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Causal Models

Take a simple two-step dynamic treatment model.

A L B

U

Y

A,B treatments (randomised);

L intermediate outcome;

Y final outcome;

U unobserved confounders.
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Identification

A L B

U

Y

Question: how do the treatments causally affect the final outcome?
Or, if we treated everyone with (a, b), what would happen?

We want P(Y | do(A = a,B = b)). How do we identify this?

P(Y | A = a,B = b): ignoring/marginalizing L;

P(Y | A = a,B = b, L = `): conditioning on L.

Neither has the desired causal interpretation!
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Identification

We can ‘reweight’ a sample
or distribution to pretend
that B was assigned
independently of A and L:

A L B

U

Y

P∗(a, `, b, y) = P(a, `, b, y)
P(b)

P(b | a, `)
= P(y | a, `, b)P(b)P(` | a)P(a).

In this new ‘world’, L is post-treatment, so just ignore it!

Then P∗(y | a, b) does have the desired causal interpretation:

P∗(y | a, b) =
∑
`

P∗(`, y | a, b) =
∑
`

P(y | a, `, b) · P(` | a).

This example is due to Robins (1986); more general results are available
(see, e.g., Shpitser and Pearl, 2006).

6 / 39



Parameterizing Causal Models
For likelihood-based inference and simulation, need a parameterization.

A L B

U

Y

Standard parameterizations lead to the g-null paradox.

For example, with

linear model for Y given A,B, L;

any model for binary L given continuous, unbounded A;

then it is almost impossible for P(Y | do(A = a,B = b)) not to depend
upon A except in trivial cases (Robins and Wasserman, 1997).

Naturally, this is disastrous for hypothesis testing.
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Simulation

Havercroft and Didelez (2012) note that even simulating data from
model so that P(y | do(a, b)) independent of A is sometimes difficult.

A L B

U

Y

Why?

Simulation requires P(a, `, b, y);
relationship to P(y | do(a, b)) seems complicated.

g-null paradox shows we can’t just specify a nice parametric model for P
and then fix parameters until independence holds.
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Recast the Problem

Define

P∗(y , ` | a, b) ≡ P(y , ` | do(a, b))

= P(y | a, `, b) · P(` | a).

Message: P∗ is just a (conditional) probability distribution.

Desired Properties of P∗

nice model for P∗(y | a, `, b) = P(y | a, `, b) for simulation.

nice model for P∗(y | a, b) for statistical inference;

nice model for P∗(` | a, b) = P(` | a) to ensure L ⊥⊥ B | A [P∗].

So how do we get this?

Short answer: we can’t! It doesn’t make sense to try to specify
P∗(y | a, `, b) and P∗(y | a, b) separately.
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Margins

A better way to think about this: given interventional distribution P∗

suppose we have:

A

L

B

U

Y

a model for P∗(y | a, b);

a model for P∗(` | a, b) = P(` | a);

These do not fully specify P∗(y , ` | a, b)
so what else do we need?

Answer: some sort of dependence measure:

φLY |AB(`, y | a, b);

e.g. a copula or the odds ratio.

Any additional information given by P(y | a, `, b) is then redundant.
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A Principled Approach

For our problem, separately specify (nice, parametric) models for:

P(a, `, b);

P(y | do(a, b));

φLY |AB (some dependence measure, e.g. the conditional odds ratio).

This is variation independent, and has no redundancy.

Modelling φLY |AB is data-dependent, but:

discrete case: use odds ratios (Bergsma and Rudas, 2002);

Gaussian case: partial correlation ρLY ·AB ;

general A,B, continuous L,Y : copula models.
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Marginal Tension

We will see that there is generally a tension between:

simple specification of the joint distribution, in order to facilitate
simulation and likelihood-based inference;

simple specification of the target of inference (i.e. some marginal
quantity) in order that it is interpretable;

enforcing marginal constraints implied by the causal model.
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Weight Function

Of course, the ‘margins’ we are interested in are non-standard.

Definition

Let w(z | x) be a smooth function of P(x , z), with:

K1. w(z | x) ≥ 0;

K2.
∫
w(z | x) dz = 1 for each x ;

K3. w(z | x) · P(x) equivalent to P(x , z).

Note that K1, K2 imply that w is a kernel.
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Cognate Probabilities

Definition

We say P∗(y | x) is cognate to P(y | x) (within P(z , x , y)) if

P∗(y | x) ≡
∫

P(y | x , z) · w(z | x) dz .

for some w satisfying K1–K3.

16 / 39



Cognate Probabilities: Examples

Examples

P(y | x) =
∑
z

P(y | x , z) · P(z | x)

P(y | x , c0) =
∑
z

P(y | x , z , c0) · P(z | x , c0)

P(y | do(x)) =
∑
z

P(y | x , z) · P(z).

X

Z

Y
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Results
Theorem
Consider an outcome Y , and causally prior variables C ,X ,Z . Then we
can smoothly parameterize the joint distribution P(c , z , x , y) with:

P(c , z , x) P∗(y | c , x)︸ ︷︷ ︸
cognate to P(y | c,x)

φZY |CX (z , y | c , x)︸ ︷︷ ︸
P∗-dependence measure

and these three pieces are variation independent of one another.

Any of C ,X ,Z ,Y can be vector valued.

X Y

Z

C

This gives us the best of both worlds: a coherent joint distribution and
a marginal specification of our choice.
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Sketch Proof

We have P(c , z , x), from which we can compute w(z | c , x).

Note also, that

P∗(c , z , x , y) = P(c , z , x , y)
w(z | c , x)

P(z | c , x)
.

We can (smoothly) recover the left hand side from w(z | c , x),
P∗(y | x , c) and φZY |CX just by using the inverse map (e.g. IPF will work
with the odds ratios).

Now, since we know P(c , z , x) and w(z | c , x), we can recover P.

Variation independence follows from results of Csiszár (1975) with odds
ratios.
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Results

A corollary of this is that we can always parameterize a different cognate
probability for each new variable.

Let X1, . . . ,Xm be the different variables, and Ki ⊆ {X1, . . . ,Xi−1}.

Corollary

We can obtain a variation independent parameterization which includes

P∗(xi | ki ) ∀i = 1, . . . ,m,

provided each P∗(xi | ki ) is cognate to P(xi | ki ).

20 / 39



Example: Survival Models

Young and Tchetgen Tchetgen (2014) consider survival models:

Ut−1

Lt−1

At−1

Yt−1

Ut

Lt

At

Yt

What is probability of survival (Y = 1) to next time point, given
treatment?

P(Yt = 1 |Yt−1 = 1, do(a1, . . . , at)).

No problem! What remains is the dependence structure between
L’s and Yt given A1, . . . ,At .
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Example: Survival Models

Hence simulation in some cases becomes relatively easy under a null; e.g.:

P(Yt |Yt−1 = 1, do(a1, . . . , at)) = P(Yt |Yt−1 = 1).

Young and Tchetgen Tchetgen note that this is not at all trivial.

Can also easily incorporate, for e.g., a stationarity assumption:

P(Yt |Yt−1 = 1, do(At = a)) = g(a).
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Variation Independence and Covariates

The variation independence is useful:

easy to incorporate covariates in GLM form;

no danger of choosing impossible interaction parameters
(so no g-null paradox!);

means independent priors are valid.

X Y

Z

G
Example, suppose want to model:

logitP(Y = 1 | do(x), g) = f (x , g);

i.e. how is causal effect of X on Y modulated by G?
We can do this with a logistic regression.
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Multiple Experiments and Transportability

The parameterization approach is also important if we want to combine
information from different experimental settings with some (but not all)
parameters in common.

For example, observational and randomized trials on X :

X Y

Z

X Y

W

Might assume that P(y | do(x)) common to both settings, fit the model
and do a likelihood ratio test.
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Results

Proposition

Let φZY |CX be the odds ratio parameters.

Then these are the same in P as in P∗.

Proof sketch. Take the binary case. We have

log φZY |CX =
∑

(c,z,x,y)∈{0,1}4
(−1)|(c,z,x,y)| logP∗(c , z , x , y)

=
∑

(c,z,x,y)∈{0,1}4
(−1)|y |+|(c,z,x)| logP∗(c , z , x)P∗(y | c , z , x)

=
∑

(c,z,x,y)∈{0,1}4
(−1)(c,z,x,y)| logP (y | c , z , x),

since the logP∗(c , z , x) terms all cancel one another, and
P∗(y | c , z , x) = P(y | c , z , x).
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How Do We Simulate?

In practice, if X or Y is continuous we need to use rejection sampling.

1. First, simulate data from P∗(z , x , y).

2. Then determine

M ≡ sup
z,x

P(z , x)

P∗(z , x)
.

3. For each sample (zi , xi , yi ), simulate an independent Ui ∼ Unif(0, 1)
and reject if

Ui > M−1
P(zi , xi )

P∗(zi , xi )
.

Notice that this doesn’t involve Y , so the causal distribution is preserved.
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Rejection Sampling

−4 −2 0 2 4

0.
0
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x
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Copula Model Example

Take the two-step dynamic model
from Havercroft and Didelez (2012). A L B

U

Y

We choose:

A,B ∼ Bernoulli( 1
2 );

Gaussian copula model: Φ−1(U)
Φ−1(L′)
Φ−1(Y ′)

 ∼ N

0,

1 0.4 0.5
1 0.3

1

 ;

L | A = a ∼ Exp(exp(−0.3 + 0.75a));

Y | do(A = a,B = b) ∼ Exp(exp(−0.5 + 0.2a + 0.3b)).

B | A = a, L = ` ∼ Bernoulli(expit(−1.5 + 0.4a + `));
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Copula Model Example

Suppose we simulate n = 104 observations this way.

If we fit an ordinary gamma GLM with logEY = β0 + β1a + β2b, then
the results are wrong:

coefficient truth estimate std err. p-value
intercept 0.5 0.357 0.017 < 10−16

A -0.2 -0.315 0.020 1.30× 10−3

B -0.3 -0.018 0.020 < 10−16

30 / 39



Copula Model Example
Bias over 1,000 fits to simulated data (n = 103).
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Copula Model Example

Alternatively, if we fit a reweighted GLM with bootstrapped standard
errors to the n = 104 data, the results are fine!

coefficient truth estimate std err. p-value
intercept 0.5 0.559 0.054 0.277
A -0.2 -0.209 0.041 0.828
B -0.3 -0.342 0.040 0.290
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Copula Model Example
Bias over 1,000 fits to simulated data (n = 103).

33 / 39



Survival Model Example

Consider a survival model with binary treatment Xi , and measured
covariate Zi . We take Yi = 1 to mean the patient has survived.

We pick:

Zi is a stationary Gaussian process (mean 0, variance 1);

X1 ∼ Bernoulli(expit(2Z1));

Xi ∼ Bernoulli(expit(−10 + 5Xi−1));

Yi | Xi = 0 ∼ Bernoulli(expit(1 + 1
2Xi−1 + Zi ));

Yi | Xi = 1 ∼ Bernoulli(expit(3 + 1
2Xi−1 + 2Zi )).

We can compare this to:

X1 ∼ Bernoulli( 1
2 ).
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Survival Plot
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Summary

Causal models are marginal models (most of the time!);

there is a large literature on marginal models to look at for other
cases.

This has applications to marginal structural models, survival models,
dynamic treatment regimes, structural nested mean models,
stationarity, transportability...;

simulation becomes much easier in Gaussian, discrete cases, some
copula models.

Limitation: with continuous outcomes this method (generally) relies
on rejection sampling, which may be inefficient in higher dimensions.
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Thank you!
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Generalising Odds Ratios

Let p be a density for X ,Y .

The odds ratio for X ,Y is the equivalence class of functions φXY such
that

φXY (x , y) = p(x , y) · u(x) · v(y).

some functions u, v > 0.

Some points to note:

defined for any distribution with a density;

p is a member of the equivalence class;

there’s no requirement for p to be positive;

iterative proportional fitting recovers the joint distribution.
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Specifying Margins

Let rXY (x , y) be a joint distribution with odds ratio φXY .

Theorem
Let pX and pY be densities such that pX � rX and pY � rY . Then there
exists a unique joint distribution with margins pX , pY and odds ratio φXY .

This follows from Csiszár (1975).

This is a form of variation independence: we can paste together
essentially any dependence structure with any margins and get a
distribution.
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Examples

For discrete variables this reduces to the ‘usual’ odds ratio;

for Gaussian variables:

φXY ∼ exp

(
ρxy

σxσy (1− ρ2)

)
multivariate t-distribution (x = (x , y)T ):

φXY ∼
(
1 + ν−1xTΣ−1x

)−ν/2−1
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Margins

Let’s think about the simplest example of this kind.

X Y

Z

P(y | do(x)) =
∑
z

P(z)P(y | x , z).

This is a ‘margin’ of the joint distribution

P∗(z , y | x) ≡ P(z)P(y | x , z).

To work with P∗ we need to model the XY -margin (because that’s the
quantity of interest) and the XZ -margin (to enforce the independence).

So what’s left to know?
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Odds Ratios

X Y

Z

Bergsma and Rudas’ results show that the remaining information is
precisely the odds ratio between Y and Z conditional upon X .

Attempting to specify any additional information given this, P(y | do(x))
and P(x , z) doesn’t really make any sense.
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Odds Ratios

X Y

Z

But there’s nothing to stop us specifying that the parameters β and γ are
from this model:

logitP(y | x , z) = µ+ αx + βz + γxz .

But µ and α are not free.

Take home - you can have part of a nice model on X ,Y ,Z just don’t
expect all of it!
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g-null Paradox Illustration

Suppose that we have continuous
X and Y , but binary Z .

Z Y

X

An innocuous seeming model would be:

E[Y |X = x ,Z = z ] = µ+ βx + γz .

But:

E[Y |X = x ] =
∑
z

E[Y |X = x ,Z = z ] · P(Z = z | X = x)

= µ+ βx + γP(Z = 1 | X = x).

Now P(Z = 1 | X = x) can’t be a linear function of x (unless it’s
constant). So E[Y |X = x ] is only a linear function if either:

Z ⊥⊥ X ; or

γ = 0 (so Y ⊥⊥ Z | X ).
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