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Causal Models

Take a simple two-step dynamic treatment model.

A L B

U

Y

A,B treatments (randomised);

L intermediate outcome;

Y final outcome;

U unobserved confounders.
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Identification

A L B

U

Y

The marginal structural model (MSM) of Robins et al. (2000)
associated with this graph considers

P(y | do(a, b)) =
∑
`

P(` | a) · P(y | a, `, b).

Question: how can we simulate data that is consistent with a particular
marginal model?
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Parameterizing Causal Models
For likelihood-based inference and simulation, need a parameterization.

A L B

U

Y

Standard parameterizations of Y |A, L,B and L |A can lead to the
g-null paradox.

Example. Take:

linear model for Y given A,B, L;

any model for binary L given continuous, unbounded A;

then it is almost impossible for P(Y | do(A = a,B = b)) not to depend
upon A except in trivial cases (Robins and Wasserman, 1997).

Naturally, this is disastrous for hypothesis testing.
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Simulation

In spite of the ‘paradox’, there have been various attempts to simulate
from such models.

Young et al. (2008, 2010) consider Cox MSM survival models, and use
other survival models to obtain samples from an MSM model.

Havercroft and Didelez (2012) try to simulate from the model on the
previous slide, but are unable to have a direct effect from L to Y .

Young and Tchetgen Tchetgen (2014) give methods for selecting some of
the parameters in a Cox MSM model, but note that:

We...may be limited to simulation scenarios with the proposed
algorithm to particularly unrealistic settings if we wish
simultaneously to generate data under the null.

Keogh et al. (2020) have a method for simulating from Cox MSMs using
an additive hazard model, but they are unable to specify the parameter
values.
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Recast the Problem

Define

P∗(y , ` | a, b) ≡ P(y , ` | do(a, b))

= P(y | a, `, b) · P(` | a).

Message: P∗ is just a (conditional) probability distribution.

Desired Properties of P∗

nice model for P∗(y | a, `, b) = P(y | a, `, b) for simulation.

nice model for P∗(y | a, b) for statistical inference;

nice model for P∗(` | a, b) = P(` | a) to ensure L ⊥⊥ B | A [P∗].

So how do we get this?

Short answer: we can’t! It doesn’t make sense to try to specify
P∗(y | a, `, b) and P∗(y | a, b) separately.

R.J. Evans and V. Didelez Parameterizing and Simulating from Causal Models 9 / 39



Margins

A better way to think about this: given interventional distribution P∗

suppose we have:

A

L

B

U

Y

a model for P∗(y | a, b);

a model for P∗(` | a, b) = P(` | a);

These do not fully specify P∗(y , ` | a, b)
so what else do we need?

Answer: some sort of dependence measure:

φ∗LY |AB(`, y | a, b);

e.g. a copula or the odds ratio.

Any additional information given by P(y | a, `, b) is then redundant.
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A Principled Approach

For our problem, separately specify (nice, parametric) models for:

P(a, `, b);

P(y | do(a, b));

φ∗LY |AB (some dependence measure, e.g. the conditional odds ratio).

This is (often) variation independent, and has no redundancy.
Consequently, we call this the frugal parameterization.

Modelling φ∗LY |AB is data-dependent, but:

discrete case: use odds ratios (Bergsma and Rudas, 2002);

Gaussian case: partial correlation ρLY ·AB ;

general A,B, continuous L,Y : copula models.
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Marginal Tension

We’ve seen that there is generally a tension between:

simple specification of the joint distribution, in order to facilitate
simulation and likelihood-based inference;

simple specification of the target of inference (i.e. some marginal
quantity) in order that it is interpretable;

enforcing marginal constraints implied by the causal model.

The frugal parameterization resolves these as best one can.
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Cognate Probabilities

Of course, the ‘margins’ we are interested in are non-standard.

Let w(z | x) be a smooth kernel function of P(x , z):

w(z | x) ≥ 0;∫
w(z | x) dz = 1 for each x .

Definition

We say P∗(y | x) is cognate to P(y | x) (within P(z , x , y)) if

P∗(y | x) ≡
∫

P(y | x , z) · w(z | x) dz .

for some smooth kernel w of P(x , z).
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Cognate Probabilities: Examples

Examples

P(y | x) =
∑
z

P(y | x , z) · P(z | x)

P(y | do(x)) =
∑
z

P(y | x , z) · P(z)

P(y | do(x), c) =
∑
z

P(y | x , z , c) · P(z | c)

E[Y (x) | x ′] =
∑
z

E[Y | x , z ] · P(z | x ′).

(Here Y (x) is the potential outcome for Y when X = x .)
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Frugal Parameterization

Definition
Given separate parameterizations of:

P(c , z , x) (‘the past’);

P∗(y | x , c) (a quantity cognate to P(y | c , x)); and

φ∗ZY |CX (z , y | c , x) (a dependence measure under P∗).

We call the joint parameterization of P frugal.

Note that ‘the past’ and the cognate quantity are always variation
independent.

If the dependence measure is an odds ratio or copula, then it is also
variation independent of the other two pieces.
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Results

Theorem
Consider an outcome Y , and causally prior variables C ,X ,Z , and a
quantity of interest P∗(y | c , x) cognate to P(y | c , x).

Then we can smoothly parameterize the joint distribution P(c , z , x , y)
with a frugal parameterization.

Any of C ,X ,Z ,Y can be vector valued.

X Y

Z

C

This gives us the best of both worlds: a coherent joint distribution and
a marginal specification of our choice.
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Sketch Proof

We have P(c , z , x), from which we can compute w(z | c , x).

Note also, that

P∗(c , z , x , y) = P(c , z , x , y)
w(z | c , x)

P(z | c , x)
.

We can (smoothly) recover the left hand side from w(z | c , x),
P∗(y | x , c) and φZY |CX just by using the inverse map (e.g. IPF will
work with the odds ratios).

Now, since we know P(c , z , x) and w(z | c , x), we can recover P.

Variation independence follows from results of Csiszár (1975) with
odds ratios, or standard results for copulas (e.g. Sklar, 1973).
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Example: Survival Models

Young and Tchetgen Tchetgen (2014) consider survival models:

Ut−1

Lt−1

At−1

Yt−1

Ut

Lt

At

Yt

What is probability of failure (Yt = 0) at the next time point, given an
intervened treatment history?

P(Yt = 0 |Yt−1 = 1, do(a1, . . . , at)).

No problem! What remains is the dependence structure between
L’s and Yt given A1, . . . ,At .
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Example: Survival Models

Hence simulation in some cases becomes relatively easy under a null; e.g.:

P(Yt |Yt−1 = 1, do(a1, . . . , at)) = P(Yt |Yt−1 = 1).

Young and Tchetgen Tchetgen note this is not at all trivial.

Can also easily incorporate, for e.g., a stationarity assumption:

P(Yt |Yt−1 = 1, do(At = a)) = g(a).
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Variation Independence and Covariates

The variation independence is useful:

easy to incorporate covariates in GLM form;

no danger of choosing impossible interaction parameters
(so no g-null paradox!);

means independent priors are valid.

X Y

Z

G
Example, suppose want to model:

logitP(Y = 1 | do(x), g) = f (x , g);

i.e. how is causal effect of X on Y modulated by G?

We can do this with a logistic regression.
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Multiple Experiments and Transportability

The parameterization approach is also important if we want to combine
information from different experimental settings with some (but not all)
parameters in common.

For example, observational and randomized trials on X :

X Y

Z

X Y

W

Might want to assume that P(y | do(x)) common to both settings;
so fit the models with and without, and do a likelihood ratio test.
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How Do We Simulate from the Model?
In practice, if X or Y is continuous we need to use rejection sampling.
First, determine

M ≡ sup
z,x

P(z , x)

P∗(z , x)
.

Set i ← 1:

1. Obtain a sample (zi , xi , yi ) from P∗(z , x , y).

2. Simulate an independent Ui ∼ Unif(0, 1).

3. If

Ui >
P(zi , xi )

M · P∗(zi , xi )then reject.

Else accept the sample and set i ← i + 1.

If i = n + 1: stop.

4. Return to 1.

Notice that this doesn’t involve Y , so the causal distribution is preserved.
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Rejection Sampling
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Copula Model Example

Take the two-step dynamic model
from Havercroft and Didelez (2012). A L B

U

Y

We choose:

A,B ∼ Bernoulli( 1
2 );

L | A = a ∼ Exp(exp(−0.3 + 0.2a));

Y | do(A = a,B = b) ∼ Exp(exp(0.5− 0.2a− 0.3b));

Gaussian copula model: Φ−1(U)
Φ−1(L′)
Φ−1(Y ′)

 ∼ N

0,

1 0.4 0.5
1 0.3

1

 ;

B | A = a, L = ` ∼ Bernoulli(expit(−0.3 + 0.4a + 0.3`)).
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Copula Model Example

Suppose we simulate n = 104 observations this way.

If we fit an ordinary gamma GLM with

logEY = β0 + βaa + βbb + βabab,

then the results are wrong:

Coef Truth Est. Std. Err. p-value

(intercept) −0.5 −0.593 0.020 2.46× 10−6

A 0.2 0.208 0.030 0.40
B 0.3 0.431 0.028 1.41× 10−6

A · B 0.0 −0.011 0.040 0.39
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Copula Model Example
Bias over 1,000 fits to simulated data (n = 103).
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Copula Model Example

Alternatively, if we fit a reweighted GLM with bootstrapped standard
errors to the n = 104 data, the results are fine!

Coef Truth Est. Std. Err. p-value

(intercept) −0.5 −0.517 0.022 0.23
A 0.2 0.208 0.033 0.40
B 0.3 0.292 0.029 0.39

A · B 0.0 0.000 0.042 0.50
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Copula Model Example
Bias over 1,000 fits to simulated data (n = 103).
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Copula Model Example

Since we can evaluate the likelihood, we can also use MLEs for the
correctly specified model to estimate these parameters more directly.

This gives:

Coef Truth Est. Std. Err. p-value

(intercept) −0.5 −0.519 0.020 0.34
A 0.2 0.211 0.029 0.70
B 0.3 0.296 0.025 0.87

A · B 0.0 −0.003 0.037 0.93

Obviously, we wouldn’t recommend this in practice, but the standard
errors are reassuringly similar to the reweighted GLM.
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Survival Model Example

Consider a survival model with:

measured binary static covariate C ∼ Bernoulli(1/2);

measured time-varying covariate Zt with

Zt | Xt−1 = x ,C = c ∼ N(−1/2 + x/2 + c/4, 1/2);

binary treatments Xt with

Xt | Zt = z ,C = c ∼ Bernoulli(expit(z/2 + c/10))

Now simulate from Cox Marginal Structural Model where

logP(Yt = 1 |Yt−1 = 0,C = c , do(Xt = x)) = x/2 + (1 + c)/20.

We take Yt = 0 to mean the patient has survived to time T = t.

Choose (Yt ,Zt) | Xt ,C from Gaussian copula with correlation ρ = 0.4.
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Survival Plot
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Survival Models

Again fitting the wrong model induces bias:

Coef Truth Est. Std. Err. p-value

(intercept) 0.05 0.056 2.07× 10−3 1.15× 10−3

X 0.50 0.453 6.09× 10−3 4.16× 10−24

C 0.05 0.058 3.94× 10−3 0.09

While the right one with reweighting is correct!

Coef Truth Est. Std. Err. p-value

(intercept) 0.05 0.050 1.86× 10−3 0.42
X 0.50 0.494 6.53× 10−3 0.19
C 0.05 0.050 3.63× 10−3 0.49
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Summary

Causal models are marginal models (most of the time!)

There is a large literature on marginal models to look at for other
cases.

This has applications to marginal structural models including Cox
MSM survival models, dynamic treatment regimes, structural nested
mean models, stationarity, transportability...

Simulation becomes much easier in Gaussian, discrete cases, or using
copula models. This extends to a combination of discrete and
continuous variables.

Limitation: with continuous outcomes this method (generally) relies
on rejection sampling, which may be inefficient in higher dimensions.

Particle methods should be able to speed this up considerably!
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Thank you!
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Structural Nested Mean Models

A structural nested mean model is defined by considering blips of
treatment at each time-point; e.g.

θ(z t , x t−1) := bt(z t , x t−1, 1)− bt(z t , x t−1, 0)

where

bt(z t , x t−1, x) := E[Y | z t , x t−1, do(Xt = x ,X t+1 = 0)].

These models are more flexible than marginal structural models, because
they allow for the incorporation of the covariate history in a way that
MSMs do not.
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Structural Nested Mean Models

We can also parameterize this using a frugal parameterization at each
time t.

Definition
Consider for t = 1, . . . ,T :

P(zt , xt | z t−1, x t−1) (i.e. ‘the past’);

θ(z t , x t−1) (the parameter of interest);

a conditional dependence measure between Y and Zt given X t ,Z t−1.

Then one can see that by building up from time t − 1 to time t we go
from

E[Y | z t−1, x t−1, do(0t)] to E[Y | z t , x t , do(0t+1)];

i.e. the same thing with t replaced by t + 1.
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Generalising Odds Ratios

Let p be a density for X ,Y .

The odds ratio for X ,Y is the equivalence class of functions φXY such
that

φXY (x , y) = p(x , y) · u(x) · v(y).

some functions u, v > 0.

Some points to note:

defined for any distribution with a density;

p is a member of the equivalence class;

there’s no requirement for p to be positive;

iterative proportional fitting recovers the joint distribution.

R.J. Evans and V. Didelez Parameterizing and Simulating from Causal Models 42 / 39



Specifying Margins

Let rXY (x , y) be a joint distribution with odds ratio φXY .

Theorem
Let pX and pY be densities such that pX � rX and pY � rY . Then there
exists a unique joint distribution with margins pX , pY and odds ratio φXY .

This follows from Csiszár (1975).

This is a form of variation independence: we can paste together
essentially any dependence structure with any margins and get a
distribution.
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Examples

For discrete variables this reduces to the ‘usual’ odds ratio;

for Gaussian variables:

φXY ∼ exp

(
ρxy

σxσy (1− ρ2)

)
multivariate t-distribution (x = (x , y)T ):

φXY ∼
(
1 + ν−1xTΣ−1x

)−ν/2−1
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Margins

Let’s think about the simplest example of this kind.

X Y

Z

P(y | do(x)) =
∑
z

P(z)P(y | x , z).

This is a ‘margin’ of the joint distribution

P∗(z , y | x) ≡ P(z)P(y | x , z).

To work with P∗ we need to model the XY -margin (because that’s the
quantity of interest) and the XZ -margin (to enforce the independence).

So what’s left to know?
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Odds Ratios

X Y

Z

Bergsma and Rudas’ results show that the remaining information is
precisely the odds ratio between Y and Z conditional upon X .

Attempting to specify any additional information given this, P(y | do(x))
and P(x , z) doesn’t really make any sense.
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Odds Ratios

X Y

Z

But there’s nothing to stop us specifying that the parameters β and γ are
from this model:

logitP(y | x , z) = µ+ αx + βz + γxz .

But µ and α are not free.

Take home - you can have part of a nice model on X ,Y ,Z just don’t
expect all of it!
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Results

Proposition

Let φZY |CX be the odds ratio parameters. Then
φZY |CX = φ∗ZY |CX ;

i.e. the P and P∗ have the same dependence parameter.

Proof sketch. We prove for the all binary case. We have

log φ∗ZY |CX (c , x) =
∑

(z,y)∈{0,1}2
(−1)|z|+|y | logP∗(z , y | c , x)

=
∑

(z,y)∈{0,1}2
(−1)|z|+|y | logP∗(z | c , x)P∗(y | c , z , x)

=
∑

(z,y)∈{0,1}2
(−1)|z|+|y | logP (y | c , z , x),

since the logP∗(z | c , x) terms all cancel one another, and
P∗(y | c , z , x) = P(y | c , z , x).
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g-null Paradox Illustration

Suppose that we have continuous
X and Y , but binary Z .

Z Y

X

An innocuous seeming model would be:

E[Y |X = x ,Z = z ] = µ+ βx + γz .

But:

E[Y |X = x ] =
∑
z

E[Y |X = x ,Z = z ] · P(Z = z | X = x)

= µ+ βx + γP(Z = 1 | X = x).

Now P(Z = 1 | X = x) can’t be a linear function of x (unless it’s
constant). So E[Y |X = x ] is only a linear function if either:

Z ⊥⊥ X ; or

γ = 0 (so Y ⊥⊥ Z | X ).
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