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Randomized Trials vs Observational Studies

Randomized trials
give unbiased estimates for causal effects;

but

they are expensive;

sample sizes may be small;

typically have exclusion criteria.

Observational studies
may better represent the target population;

often have much larger sample sizes;

important subgroups may be much better represented;

but

they are not randomized!
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Set Up

Suppose we have two datasets:

De , with sample size ne , from a randomized controlled trial; and

Do , with sample size no � ne , some observational database.

For simplicity, assume they both have i.i.d. observations (from Pe ,Po) of
X = (Z ,T ,Y ) where:

T is a treatment;

Y is an outcome;

Z is a collection of confounders/effect modifiers.
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Target Parameter and Loss Function

The RCT De is a ‘gold standard’ dataset, but we would like to be able to
use Do to improve our inference about certain subgroups.

That is, we want to optimally estimate the conditional average
treatment effect (CATE) using these two datasets:

CATE(z) = E[Y (1)− Y (0) |Z = z ].

We assume that Y (t) | Z has the same distribution under Pe and Po .

Given a target parameter θ, our loss function is the mean squared error:

MSE = E‖θ̂ − θ‖2 = Var θ̂ + (Bias θ̂)2.

The randomized trial data has zero bias, but high variance;
the observational data has lower variance, but may be confounded.

So there is naturally a bias-variance tradeoff.

7 / 33



Some Solutions

1. Minimize Mean Squared Error. Find the convex combination that
minimizes the mean squared error of the pooled estimate
(Oberst et al., 2022).

2. Shrinkage. Use James-Stein approach to shrink RCT estimate
towards observational. Guaranteed to reduce the overall MSE
(Green and Strawderman, 1991; Rosenman et al., 2020).

3. Experimental Grounding. Assume a parametric model can be
used to correct for confounding in the observational dataset
(Kallus et al., 2018).

4. Power Likelihood. Take the joint likelihood but raise it to a power
η ≤ 1 for the observational data; if chosen correctly this will give
good inference, even if there is unobserved confounding (e.g.
Holmes and Walker, 2017).
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Solution 1: Minimize MSE

Assume that θo = θe + δ for some unknown bias δ ∈ Rd .

Then we want to pick λ ∈ [0, 1] such that

θ̂λ = λθ̂o + (1− λ)θ̂e

has the smallest possible MSE.

As λ→ 1 the bias increases, as λ→ 0 the variance increases.

The optimal λ is given by

λ =
σ2
e

‖δ‖2 + σ2
o + σ2

e

.
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Different Solutions

Oberst et al. (2022) suggest the following (plug-in) estimator:

λ̂ober =
σ̂2
e

‖θ̂e − θ̂o‖2 + σ̂2
o + σ̂2

e

;

Rosenman et al. (2020) note that E‖θ̂e − θ̂o‖2 is equal to the
denominator, and use

λ̂JS =
σ̂2
e

‖θ̂e − θ̂o‖2
.

Oberst et al. conclude that neither method is always better than the
other.
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Solution 2: Shrinkage

Stein’s Paradox

Let Wi ∼ N(µi , 1) independently for i = 1, . . . , d , with d ≥ 3.
Then (W1, . . . ,Wd) is inadmissible for (µ1, . . . , µd).

The proof is to show that

µ̃i =

(
1− d − 2

‖W ‖

)
Wi

has a smaller MSE than µ̂i = Wi does!

This is a remarkable seeming result, but is really just due to the
stabilization given by shrinking the observation towards zero.
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Shrinkage Method
Stratify experimental data, so that parameter estimates between the
groups are independent.

Then estimators of CATE parameters are a (scaled) standard normal
vector.

This means we have:

θ̂e , unbiased estimate of θ

θ̂o , (possibly) biased estimate of θ,

each with diagonal covariance matrix.

Then use James-Stein type approach to shrink the experimental estimate
towards the observational one.

This is guaranteed to give a smaller overall mean squared error.
(Green and Strawderman, 1991; Rosenman et al. 2020).

Obvious disadvantage is that result is not true if components of θ̂e are
dependent.
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Shrinkage Method

The shrinkage estimator is

θ̂shr = θ̂o +

(
1− σ2

e

d − 2

‖θ̂e − θ̂o‖2

)
+

(θ̂e − θ̂o),

which is essentially shrinking θ̂e towards θ̂o .
(Here σ2

e is the variance of each component of θ̂e .)

We perform a simulation for d = 3 where we assume

10 Var θ̂o = Var θ̂e ,

and that the bias is of the form (δ1, 0, 0)T .

We take σ2
e = 1 as known (but this is easy to estimate).
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James-Stein Simulations
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Solution 3: Experimental Grounding

Kallus et al. (2018) use experimental grounding, which assumes that
there is a parametric function ϕ that explains the bias due to unobserved
confounders:

ϕ(z) = {E [Y (1) |Z = z ]− E [Y (1) |Z = z ,T = 1]}+

− {E [Y (0) |Z = z ]− E [Y (0) |Z = z ,T = 0]} .

They then attempt to learn ϕ by comparing predictions using
experimental and observational datasets.

Estimation of the parameters is by least squares.

They demonstrate the methodology on the STAR Dataset (an RCT) by
artificially inducing confounding (see later on).
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Solution 4: Power Likelihood

Weight the observational data at a lower level than the experimental
(say η < 1), and then perform likelihood-based inference.

How do we choose η?

One approach is to maximize the expected log pointwise predictive
density (ELPD):

ELPD(η) = EX log pη(X | x),

where pη(X | x) is the posterior predictive when using the power η, and
the expectation is with respect to the ‘true’ distribution.
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Estimating η

We can approximate the ELPD using the widely applicable information
criterion (WAIC) of Watanbe (2010).

Simply use the ordinary posterior to estimate the density of each
observation, and subtract the WAIC.

ÊLPD(η) =
1

ne

ne∑
i=1

log p̂η(xi | x)− d̂WAIC,

where p̂η(xi | x) is estimated using an MC sample of the parameters.

Computationally intensive to evaluate, as we need to estimate function
above over a grid of values for η; may be OK if we only do it once.

If η is more complicated (e.g. a two-dimensional parameter) then this
quickly becomes a problem (though maybe VI can help).
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Likelihood

A more basic question: how do we even get a likelihood for the
observational data?

Answer

We can use the frugal parameterization (E. and Didelez, 2021).

Allows us to have a parametric representation of various causal
quantites.

Frugal Parameterization Summary

Describe the parametric distribution after the relevant intervention,
using (e.g.) a copula to join outcome and anything in Z ;

then reweight to obtain the ‘observational’ distribution;

can simulate using rejection sampling.
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Frugal Parameterization

T Y

Z

U

C

For our problem, separately specify (nice, parametric) models for:

p(c , z , t); (‘the past’)

p(y(t) | c); (quantity of interest)

φ∗ZY |CT . (some dependence measure)
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Frugal Parameterization (with misspecification)

T Y

Z

U

C

Separately specify (nice, parametric) models for:

p(u, c , z , t); (‘the past’)

p(y(t) | u, c); (quantity of interest)

φ∗ZY |CTU . (some dependence measure)
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Simulation

Consider the following observational setup:

U,C ∼ Bernoulli(0.5) Z | C ∼ N(µz , 1)

T | C ,Z ,U ∼ Bernoulli(µt) Y (t) | C ∼ N(µy , 1).

where
µz = 0.2 + 0.6C

logitµt = 0.5 + 0.1C + 0.6Z + 0.4C Z + γU

µy = 0.6 + 0.2C + 1.1C T + γU

Gaussian copula w. correlation 2 expit(1)− 1 ≈ 0.462 between Y and Z .

For the experimental data, we just take µt = 0.5.

Suppose we have sample sizes of ne = 250 randomized individuals and
no = 2,500 units in the observational study.
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Results (no confounding: γ = 0)

680

681

682

683

684

0.00 0.25 0.50 0.75 1.00
eta

−
el

pd

No confounding

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.00 0.25 0.50 0.75 1.00
eta

M
S

E

ATE

0.000

0.005

0.010

0.015

0.020

0.00 0.25 0.50 0.75 1.00
eta

M
S

E

CATE Male (C=0)

24 / 33



Results (γ = 0.75)
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STAR Data

Inspired by Kallus et al. (2018), we construct our datasets from
Tennessee’s Student Teacher Achievement Ratio Study, an RCT.

Over 7,000 students in 79 schools were randomly assigned into one of
three interventions:

small class (13 to 17 students per teacher);

regular class (22 to 25 students per teacher); and

regular-with-aide class (22 to 25 students with a full-time aide)

To get a confounded observational dataset:

take a variable U (school type) that predicts the outcome strongly;

pick a subset of values for U to obtain an unconfounded dataset;

condition upon T , U and Y to to make remaining data confounded;

marginalize U.

Now there is unobserved confounding in the selected subset.
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Details

1. Take all treated individuals (T = 1).

2. Those with an outcome below the 30th percentile are
down-weighted in proportion to their quantile. (e.g. 10th percentile
score has 1/3 chance of score at 30th percentile or above.)

0.0 0.2 0.4 0.6 0.8 1.0

0
0.

5
1

3. Then select 1,000 observations using this weighting for the
confounded data.

The confounding means we obtain a näıve estimate of 57.0 rather than
the original dataset’s 38.4.
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Results
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Summary

Experimental data has better internal validity, observational data
has better external validity.

Combining RCTs with observational databases will ‘clearly’ lead to
improved causal inference, especially for small groups.

There are various approaches to doing this:
I using shrinkage;
I by experimental grounding;
I minimizing the MSE directly;
I using a power likelihood.

Estimating the right parameter(s) for combining these datasets is
still a big challenge!
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Thank you!
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