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Algorithms

This talk is largely based on Hu and Evans (2020). In the paper we give
new algorithms for:

determining Markov equivalence in maximal ancestral graphs;

projecting an ADMG to a MAG.

Combining these algorithms is faster than any previously provided
method for checking Markov equivalence in ADMGs (or MAGs!).

Ali et al. (2009) give an algorithm with complexity O(ne4), whereas our
worst case is O(ne2).

Typically the algorithm is much faster than this.
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Directed Acyclic Graph Models
A directed acyclic graph (DAG) is a directed graph that contains no
(directed) cycles.
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A DAG model imposes the factorization

p(xV ) =
∏
i∈V

p(xi | xpa(i)).

where pa(i) = {j : j → i}.

Can also read off independences using d-separation (Verma and Pearl,
1990).
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Markov Equivalence

With DAGs, sometimes two or more graphs will represent the same
model:
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p(x3) · p(x1 | x3) · p(x2 | x3)

X1 ⊥⊥ X2 | X3

1 2

3

p(x1) · p(x3 | x1) · p(x2 | x3)

X1 ⊥⊥ X2 | X3

1 2

3

p(x1) · p(x2) · p(x3 | x1, x2)

X1 ⊥⊥ X2

We can characterize this using the skeleton and the unshielded
colliders.
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Margins of DAG Models

DAG models are not closed under marginalization and conditioning.
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This can be solved using a latent projection which introduces bidirected
edges (↔).

The resulting objects are called acyclic directed mixed graphs
(ADMGs).
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More Markov equivalence

All DAGs are also ADMGs, so unsurprisingly Markov equivalence is still
an issue.
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Maximal Ancestral Graphs (MAGs)
There is a subclass of ADMGs called maximal ancestral graphs
(MAGs), introduced by Richardson and Spirtes (2002).

They are

ancestral: meaning no vertex is a bidirected neighbour of an
ancestor; and

maximal: meaning any two non-adjacent vertices have an
m-separation.

Any ADMG can be ‘projected’ onto a Markov equivalent MAG.
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ADMG
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MAG

Z. Hu and R.J. Evans Faster algorithms for Markov equivalence 7 / 23



Main Results

We will assume that we have a MAGs with

n vertices, and

e edges (either → or ↔).

We also assume the graph is connected, so n = O(e).

In this paper we present three things:

1. new non-parametric characterization of Markov equivalence class of
a MAG;

2. polynomial time algorithm (O(ne2)) for verifying Markov
equivalence between two MAGs;

3. polynomial time algorithm (O(n2e)) for transforming an ADMG into
a Markov equivalent MAG.
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Discriminating Paths

1 2 4

3

1 2 4

3

Both graphs have 1 ⊥m 3.

Paths between 1 and 4 are 1→ 2→ 4 and either:

1→ 2↔ 3↔ 4 or 1→ 2← 3→ 4.

Note that for the left graph, 3 is a collider, but the right graph it is a
non-collider.

This gives us different m-separation sets.

1 ⊥m 4 | 2 1 ⊥m 4 | 2, 3.
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Discriminating Paths
As well as the same skeleton and unshielded colliders we need the
discriminating paths to be the same.

A generic discriminating path for b is:

a v1 . . . vk b

c

Note that a and c cannot be adjacent.

Since G is maximal there is (at least) one set S that m-separates a and c .

Then notice that any m-separating set S is such that

a ⊥m c | S ⇐⇒

{
b ∈ S and b is a non-collider

b /∈ S and b is a collider.
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Previous work

There are three graphical criteria which can be used to characterize a
MAG model:

discriminating paths by Spirtes and Richardson (1997);

minimal collider paths (MCPs) by Zhao et al. (2005);

colliders with order by Ali et al. (2009).

Using the first two approaches näıvely has exponential complexity, and
the third has an O(ne4) algorithm associated with it.
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Heads and Tails

Definition
A head, H, is a set of vertices such that:

no vertex in H is an ancestor of any other;

the set H is bidirected-connected within A := an(H).

The corresponding tail is then:

tailG(H) := (disA(H) \ H) ∪ pa(disA(H)).

Note that the tail is the Markov blanket for H within an(H).

In a MAG:

heads of size 1 are just the individual vertices;

tails for heads of size 1 are just their parents;

heads of size 2 just correspond to bidirected edges.
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Parameterizing Sets

Define the parametrizing sets for a graph G as

S(G) := {H ∪ A : H ∈ H(G), A ⊆ tailG(H)},

where H(G) is the set of heads in G.

We also define:

Sk(G) := {S ∈ S(G) : |S | ≤ k},

and

S̃3(G) = {S ∈ S3(G) | 1 or 2 adjacencies among vertices in G}
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Examples

1 2

3 4

H T S
1 ∅ {1}
2 1 {2}, {1, 2}

3 1, 2
{3}, {1, 3}
{2, 3}, {1, 2, 3}

4 2, 3
{4}, {2, 4}
{3, 4}, {2, 3, 4}

1 2

3 4

H T S
1 ∅ {1}
2 ∅ {2}

1, 2 ∅ {1, 2}
3 1 {3}, {1, 3}

2, 3 1 {2, 3}, {1, 2, 3}

4 2,3
{4}, {2, 4}
{3, 4}, {2, 3, 4}

Note that both these graphs have the same collection of parametrizing
sets (i.e. all sets not containing both 1 and 4).
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Preliminary Results

Proposition

Let G be a MAG and W a set of vertices. Then W /∈ S(G) if and only if
∃a, b ∈W such that

a ⊥m b | C

for a set C with W ⊆ C ∪ {a, b}.

Example. For the previous graphs, the sets {1, 4}, . . . , {1, 2, 3, 4} were
missing, which precisely corresponds to the m-separation 1 ⊥m 4 | {2, 3}.

1 2

3 4
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Preliminary Results
Lemma
In a MAG G, we have that there is an edge between a and b if and only if
{a, b} ∈ S(G).

So we can obtain the skeleton just from S2(G).

Lemma

If (a, b, c) is an unshielded triple, then b is a collider on this triple
if and only if {a, b, c} ∈ S(G).

So we can also obtain the unshielded colliders from S3(G).

Lemma
If π is a discriminating path from a to c for b, then b is a collider
if and only if {a, b, c} ∈ S(G).

S3(G) also gives orientations from discriminating paths!
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Main Results

Theorem (Hu and Evans, 2020)

Let G1 and G2 be two MAGs. These graphs are Markov equivalent if and
only if S(G1) = S(G2).

This is good, but the length of S(G) may be exponential in n.

Corollary

Let G1 and G2 be two MAGs. These graphs are Markov equivalent if and
only if S3(G1) = S3(G2).

This is better, because now the list has length O(n3).
However, the best result we get is:

Corollary

Let G1 and G2 be two MAGs. These graphs are Markov equivalent if and
only if S̃3(G1) = S̃3(G2).
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Computing S̃3

For a MAG G, we can compute S̃3(G) by obtaining:

1. heads of size 2, and tails of each vertex;

2. tails of every head of size 2;

3. every head of size 3 in S̃3(G).

}
unshielded colliders/
discriminating paths

The most computationally difficult task is 3. We must:

iterate through every bidirected edge v ↔ w (O(e));

for each other vertex z (O(n))...

compute the district of v within the set of ancestors of v ,w , z
(O(n + e)) and check if z is in it.

This gives us O(ne2) complexity.

Comes from the fact that we (seem to) have to compute the ancestral
district for every triple of form v ↔ w and some z .
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Graph achieving max complexity (Figure 5)
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Consider vi ↔ w for each i = 1, . . . ,N, and then note that we need to
consider it with each zj for j = 1, . . . ,N.

These sets are all heads of size three.

There are N2 = O(e2) such heads, which gives the required complexity.
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Markov equivalence for ADMGs

We also give a method for quickly (O(n2e)) turning an ADMG into a
Markov equivalent MAG.

(Note: here e is the number of edges in the MAG!).

Note that length of S̃3(G) is at most O(e2), so we can sort the output in
O(e2 log e2) = O(e2 log e) operations.

Hence we can combine our two algorithms to check equivalence of any
ADMGs in at most O(ne2).

Note it is easy to add in undirected edges to a MAG, and we just add
those pairs to the graph to obtain S̃3(G).
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Summary

We can identify the Markov equivalence class of any ADMG using a
purely graphical approach in at most O(ne2) complexity.

This complexity is attained by family of graphs in Figure 5.

There is much more to do! We can deduce some conditional
independences directly from the parametrizing sets.

There is also a connection between the parameterizing sets and
imsets (Studený, 2006).
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Thank you!
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Latent Projection

Given an ADMG G with vertices H∪̇O, we define the latent projection
of G onto O as the ADMG with vertices O and edges:

i → j if there is a directed path from i to j in G with any
intermediate vertices in H.

i ↔ j if there is a trek with arrows into both i and j and all
intermediate vertices in H.
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Definitions
A graph G is called an acyclic directed mixed graph (ADMG) if has
only directed (→) and bidirected (↔) edges, and its directed edges form
a DAG.

A path π is a sequence of distinct, adjacent vertices.

An internal vertex v on a path is called a collider if both adjacent edges
have arrowheads at v ; otherwise it is a non-collider.

A path from a to b is said to be m-connecting (or open) given C if:

every non-collider is outside C ;

every collider is in anG(C ).

1 2

3 4
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Definitions

For two vertices a, b and a disjoint set of vertices C in G we say that a
and b are m-separated by C if there is no m-connecting paths given C .

Example. Consider:

1 and 4 given 2, 3, (m-separated);

1 and 4 given 2, (not m-separated).

1 2

3 4
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Extension to ADMGs

Further, we show that heads and tails are preserved through the
projection. Let H(G) denote the set of all heads in an ADMG G.

Proposition

If G is an ADMG, H(G) = H(Gm) and for every H ∈ H(G),
tailG(H) = tailGm(H).

Z. Hu and R.J. Evans Faster algorithms for Markov equivalence 27 / 23



Independence from Parameterizing Sets

Proposition

Let G be a MAG and consider W /∈ S(G) where W = {a, b} ∪ C such
that a, b /∈ C , if the following conditions hold:

(i) : for any S ⊃W we have S ∈ S(G)

(ii) : for any C ′ ⊆ C we have {a, b} ∪ C ′ = W ′ /∈ S(G);

then a ⊥m b | C in G
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Characteristic Imset

Note that for DAGs, the parameterizing set is the same as the
characteristic imset (Studený, 2006).

This suggests that perhaps the parameterizing set is also the
characteristic set for MAGs.

We have shown that the associated standard imset defines the model for
some MAGs... but not all!

Indeed, the bidirected 5-cycle is a counterexample to our conjecture.
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Algorithm 2: Projection from ADMG to MAGs

Algorithm 2: Obtain a MAG Gm from an ADMG G
Input: ADMG G (list of parents and siblings of each vertex)
Output: Markov equivalent MAG Gm
for v ∈ V do

compute anG(v) = {v} ∪ anG(paG(v));
compute tailG(v) = (disan(v)(v) \ {v}) ∪ paG(disan(v)(v));
add in p → v for each p ∈ tailG(v);

end
for v ,w same district do

if w ∈ disan({v ,w})(v) then add v ↔ w ;
end

Notice first loop is O(n(n + e)) and second is O(n2(n + e)).

Hence overall complexity is O(n2e).
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Algorithm 2: convert an ADMG to a Markov equivalent
MAG

A projection from Richardson and Spirtes (2002) convert an ADMG G to
a Markov equivalent MAG Gm.

Lemma

Suppose G is an ADMG, let v ,w be two vertices then (i) v → w in Gm if
and only if v ∈ tailG(w) and (ii) v ↔ w in Gm if and only if
{v ,w} ∈ H(G).

For the complexity :

upper bounded by O(n2e);

the average complexity is at O(n2) if each edge has an i .i .d
Bernoulli distribution.
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Definitions

Two ADMGs G1 and G2 with the same vertex sets, are said to be Markov
equivalent if any m-separation holds in G1 if and only if it holds in G2.

1 2

3 4

(i)

1 2

3 4

(ii)

1 2

3 4

(iii)

Figure: Three ADMGs where (i) and (ii) are Markov equivalent but (iii) is not.
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Projection from ADMGs to Markov equivalent MAGs

Richardson and Spirtes (2002) :

every pair of vertices a, b ∈ V in G that are connected by an
inducing path becomes adjacent in Gm;

an edge connecting a, b in Gm is oriented as follows: if a ∈ anG(b)
then a→ b; if b ∈ anG(a) then b → a; if neither is the case, then
a↔ b.

An inducing path between a, b is a collider path such that every
collider is in an({a, b}).

Ancestral relations are preserved.
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Examples

1 2

3 4

(i)

1 2

3 4

(ii)

1 2

3 4

(iii)

Figure heads tails Figure heads tails

(i)

1 3

(iii)

1 ∅
2 ∅ 2 ∅
3 ∅ 3 ∅
4 2,3 4 2

1,2 3 1,2 ∅
2,3 ∅ 1,3 ∅

(ii)

1 2,3 2,3 ∅
2 4 3,4 2
3 2,4 1,2,3 ∅
4 ∅ 1,3,4 2
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