
Geometry of Graphical Model Selection

Robin Evans, University of Oxford

ICMS Workshop
7th April 2017

1 / 31



Some Graphical Models
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Model on left satisfies X1 ⊥⊥ X4 | X3.∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1, x3) is independent of x3.

Model on right satisfies the Verma constraint:∑
x2

p(x4 | x1, x2, x3) · p(x2 | x1) is independent of x3.

Hence, the two models can be distinguished, and direction of the 2− 3
edge identified.

However, empirically this seems to be difficult to do correctly (Shpitser
et al., 2013). Why?
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Statistics for the Lazy

High-level view:

See, e.g., Uhler et al. (2013) for how this applies to graphical models.
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Directed Acyclic Graphs
Selection in the class of Directed Acyclic Graphs is known to be
computationally difficult (Chickering, 1996).

I claim it is also ‘statistically’ difficult. E.g.: how do we distinguish these
two Gaussian graphical models?

X Y

Z

ρxy = 0

X Y

Z

ρxy·z = 0

But we have

ρxy·z = 0 ⇐⇒ ρxy − ρxz · ρzy = 0

so—if one of ρxz or ρzy is small—the models will be very similar.
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Marginal and Conditional Independence

X ⊥⊥ Y | Z X ⊥⊥ Y
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A Picture

Suppose we have two sub-models (red and blue).

O(δ)

δ

We intuitively expect to have power to test against alternatives long as
our effect sizes are of order n−1/2.

This applies to testing against the smaller intersection model and also
against the red model.
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A Slightly Different Picture

Suppose we have two slightly different sub-models:

O(δ2)

δ

This time we still need δ ∼ n−1/2 to obtain constant power against the
intersection model, but δ ∼ n−1/4 to have constant power against the
red model!
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Tangent Cones
Definition

Let Θ ⊆ Rd be a parameter space containing θ0. The tangent cone of
Θ (at θ0), TCθ0(Θ) is the set of vectors of the form

lim
n
αn(θn − θ0),

for sequences θn → θ0.

For regular (differentiable) models this a vector space (the tangent
space) is just the derivative of Θ at θ0.
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Overlap

Definition
Say that two models Θ1 and Θ2 overlap if there is a point θ ∈ Θ1 ∩Θ2

such that TCθ(Θ1) = TCθ(Θ2).

Example. Two directed Gaussian graphical models overlap at any
diagonal Σ if they have the same skeleton.

1 2

3 4

1 2

3 4

Further, if they have different skeletons then they overlap almost
nowhere.
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Gaussian Graphical Models

X ⊥⊥ Y X ⊥⊥ Y | Z1 0 η

1 ε

1


1 εη η

1 ε

1


For X ⊥⊥ Y , we can have any η, ε, and as they → 0 we see that the
tangent cone is

TCI(X ⊥⊥ Y ) = 〈δ13 + δ31, δ23 + δ32〉.

where δij is matrix with (i, j)th entry 1 and otherwise 0.

The model X ⊥⊥ Y | Z is similar but we need ρxy = ρxzρyz = εη.
However in the limit we still get

TCI(X ⊥⊥ Y | Z) = 〈δ13 + δ31, δ23 + δ32〉.
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Gaussian Graphical Models
For convenience write

Λij = {α(δij + δji), α ∈ R}.

Consider a class of Gaussian graphical models that may be defined by a
single independence Xi ⊥⊥ Xj | XSij

whenever i and j are not adjacent
in G.

Examples. Maximal ancestral graphs, directed acyclic graphs, LWF
chain graphs, MR chain graphs...

Theorem
Whenever G and H have the same skeleton, the associated Gaussian
graphical models overlap.

The tangent space at any diagonal covariance matrix is

TCI(G) ≡
⊕
i∼j

Λij .
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Statistical Consequences of Overlap

Suppose that models Θ1,Θ2 ⊆ Θ overlap (and are regular) at θ0.

Consider a sequence of local ‘alternatives’ in Θ1 of the form

θn = θ0 + δn−γ + o(n−γ);

then:

we have limiting power to distinguish Θ1 from Θ1 ∩Θ2 only if
γ ≤ 1/2 (i.e. the usual parametric rate);

we have limiting power to distinguish Θ1 from Θ2 only if γ ≤ 1/4.

So if effect size is halved, we need 16 times as much data to be sure we
pick Θ1 over Θ2!

This helps to explain the problems with nested models.
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Gaussian Verma Constraint

1 2 3 4

From Drton, Sullivant and Sturmfels, the Verma constraint for a
Gaussian model on four variables is given by zeroes of fourth order
polynomial on correlations:

f(R) = ρ14 − ρ14ρ
2
12 − ρ14ρ

2
23 + ρ14ρ12ρ13ρ23

− ρ13ρ34 + ρ13ρ23ρ24 + ρ2
12ρ13ρ34 − ρ12ρ

2
13ρ24

= ρ14 − ρ13ρ34 − ρ14ρ
2
12 − ρ14ρ

2
23 + ρ13ρ23ρ24 +O(ε4)

= ρ14 − ρ13ρ34 +O(ε3)

= ρ14 +O(ε2).

Model is not only locally linearly equivalent to the model of X1 ⊥⊥ X4,
but also quadratically equivalent to the model X1 ⊥⊥ X4 | X3.

In this case we would generally need effect sizes ∼ n−1/6(!)
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Computational Consequences of Overlap
Theorem

Suppose that models Θ1,Θ2 ⊆ Θ overlap (and are regular) at θ0.
Then there is no smooth reparameterization of Θ such that Θ1 and Θ2

are both convex.

⇒

⇒ ?

This means that we can’t adapt methods like the Lasso without making
the problem non-convex.
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Lack of Convexity
Example. For usual undirected graphical models, one can solve the
convex program:

minimizeK log detK + tr(KS) + λ
∑
i,j

|kij |.

Example. For graphical models of marginal independence, the parameter
spaces are defined by constraints of the form {ρij = 0 whenever i 6∼ j}.

The likelihood not convex in terms of covariance, but one can instead
solve a problem like

minimizeΣ ‖Σ− S‖2 + λ
∑
i,j

|σij |

[Less efficient, but consistent for model selection and estimation has
n1/2-rate.]

This approach cannot be taken for models with overlap, because the
angle between the models is always zero.

17 / 31



Time Series

As a non-graphical example, time series models also experience overlap:

An MA(1) and AR(1) model have respective correlation matrices:
1 ρ 0 0 · · ·
ρ 1 ρ 0 · · ·
0 ρ 1 ρ
...

. . .




1 θ θ2 θ3 · · ·
θ 1 θ θ2 · · ·
θ2 θ 1 θ
...

. . .



So for small θ or ρ these may be hard to distinguish.
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Discrete Models
For discrete models it is more helpful to work with a log-linear
parameterization, e.g.:

logP (XV = xV ) =
∑
A⊆V

(−1)‖xA‖λA.

We can also define marginal log-linear parameters in the same way with
reference to a particular margin:

logP (XM = xM ) =
∑
A⊆M

(−1)‖xA‖λMA .

Then, starting at a uniform distribution λ = 0, we will write the vector
space spanned by λA as ΛA.

If one has a model in which contains λA = ε > 0 with all other
λB = o(ε), then ΛA is contained in the tangent cone of the model.

Importantly, all marginal parameters with the same effect A have the
same derivative at λ = 0.
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Discrete Models

Proposition

Let λMA , λLA be marginal log-linear parameters. Then within an ε
neighbourhood of the independence model,

λMA = λLA +O(ε2).

As a consequence of this, the parameters give the same tangent space on
the independence model.

Proof.

By adapting a proof from Evans (2015), one has

λMA = λLA + f(λMm , · · · , λMM ),

for a smooth function f which is zero whenever all but one of the
arguments is zero.
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Discrete Models

One can define ancestral graph models using zeroes of marginal
log-linear parameters (Evans and Richardson, 2014).

1 2

3 4

5 6

These generalize DAGs, undirected models, marginal independence
models.
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Discrete Ancestral Graphs

Proposition

For any two discrete ancestral graphs, either the models are identical or
they do not overlap.

Proof.

If the models are distinct then either (WLOG):

i ∼ j in G but not H;
In this case models with λij = ε and all other log-linear parameters
zero are in G but not H.

i− k − j a v-structure in H but not in G;
Then models with λijk = ε and all other log-linear parameters zero
are in G but not H.

inducing path from i to j in H but not in G.
Similar to v-structure proof.
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Imsets

Somewhat related to the previous proof, we can define a characteristic
imset (Studený et al., 2010) for ancestral graphs as follows:

kG ≡
∑

H∈H(G)

∑
S⊆T

δH∪T .

Here H(G) is the collection of ‘heads’ (and complete sets in undirected
part).

[Approximately, heads are bidirected-connected sets and tails are their
parents.]

Theorem
For MAGs G and H, we have kG = kH if and only if G and H are Markov
equivalent graphs.
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Chain Graphs

LWF chain graphs do not satisfy the same property, and distinct models
may overlap.

1 2

3 4

X1 ⊥⊥ X4 | X2, X3

X2 ⊥⊥ X3 | X1, X4

X1 ⊥⊥ X2

1 2

3 4

X1 ⊥⊥ X4 | X2, X3

X2 ⊥⊥ X3 | X1, X4

X1 ⊥⊥ X2 | X3, X4

Their shared tangent cones are Λ13 ⊕ Λ34 ⊕ Λ24.
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Towards Methods
An idea: can we use the fact that other marginal log-linear parameters
are ‘close’, to deduce the correct imset representation?

If we ‘blur’ our likelihood by the right amount, we could obtain the
correct sparsity level.

Then:

learn the tangent space model;

use that with previous Theorem to reconstruct the MAG equivalence
class (using essentially the same algorithm as FCI).

26 / 31



Penalised Selection
Consider the usual Lasso approach:

arg min
λ

{
−l(x,λ) + νn

∑
|λA|

}

if νn ∼ nγ for 1
2 ≤ γ < 1 then the maxima λ̂n are consistent for model

selection.

Theorem
Let

λn = 0 + λn−c + o(n−c).

be a sequence of points inside the MAG model for G.
Then if 1

4 < c < 1
2 , the lasso will be consistent for the imset

representation of G.

Asymptotic regime may not be realistic, but one can specify a sparsity
level to choose penalization level in practice.
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Classes of Models

Class Difficulty Reference

undirected fast Meinshausen and Bühlmann (2006)

bidirected fast Zwiernik et al. (2016)

directed hard Chickering (1996)

ancestral
...

nested harder? Shpitser et al. (2013)
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Summary

Model selection in some classes of graphical models is harder than in
others; this is at least partly explained by the local geometry of the
model classes.

This is manifested in the tangent cones of the models.

This perspective can be used to learn about what makes models
similar / different.
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Thank you!
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Meinshausen and Bühlmann. High-dimensional graphs and variable selection
with the lasso. Annals of Statistics, 1436–1462, 2006.

Chickering. Learning Bayesian networks is NP-complete, Learning from data.
Springer New York, 121-130, 1996.

Evans and Richardson. Marginal log-linear parameters for graphical Markov
models, JRSS-B, 2013.

Robins. A new approach to causal inference in mortality studies with a
sustained exposure period—application to control of the healthy worker
survivor effect, Math. Modelling, 1986.

Studený, Hemmecke and Lindner. Characteristic imset: a simple algebraic
representative of a Bayesian network structure. PGM. 2010.
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Heads and Tails

Let G be an ADMG with vertices V . Say that H ⊆ V is a head if there
is some set S of the form:

S ≡ disGan(H)
(anG(H))

such that H is the set of nodes in S that does not have any descendants
in S.

The tail of H is the set T ≡ (S \H) ∪ paG(S).

See Evans and Richardson (2013) for full details.
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