
Graphical Models: Worksheet 2 MT 2024

Questions will not be marked, but solutions will be provided.

A: Warm Up

A1. Exponential Families. For each of the following, show that the family of distribu-
tions is an exponential family, and find the: (i) canonical and mean parameters; (ii)
sufficient statistics; (iii) maximum likelihood estimate; (iv) cumulant function.

(a) The set of Binomial(n, p) distributions, with n fixed.

(b) The set of Gamma distributions with parameters (a, b).

For (a), show directly that the derivatives of the cumulant function give the first two
centred moments of the sufficient statistics (see Lemma 3.1).

A2. Graphical Separation. Consider the graph below. List all the independences
implied by the pairwise Markov property.

Give one conditional independence that follows from the global Markov property but
is not already in your list.
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B: Core Questions

B1. Markov Properties.

Let G be a graph, and define the boundary of a vertex v by

bdG(v) ≡ {w ∈ V \ {v} | w ∼ v}.

A distribution obeys the local Markov property with respect to G if

Xv ⊥⊥ XV \(bdG(v)∪{v}) | XbdG(v), ∀v ∈ V.

(a) Show that if p obeys the local Markov property then this implies that p obeys
the pairwise Markov property.

(b) Show that the global Markov property implies the local Markov property.

(c) Show that, if p is strictly positive and obeys the pairwise Markov property with
respect to G, then p also obeys the global Markov property with respect to G.
[Hint: Property 5 of the graphoid axioms and the proof of Theorem 4.10 may be
helpful.]

(d) Give an example of a graph in which property 5 is required for the pairwise
Markov property to imply the local Markov property. Hence or otherwise find a
distribution in which the pairwise property holds with respect to this graph, but
the local property does not.
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B2. Decomposability

Complete the proof of Theorem 4.20 from lectures; that is, show that if G is an
undirected graph, (iii) the fact that every minimal a, b-separator is complete implies
that (iv) the cliques satisfy the running intersection property starting with a given
C; and that (iv) implies (i): the graph is decomposable.

Does decomposability imply that every minimal A,B-separator is complete, for sets
A and B?

B3. Whittaker Data

Using R, load the Whittaker data from lectures with the commands:

> library(ggm)

> data(marks)

> head(marks, 8) # inspect the first few

> solve(cov(marks)) # empirical concentration matrix

(if not already installed, you may have to call install.packages("ggm"), to use the
ggm package).

(a) Manually find the MLE for the covariance matrix Σ, under the model from lec-
tures in which ‘analysis’ and ‘statistics’ are independent of ‘mechanics’ and ‘vec-
tors’ conditional on ‘algebra’.

[Hint: R commands you might need are solve(), which inverts matrices, and
the use of square brackets [] for subsetting. See the MSc R Programming lecture
notes for details.]

(b) Suppose we have i.i.d. observations x
(1)
V , . . . , x

(n)
V from a multivariate Gaussian

with known mean µ and unknown covariance Σ. Show that the log-likelihood for
Σ can be written as

l(Σ;X) = −n

2
log |Σ| − n

2
tr(SΣ−1).

where S = 1
n

∑n
i=1(x

(i)
V − µ)(x

(i)
V − µ)T and tr() is the trace operator.

[Hint: tr(AB) = tr(BA)]

(c) Hence carry out a likelihood ratio test to see whether this model is a good fit to
the data.

B4. Iterative Proportional Fitting

(a) Show that the iterative proportional fitting algorithm for contingency tables does
not decrease the likelihood at any iteration. Argue also that, if the likelihood
does not strictly increase after a full cycle of updates then the algorithm has
converged to a solution.

Consider a 7-dimensional table, and suppose that we have an undirected model based
on the cliques {1, 2, 3}, {1, 2, 4}, {2, 3, 5}, {1, 3, 6} and {5, 7}.

(b) Show that this model is decomposable and that if the IPF algorithm is run in
the order given above, it will return the MLE after a single iteration of updating
each clique in turn.

(c) Is the same true if we choose the order {1, 2, 4}, {2, 3, 5}, {1, 3, 6}, {5, 7} and
{1, 2, 3}?
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C: Optional

C1. Marginal Models

Let G be a graph containing a path π : i− k1 − · · · − km − j, for m ≥ 0.

(a) Construct a distribution p that factorizes according to G, and such that for any
set C ⊆ V \ {i, j, k1, . . . , km} we have Xi ̸⊥⊥ Xj | XC [p].

[Hint: remember that undirected graphs generalize Markov chain models.]

(b) Deduce that for any graph G and sets A,B, S such that A ̸⊥s B | S in G,
there exists a distribution p which factorizes according to G and for which XA ̸⊥⊥
XB | XS in p. (In this sense the global Markov property is complete; separation
represents all the independences guaranteed by factorization.)

Given an undirected graph G and subset of vertices W ⊆ V , define G|W as the
undirected graph with vertex set W , and an edge i− j if and only if there is a path
from i to j in G with all intermediate vertices in V \ W . [Note that this is quite
different to the induced subgraph GW .]

(c) Let p(xV ) be globally Markov with respect to G. Show that p(xW ) =
∑

xV \W
p(xV )

is globally Markov with respect to G|W .

(d) Show further that, in general, p(xW ) is not globally Markov with respect to any
edge subgraph of G|W .

C2. Hierarchical Models.

Let C be a collection of non-empty subsets of a set V , such that:

•
⋃

C∈C C = V ;

• for any distinct C,D ∈ C we have C ̸⊂ D.

In other words, this is a set of inclusion maximal subsets. We call C a generating
class.

(a) Show that the cliques of a graph are a generating class.

(b) List, up to symmetry, all the generating classes on the set V = {1, 2, 3}. Do all
generating classes correspond to the cliques of a graph?

Given a generating class C, we can define a corresponding log-linear model by requir-
ing that λA = 0 whenever A is not a subset of any element of C. Such models are
called hierarchical.

(c) Show that the counts n(xC) for C ∈ C are sufficient statistics for this model.

The data below consist of answers from high schoolers to a Dayton, Ohio survey on
substance use.

Alcohol Tobacco
Marijuana
Yes No

Yes
Yes 911 538
No 44 456

No
Yes 3 43
No 2 279
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They are available in a text file, substance.txt, on the class website. After down-
loading the file, you can read these data into R using

> dat <- read.table("substance.txt", header = TRUE)

(d) Using glm() with family=poisson, fit a hierarchical model to these data with
the generating class C = {{A,M}, {T,M}, {A, T}}. Is it a good fit? Is any
smaller hierarchical model a good fit?

(e) Verify that the fitted distribution has the same sufficient statistics as the data.

(f) Try adding the vector (+1,−1,−1,+1,−1,+1,+1,−1) to your counts. Verify
that the parameter estimates are unchanged with this ‘new data’. Can you
explain why?
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