
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Algebraic Models

Example:

4

21 3

5

X2 ⊥⊥ X1

X3 ⊥⊥ X1 |X2

X4 ⊥⊥ X3 |X1,X2

X5 ⊥⊥ X1 |X3,X4

X5 ⊥⊥ X2 |X3,X4.

For Gaussian models, Xi ⊥⊥ Xj | XC means

ρij·C ≡ Cor(Xi ,Xj | XC ) = 0

⇐⇒ σij − ΣiC (ΣCC )−1ΣCj = 0.

These are polynomial constraints, so this is an algebraic model.
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Markov Equivalence

Sometimes two graphs imply the same set of independences: these are
said to be Markov equivalent.

1 2 1 2

Two directed acyclic graphs are Markov equivalent if and only if they
have the same skeleton, and the same unshielded colliders: →←

1 2 3 1 2 3

1 2 3
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Directed Acyclic Graphs
Selection in the class of discrete Directed Acyclic Graphs is known to be
NP Complete, i.e. ‘computationally difficult’ (Chickering, 1996).

Guarantees are hard: Cussens uses integer programming to find optimal
discrete BNs for moderate (≈50 variables).

Various attempts to develop a ‘directed graphical lasso’ have been made:

Shojaie and Michailidis (2010) and Ni et al. (2015) assume a known
causal ordering—reduces to edges being present or missing;

Fu and Zhou (2013), Gu et al. (2014), Aragam and Zhou (2015)
provide a procedure that is non-convex.

In this talk:

We show that it is not possible to develop such a convex, ‘lasso-like’
procedure to select directed graphical models.

In fact we will show that (for similar reasons) it is also ‘statistically’
difficult to perform this model selection.
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Directed Acyclic Graphs

Selection in the class of Directed Acyclic Graphs is known to be NP
Complete, i.e. ‘computationally difficult’ (Chickering, 1996).

I claim it can also be ‘statistically’ difficult. E.g.: how do we distinguish
these two Gaussian graphical models?

X Y

Z

ρxy = 0

X Y

Z

ρxy ·z = 0

But we have

ρxy ·z = 0 ⇐⇒ ρxy − ρxz · ρzy = 0

so—if one of ρxz or ρzy is small—the models will be very similar.
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Marginal and Conditional Independence

X ⊥⊥ Y | Z X ⊥⊥ Y
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A Picture

Suppose we have two sub-models (red and blue).

O(δ)

δ

We intuitively expect to have power to test against alternatives long as
our effect sizes are of order n−1/2.

This applies to testing against the smaller intersection model and also
against the red model.
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A Slightly Different Picture

Suppose we have two sub-models with the same tangent space:

O(δ2)

δ

This time we still need δ ∼ n−1/2 to obtain constant power against the
intersection model, but δ ∼ n−1/4 to have constant power against the red
model!
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Hausdorff Distance
Hausdorff distance is a ‘maximin’ version of distance.

Given two sets A,B the Hausdorff distance between A and B is

dH(A,B) = max

{
sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖

}
= max

{
sup
a∈A

d(a,B), sup
b∈B

d(b,A)

}

Examples
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k-equivalence
k-equivalence at θ amounts to the Hausdorff distance shrinking faster
than εk in an ε-ball.

Definition (Ferraroti et al., 2002)

We say Θ1 and Θ2 are k-equivalent at θ ∈ Θ1 ∩Θ2 if

dH(Θ1 ∩ Nε(θ), Θ2 ∩ Nε(θ)) = o(εk).

They are k-near-equivalent if

dH(Θ1 ∩ Nε(θ), Θ2 ∩ Nε(θ)) = O(εk).

Examples.

Intersecting =⇒ 1-near-equivalent.

Same tangent cone ⇐⇒ 1-equivalent.

For regular models
k-equivalence =⇒ (k + 1)-near-equivalence. (k ∈ N)
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Gaussian Graphical Models

X Y

Z

X Y

Z

X ⊥⊥ Y X ⊥⊥ Y | Z1 0 η

1 ε

1


1 εη η

1 ε

1


For X ⊥⊥ Y , we can have any small η, ε, and need ρxy = 0.

The model X ⊥⊥ Y | Z is similar but we need ρxy = εη.

This is clearly only O(εη) from the X ⊥⊥ Y model, so we have
2-near-equivalence at the identity matrix.

This extends to any two Gaussian models with the same skeleton.
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Time Series

Time series models may also be 2-near-equivalent:

An MA(1) and AR(1) model have respective correlation matrices:
1 ρ 0 0 · · ·
ρ 1 ρ 0 · · ·
0 ρ 1 ρ
...

. . .




1 θ θ2 θ3 · · ·
θ 1 θ θ2 · · ·
θ2 θ 1 θ
...

. . .



So for small θ or ρ these may be hard to distinguish.
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Statistical Consequences of k-(near-)equivalence

Suppose that models Θ1,Θ2 ⊆ Θ are k-near-equivalent at θ0.

Consider a sequence of local ‘alternatives’ in Θ1 of the form

θn = θ0 + δn−γ + o(n−γ);

then:

we have limiting power to distinguish Θ1 from Θ1 ∩Θ2 only if
γ ≤ 1/2 (i.e. the usual parametric rate);

we have limiting power to distinguish Θ1 from Θ2 only if
γ ≤ 1/(2k).

So if effect size is halved, we need 4k times as much data to be sure we
pick Θ1 over Θ2!
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Submodels

Suppose that we have two models M1,M2.

Many classes of model (e.g. undirected graphs) are closed under
intersection, so there is some nice submodel M12 =M1 ∩M2.

However, suppose that this intersection is not so simple, but contains
several distinct submodels...

Theorem
Suppose we have submodels N1, . . . ,Nk such that

Ni ∩M1 = Ni ∩M2, for each i = 1, . . . , k,

and the spaces TCθ(Ni )
⊥ are all linearly independent.

ThenM1 andM2 are k-near-equivalent at any
θ ∈M1 ∩M2 ∩N1 ∩ · · · ∩ Nk .
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Marginal and Conditional Independence

X ⊥⊥ Y | Z X ⊥⊥ Y

These models coincide if X ⊥⊥ Z or Y ⊥⊥ Z (the axes).
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Nested Models

1 2 3 4

U

1 2 3 4

U

Recall the constraints distinguishing these models:∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1, x3) is independent of x1∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1) is independent of x1.

Note, the two models will become equivalent if either

X2 ⊥⊥ X3 | X1, or

X4 ⊥⊥ X2 | X1,X3.

Hence the Theorem is satisfied with k = 2.
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Discriminating Paths

In fact things can get much worse.

1 2 3

4

1 2 3

4

X1 ⊥⊥ X3

X4 ⊥⊥ X1 | X2,X3

X1 ⊥⊥ X3

X4 ⊥⊥ X1 | X2

These graphs become Markov equivalent if either:

X1 ⊥⊥ X2 (so ρ12 = 0);

X2 ⊥⊥ X3 (so ρ23 = 0);

X3 ⊥⊥ X4 | X1,X2 (so ρ34·12 = 0).

So the theorem is satisfied with k = 3.
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Discriminating Paths
This can be generalized into a discriminating path of arbitrary length.

1 2 . . . k − 1 k

k + 1

In principle, one can distinguish:

↔ k ↔ X1 ⊥⊥ Xk+1 | X2, . . . ,Xk−1

← k → X1 ⊥⊥ Xk+1 | X2, . . . ,Xk−1,Xk .

But: these graphs become Markov equivalent if any of:

Xi ⊥⊥ Xi+1 for any i = 1, . . . , k − 1;

Xk+1 ⊥⊥ Xk | X1, . . . ,Xk−1.

These are k distinct submodels, so the two models are k-near-equivalent.
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Simulation
Take the discriminating path model:

1 2 . . . k − 1 k

k + 1

ρ

ψ

We generate data from the relevant Gaussian conditional independence
model.

Fit the two models, and pick one with the smaller deviance.

We fix ψ = 0.5, let ρ→ 0, and see what sample size is required to
maintain power.

Our results predict we will need n ∼ ρ−2k .
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Discriminating Paths

0 1 2 3 4 5

0.
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k=4
k=5
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effect size ρs = 0.4× 2−s , sample size n = ninit × 22sk .
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Required Sample Sizes

Sample sizes used for solid lines at s = 1 and s = 2.

k ρ = 0.2 ρ = 0.1
2 512 8,192

3 16 000 1 024 000

4 204 800 52 428 800

5 5.1 million 5.24 billion
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Discrete DAG Models

For discrete, fully observed models, the situation is slightly different.

X Y

Z

X ⊥⊥ Y

X Y

Z

X ⊥⊥ Y | Z

These models correspond to zero log-linear parameters

λXYXY = 0 λXYZXY = λXYZXYZ = 0,

and clearly have different dimensions.

Even though λXYXY and λXYZXY are ‘similar’ in the same manner as before,
we have an extra parameter to play with.
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Sketch
Qualitatively, the two discrete models look a bit like this:

X ⊥⊥ Y | Z X ⊥⊥ Y
38 / 49



Discrete Directed Graphs

Proposition

For any two discrete DAGs, either the models are identical or they are
not 1-equivalent∗.

∗Actually, set of points at which they are 1-equivalent for any sensible
polynomial submodel is measure zero.

In fact this result extends to ancestral graph models (Richardson and
Spirtes, 2002), but not nested models.

Statistically we have a reprieve: there is always at least one parameter
that we can use to distinguish between any two models.
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Overlap

However, models that are not 1-equivalent can still be problematic.

Definition
Say that two models Θ1,Θ2 overlap at θ ∈ Θ1 ∩Θ2 if

TCθ(Θ1 ∩Θ2) ⊂ TCθ(Θ1) ∩ TC0(Θ2).

So in other words, there are directions of approaching θ in each model
separately, but not in the intersection.

Overlap is weaker than 1-equivalence:

Proposition

If two regular algebraic models are 1-equivalent at θ, then either they are
identical in a neighbourhood of θ, or the models overlap.
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Computational Consequences of Overlap
Theorem

Suppose that models Θ1,Θ2 ⊆ Θ overlap (and are regular) at θ0.
Then there is no smooth reparameterization of Θ such that Θ1 and Θ2

are both convex.

⇒

⇒ ?

This means that we can’t adapt methods like the Lasso without making
the problem non-convex (or using a more drastic relaxation).
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Lack of Convexity
Example. For usual undirected Gaussian graphical models, one can solve
use the graphical Lasso, which solves the convex program:

minimizeK�0 − log detK + tr(KS) + λ
∑
i<j

|kij |.

Example. For graphical models of marginal independence, the parameter
spaces are defined by constraints of the form {ρij = 0 whenever i 6∼ j}.

The likelihood not convex in terms of covariance, but one can instead
solve a problem like

minimizeΣ�0 ‖Σ− S‖2 + λ
∑
i,j

|σij |

[Less efficient, but consistent for model selection and estimation has
n1/2-rate.]

This approach cannot be taken for models with overlap, because the
angle between the models is always zero.
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Towards Methods
An idea: can we use the fact that other marginal log-linear parameters
are ‘close’, to deduce the correct log-linear representation?

If we ‘blur’ our likelihood by the right amount, we could obtain the
correct sparsity level.

Then:

learn the tangent space model;

use that with earlier result to reconstruct the DAG.
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Penalised Selection
Consider the usual Lasso approach:

arg min
λ

−l(x ,λ) + νn
∑
A⊆V

|λA|


if νn ∼ nγ for 1

2 ≤ γ < 1 then the maxima λ̂n are consistent for model
selection.

Theorem
Let

λn = 0 + λn−c + o(n−c).

be a sequence of points inside the DAG model for G.
If 1

4 < c < 1
2 , the lasso will be consistent for the ‘representation’ of G.

Asymptotic regime may not be realistic, but one can specify a sparsity
level to choose penalization level in practice.
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Summary

Model selection in some classes of graphical models is harder than in
others; this is at least partly explained by the local geometry of the
model classes.

Most Gaussian graphical models with the same skeleton are at least
‘2-near-equivalent’, and are therefore statistically hard to distinguish.

Discrete directed acyclic graph models are not 1-equivalent, but do
‘overlap’: this leads to computational problems.

In particular, no ‘directed graphical lasso’ can exist.

New methods could be created to use this information about the
model geometry.
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Thank you!
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Tangent Cones

Definition

The tangent cone of Θ (at θ), is the set of vectors TCθ(Θ) of the form

lim
n
αn(θn − θ),

for sequences θn → θ.

For regular models this a vector space (the tangent space), the
derivative of Θ at θ.
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Chain Graphs
For LWF chain graphs, distinct models may may be k-near-equivalent for
arbitrarily large k .

1 2

3 4

X1 ⊥⊥ X4 | X2,X3

X2 ⊥⊥ X3 | X1,X4

X1 ⊥⊥ X2

1 2

3 4

X1 ⊥⊥ X4 | X2,X3

X2 ⊥⊥ X3 | X1,X4

X1 ⊥⊥ X2 | X3,X4

Their shared tangent cones are Λ13 ⊕ Λ34 ⊕ Λ24.

These models are identical whenever any of X1 ⊥⊥ X3, X3 ⊥⊥ X4, or
X2 ⊥⊥ X4 holds.
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Other Kinds of Overlap

Note it is not necessary for two models to share submodels in order to
have k-equivalence for any k ≥ 1.
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Discrete Verma Constraint
Consider the two models:

1 2 3 4

U

1 2 3 4

U

The are defined by the constraints:∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1, x3) is independent of x1;∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1) is independent of x1.

Though distinct, these constraints become identical if either:

X2 ⊥⊥ X3 | X1 X4 ⊥⊥ X2 | X1,X3.

This satisfies the theorem, so the models are 2-near-equivalent.
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Gaussian Verma Constraint

1 2 3 4

From Drton, Sullivant and Sturmfels (2009), the Verma constraint for a
Gaussian model on four variables is given by zeroes of fourth order
polynomial on correlations:

f (R) = ρ14 − ρ14ρ
2
12 − ρ14ρ

2
23 + ρ14ρ12ρ13ρ23

− ρ13ρ34 + ρ13ρ23ρ24 + ρ2
12ρ13ρ34 − ρ12ρ

2
13ρ24

= (ρ14 − ρ13ρ34)(1− ρ2
12 − ρ2

23 + ρ23ρ12ρ13) + · · ·
− ρ13(ρ34ρ23 − ρ24)(ρ23 − ρ12ρ13)

= ρ14 − ρ13ρ34 + O(ε3)

= ρ14 + O(ε2).

Model is not only locally linearly equivalent to the model of X1 ⊥⊥ X4, but
also quadratically equivalent to the model X1 ⊥⊥ X4 | X3.

In this case we would generally need effect sizes ∼ n−1/6(!)
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