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Course Website

The class site is at

http://www.stats.ox.ac.uk/~evans/gms/

You’ll find

• lecture notes;

• slides;

• problem sheets;

• data sets.
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Course Information

There will be four problem sheets and four associated classes.

Part C students, your classes are weeks 3, 5, 7 and HT0. Signal your
preference on the sign-up sheet for:

• Thursdays 3pm–4:30pm;

• Fridays 1pm–2:30pm.

Hand in work by Tuesday, 5pm.

MSc students, class times are:

Sheet Day Time Place
1 Wednesday Week 4 11:00 LG.01
2 Tuesday Week 5 12:00 LG.01
3 Tuesday Week 7 12:00 LG.01
4 Thursday Week 8 11:00 LG.01
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Books

These books might be useful.

• Lauritzen (1996). Graphical Models, OUP.

• Wainwright and Jordan (2008). Graphical Models, Exponential
Families, and Variational Inference. (Available online).

• Pearl (2009). Causality, (3rd edition), Cambridge.

• Koller and Friedman (2009), Probabilistic Graphical Models:
Principles and Techniques, MIT Press.
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Gene Regulatory Networks
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Medical Diagnosis
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Main Issues

There are two main problems with large data sets that we will consider
in this course:

• statistical;
we need to predict outcomes from scenarios that have never been
observed (i.e., we need a model).

• computational:

• we can’t store probabilities for all combinations of variables;
• even if we could, we can’t sum/integrate them to find a marginal or

conditional probability:

P (X = x) =
∑
y

P (X = x,Y = y).

The solution is to impose nonparametric structure, in the form of
conditional independences.
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Conditional Independence
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Simpson’s Paradox

Death Penalty?
Defendant’s Race
White Black

Yes 53 15
No 430 176
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Simpson’s Paradox

Victim’s Race Death Penalty?
Defendant’s Race
White Black

White
Yes 53 11
No 414 37

Black
Yes 0 4
No 16 139
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Undirected Graphical Models
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Undirected Graphs

3

1

2

4

5

V = {1, 2, 3, 4, 5}
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}.
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Paths

3

1

2

4

5

Paths:

π1 : 1− 2− 3− 5

π2 : 3

Note that paths may consist of one vertex and no edges.
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Induced Subgraph

3

1

2

4

5

The induced subgraph G{1,2,4,5} drops any edges that involve {3}.
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Separation

3

1

2

4

5

All paths between {1, 2} and {5} pass through {3}.

Hence {1, 2} and {5} are separated by {3}.
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Cliques and Running Intersection

1 2

3 4

5

6

Cliques:

{1, 2} {2, 3, 4} {2, 4, 5} {4, 6}.

Separator sets:

∅ {2} {2, 4} {4}.
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Cliques and Running Intersection

1 2

3 4

5

6

A different ordering of the cliques:

{2, 3, 4} {2, 4, 5} {4, 6} {1, 2}.

Separator sets:

∅ {2, 4} {4} {2}.

Any ordering works in this case as long {1, 2} and {4, 6} aren’t the first
two entries.
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Estimation

Given a decomposition of the graph, we have an associated conditional
independence: e.g. ({1, 3}, {2, 4}, {5, 6}) suggests

X1, X3 ⊥⊥ X5, X6 | X2, X4

p(x123456) · p(x24) = p(x1234) · p(x2456).

1 2

3 4

5

6

And p(x1234) and p(x2456) are Markov with respect to G1234 and G2456
respectively.
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Estimation

1 2

3 4

5

6

Repeating this process on each subgraph we obtain:

p(x123456) · p(x24) · p(x2) · p(x4) = p(x12) · p(x234) · p(x245) · p(x46).

i.e.

p(x123456) =
p(x12) · p(x234) · p(x245) · p(x46)

p(x24) · p(x2) · p(x4)
.
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Non-Decomposable Graphs

But can’t we do this for any factorization?

1 2

34

No! Although

p(x1234) = ψ12(x12) · ψ23(x23) · ψ34(x34) · ψ14(x14),

the ψs are constrained by the requirement that∑
x1234

p(x1234) = 1.

These is no nice representation of the ψCs in terms of p.
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Non-Decomposable Graphs

1 2

34

If we ‘decompose’ without a complete separator set then we introduce
constraints between the separate terms:

p(x1234) = p(x1 | x2, x4) · p(x3 | x2, x4),

but how to ensure that X2 ⊥⊥ X4 | X1, X3?
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Gaussian Graphical Models
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The Multivariate Gaussian Distribution

Let XV ∼ Np(0,Σ), where Σ ∈ Rp×p is a non-singular symmetric
matrix.

log p(xV ; Σ) = −1

2
log |Σ| − 1

2
xTV Σ−1xV + const.
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Gaussian Graphical Models

We have Xa ⊥⊥ Xb | XV \{a,b} if and only if kab = 0.

analysis

algebra

statistics mechanics

vectors

mechanics vectors algebra analysis statistics
mechanics k11 k12 k13 0 0

vectors k22 k23 0 0
algebra k33 k34 k35
analysis k44 k45

statistics k55
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Likelihood

From Lemma 4.23, we have

log p(xV ) + log p(xS) = log p(xA, xS) + log p(xB, xS).

This becomes

xTV Σ−1xV + xTS (ΣSS)−1xS − xTAS(ΣAS,AS)−1xAS − xTSB(ΣSB,SB)−1xSB = 0

But can rewrite each term in the form xTVMxV , e.g.:

xTAS(ΣAS,AS)−1xAS = xTV

 (ΣAS,AS)−1
0
0

0 0 0

xV

Equating terms gives:

Σ−1 =

 (ΣAS,AS)−1
0
0

0 0 0

+

0 0 0
0

(ΣSB,SB)−1
0

−
0 0 0

0 (ΣSS)−1 0
0 0 0
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Maximum Likelihood Estimation

Iterating this process with a decomposable graph shows that:

Σ−1 =

k∑
i=1

{
(ΣCi,Ci)

−1}
Ci,Ci

−
k∑
i=1

{
(ΣSi,Si)

−1}
Si,Si

.

For maximum likelihood estimation, using Lemma 4.23 we have

Σ̂−1 =

k∑
i=1

{
(Σ̂Ci,Ci)

−1
}
Ci,Ci

−
k∑
i=1

{
(Σ̂Si,Si)

−1
}
Si,Si

=

k∑
i=1

{
(WCi,Ci)

−1}
Ci,Ci

−
k∑
i=1

{
(WSi,Si)

−1}
Si,Si

where WCC = 1
n

∑
iX

(i)
C X

(i)T
C is the sample covariance matrix.
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Example

> true_inv # true concentration matrix

[,1] [,2] [,3] [,4]

[1,] 1.0 0.3 0.2 0.0

[2,] 0.3 1.0 -0.1 0.0

[3,] 0.2 -0.1 1.0 0.3

[4,] 0.0 0.0 0.3 1.0

> solve(true_inv) # Sigma

[,1] [,2] [,3] [,4]

[1,] 1.17 -0.382 -0.30 0.090

[2,] -0.38 1.136 0.21 -0.063

[3,] -0.30 0.209 1.19 -0.356

[4,] 0.09 -0.063 -0.36 1.107

> dat <- rmvnorm(1000, mean=rep(0,4), sigma = solve(true_inv))

> W <- cov(dat) # sample covariance
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Example

Fit the model in which there is a decomposition ({1, 2}, {3}, {4}):

1

2

3 4

> K_hat[1:3, 1:3] = solve(W[1:3, 1:3])

> K_hat[3:4, 3:4] = K_hat[3:4, 3:4] + solve(W[3:4, 3:4])

> K_hat[3, 3] = K_hat[3, 3] - 1/W[3, 3]

> K_hat

[,1] [,2] [,3] [,4]

[1,] 0.97 0.28 0.17 0.00

[2,] 0.28 0.97 -0.12 0.00

[3,] 0.17 -0.12 1.08 0.31

[4,] 0.00 0.00 0.31 1.00

Note this is close to the true concentration matrix.
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Directed Graphical Models
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Directed Graphs

We have so far used undirected graphs.

In directed graphs each edge has an orientation.

A directed graph G is a pair (V,D), where

• V is a set of vertices;

• D is a set of ordered pairs of vertices (i, j) such that i, j ∈ V and
i 6= j.

If (i, j) ∈ D we write i→ j.

V = {1, 2, 3, 4, 5}
D = {(1, 3), (2, 3), (2, 4), (3, 5), (4, 5)}

1 2

3 4

5
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Acyclicity

Paths are sequences of adjacent vertices, without repetition:

1→ 3← 2→ 4→ 5 1→ 3→ 5.

The path is directed if all the arrows point away from the start.

(A path of length 0 is just a single vertex.)

A directed cycle is a directed path from i to j 6= i, together with j → i.

1 2

34

1

2

Graphs that contain no directed cycles are called acyclic. or more
specifically, directed acyclic graphs (DAGs).

All the directed graphs we consider are acyclic.
31



Happy Families

i→ j

{
i ∈ paG(j) i is a parent of j

j ∈ chG(i) j is a child of i

a→ · · · → b
or a = b

{
a ∈ anG(b) a is an ancestor of b

b ∈ deG(a) b is a descendant of a

If w 6∈ deG(v) then w is a non-descendant of v:

ndG(v) = V \ deG(v).

(Notice that no v is a non-descendant of itself).
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Examples

1 2

3 4

5

paG(3) = {1, 2} anG(4) = {2, 4}
chG(5) = ∅ deG(1) = {1, 3, 5}

ndG(1) = {2, 4}.
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Topological Orderings

If the graph is acyclic, we can find a topological ordering: i.e. one in
which no vertex comes before any of its parents. (Proof: induction)

Topological orderings:

1, 2, 3, 4, 5

1, 2, 4, 3, 5

2, 1, 3, 4, 5

2, 1, 4, 3, 5

2, 4, 1, 3, 5

1 2

3 4

5
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Parameter Estimation

G : group assigned to patient;

A : patient’s age in years;

V : whether patient received flu vaccine;

H : patient hospitalized with respiratory problems;

G V H

A
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Parameter Estimation

We can model the data (Gi, Ai, Vi, Hi) as

group : Gi ∼ Bernoulli(p);
age : Ai ∼ N(ν, σ2);

vaccine : Vi | Ai, Gi ∼ Bernoulli(µi) where

logµi = β0 + β1Ai + β2Gi.

hospital : Hi | Vi ∼ Bernoulli(exp(θ0 + θ1Vi)).

Assuming independent priors:

G

p

V

β

H

θ

Aν, σ2
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Bayesian Inference

From our argument, we have

π(β | G,A, V,H) = π(β | G,A, V )

∝ p(V | A,G,β) · π(β).

Looking at the moral graph we see

G

p

V

β

H

θ

Aν, σ2
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Markov Equivalence

All undirected graphs induce distinct models.

v 6∼ w ⇐⇒ Xv ⊥⊥ Xw | XV \{v,w} implied

The same is not true for directed graphs:

Z

X Y

p(x) · p(y | x) · p(z | x, y)

Z

X Y

p(z) · p(x | z) · p(y | x, z)

Z

X Y

ψXY Z(x, y, z)
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Markov Equivalence

Z

X Y

p(x) · p(z | x) · p(y | z)
X ⊥⊥ Y | Z Z

X Y

p(y) · p(z | y) · p(x | z)
X ⊥⊥ Y | Z

Z

X Y

p(z) · p(x | z) · p(y | z)
X ⊥⊥ Y | Z

Z

X Y

p(x) · p(y) · p(z | x, y)

X ⊥⊥ Y

Z

X Y

ψXZ(x, z) · ψY Z(y, z)

X ⊥⊥ Y | Z
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Expert Systems
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Expert Systems

Asia

tuberculosis lung cancer

smokes

bronchitis

cancer or tub.

x-ray cough

The ‘Chest Clinic’ network, a fictitious diagnostic model.
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Variables

A

T L

S

B

E

X
C

A has the patient recently visited Asia?

S does the patient smoke?

T,C,B Tuberculosis, lung cancer, bronchitis.

E logical: Tuberculosis OR lung cancer.

X shadow on chest X-ray?

C does the patient have a persistent cough?
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Conditional Probability Tables

A

T L

S

B

E

X
C

We have our factorization:

p(a, s, t, l, b, e, x, c) = p(a) · p(s) · p(t | a) · p(l | s) · p(b | s)·
· p(e | t, l) · p(x | e) · p(c | e, b).

Assume that we are given each of these factors. How could we calculate
p(l | x, c, a, s)?
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Probabilities

p(a) =
yes no

0.01 0.99
p(s) =

yes no

0.5 0.5

p(t | a) =
A yes no

yes 0.05 0.95
no 0.01 0.99

p(l | s) =
S yes no

yes 0.1 0.9
no 0.01 0.99

p(b | s) =
S yes no

yes 0.6 0.4
no 0.3 0.7

p(x | e) =
E yes no

yes 0.98 0.02
no 0.05 0.95

p(c | b, e) =

B E yes no

yes
yes 0.9 0.1
no 0.8 0.2

no
yes 0.7 0.3
no 0.1 0.9
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Factorizations

p(l | x, c, a, s) =
p(l, x, c | a, s)∑
l p(l, x, c | a, s)

From the graph p(l, x, c | a, s) is∑
t,e,b

p(t | a) · p(l | s) · p(b | s) · p(e | t, l) · p(x | e) · p(c | e, b).

But this is:

p(l | s)
∑
e

p(x | e)

(∑
b

p(b | s) · p(c | e, b)

)(∑
t

p(t | a) · p(e | t, l)

)
.
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Junction Trees

A junction tree:

• is a connected undirected graph without cycles (a tree);

• has vertices Ci that consist of subsets of a set V ;

• satsifies the property that if Ci ∩ Cj = S then every vertex on the
(unique) path from Ci to Cj contains S.

Example.

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8
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Junction Trees

The following graph is not a junction tree:

1, 2 2, 3 1, 3
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Junction Trees

Junction trees can be constructed directly from sets of cliques satisfying
running intersection.

C1 C2

C3

C4C5

C6

Ci ∩
⋃
j<i

Cj = Ci ∩ Cσ(i).
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Example: Junction Trees and RIP

Given sets {1, 2}, {2, 3, 4}, {2, 4, 5}, {4, 6}, {6, 7, 8}, we can build this
tree:

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8
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Example: Junction Trees and RIP

Equally, we could use a different ordering:

{6, 7, 8}, {4, 6}, {2, 4, 5}, {1, 2}, {2, 3, 4}.

6, 7, 8

4, 6

2, 4, 5

1, 2 2, 3, 4

50



Forming A Junction Tree

A

T L

S

B

E

X
C

Steps to Forming a Junction Tree:
Moralize
Drop directions
Triangulate (add edges to get a decomposable graph)
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Forming A Junction Tree

Finally, form the tree of cliques.

LEBTEL

LBS

ECBEX

AT
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Initialization

p(a) =
yes no

0.01 0.99
p(s) =

yes no

0.5 0.5

p(t | a) =
A yes no

yes 0.05 0.95
no 0.01 0.99

p(l | s) =
S yes no

yes 0.1 0.9
no 0.01 0.99

p(b | s) =
S yes no

yes 0.6 0.4
no 0.3 0.7

p(x | e) =
E yes no

yes 0.98 0.02
no 0.05 0.95

p(c | b, e) =

B E yes no

yes
yes 0.9 0.1
no 0.8 0.2

no
yes 0.7 0.3
no 0.1 0.9
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Initialization

LEBLETEL

LB

LBS

EB

ECB

E

EX

T

AT

Can set, for example:

ψAT (a, t) = p(a) · p(t | a) ψLBS(l, b, s) = p(s) · p(l | s) · p(b | s)
ψTEL(t, e, l) = p(e | t, l) ψELB(e, l, b) = 1

ψEX(e, x) = p(x | e) ψECB(e, c, b) = p(c | e, b).
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Updating / Message Passing

Suppose we have two vertices and one separator set.

X,Y Y Y, Z

ψXY (x, y)
y = 0 1

x
0 0.3 0.9
1 0.7 0.1

ψY (y)
y = 0 1

1 1

ψY Z(y, z)
z = 0 1

y
0 0.3 0.1
1 0.2 0.4

Initialize with

ψXY (x, y) = p(x | y) ψY Z(y, z) = p(z | y) · p(y) ψY (y) = 1.
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Updating / Message Passing

Suppose we have two vertices and one separator set.

X,Y Y Y, Z

ψXY (x, y)
y = 0 1

x
0 0.3 0.9
1 0.7 0.1

ψY (y)
y = 0 1

1 1

ψY Z(y, z)
z = 0 1

y
0 0.3 0.1
1 0.2 0.4

Pass message from X,Y to Y,Z. We set

ψ′Y (y) =
∑
x

ψXY (x, y) = (1, 1);

ψ′Y Z(y, z) =
ψ′Y (y)

ψY (y)
ψY Z(y, z) = ψY Z(y, z).

So in this case nothing changes.
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Updating / Message Passing

Suppose we have two vertices and one separator set.

X,Y Y Y,Z

ψXY (x, y)
y = 0 1

x
0 0.3 0.9
1 0.7 0.1

ψ′Y (y)
y = 0 1

1 1

ψ′Y Z(y, z)
z = 0 1

y
0 0.3 0.1
1 0.2 0.4

Pass message from Y,Z to X,Y . We set

ψ′′Y (y) =
∑
x

ψY Z(y, z) = (0.4, 0.6);

ψ′XY (x, y) =
ψ′′Y (y)

ψ′Y (y)
ψXY (x, y) =

0.12 0.54
0.28 0.06

.

And now we note that ψ′XY (x, y) = p(x, y) as intended.
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Rooting

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

Given a tree, we can pick any vertex as a ‘root’, and direct all edges
away from it.
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Collection and Distribution

function Collect(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in k, . . . , 2 do

send message from ψt to ψσ(t);
end for
return updated potentials ψt

end function

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

1

1

2

1
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Collection and Distribution

function Distribute(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in 2, . . . , k do

send message from ψσ(t) to ψt;
end for
return updated potentials ψt

end function

1, 2 2, 3, 4

2, 4, 5

4, 6

6, 7, 8

1

1

1

2
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Evidence

Now, suppose we want to calculate p(x | z = 0).

X,Y Y Y,Z

ψXY (x, y)
y = 0 1

x
0 0.12 0.54
1 0.28 0.06

ψY (y)
y = 0 1

0.4 0.6

ψY Z(y, z)
z = 0 1

y
0 0.6 0
1 0.4 0

Replace ψY Z(y, z) with p(y | z = 0).

Pass message from Y,Z to X,Y . We set

ψY (y) =
∑
x

ψY Z(y, z) = (0.60.4);

ψ′XY (x, y) =
ψ′′Y (y)

ψ′Y (y)
ψXY (x, y) =

0.18 0.36
0.42 0.04

.

And now calculate
∑

y ψXY (x, y) = (0.54, 0.46).
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Causal Inference
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Correlation
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Controlling for Covariates

0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

x

y
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Controlling for Covariates

0.0 0.5 1.0 1.5

−
2

−
1

0
1

2

x

y
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Causation

Example. Smoking is strongly predictive of lung cancer. So maybe
smoking causes lung cancer to develop.

smokes cancer

BUT: how do we know that this is a causal relationship? And what do
we mean by that?

The central question is: “if we stop people from smoking, will they be
less likely to get lung cancer?”

That is: does this ‘intervention’ on one variable change the distribution
of another variable?
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Alternative Explanations

smokes cancer

Reverse Causation. Lung cancer causes smoking: people with
(undiagnosed) lung cancer smoke to soothe irritation in the lungs.

smokes cancer

gene

Confounding / Common Cause. There is a gene that makes people
likely to smoke, and also more likely to get lung cancer.
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Example

Suppose we take 32 men and 32 women, ask them whether they smoke
and check for lung damage.

women men
not smoke smoke not smoke smoke

no damage 21 6 6 6
damage 3 2 2 18

Marginally, there is clearly a strong relationship between smoking and
damage

not smoke smoke
no damage 27 12

damage 5 20

P (D = 1 | S = 1) =
5

8
P (D = 1 | S = 0) =

5

32
.
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Example

This might suggest that if we had prevented them all from smoking,
only 5

32 × 64 = 10 would have had damage, whereas if we had made
them all smoke, 5

8 × 64 = 40 would have damage.

But: both smoking and damage are also correlated with gender, so this
effect may be inaccurate. If we repeat this separately for men and
women:

no-one smoking:

3

21 + 3
× 32 +

2

6 + 2
× 32 = 12

everyone smoking

2

6 + 2
× 32 +

18

18 + 6
× 32 = 32.

Compare these to 10 and 40.
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‘do’ notation

In this example there is a difference between predicting damage when
we ‘observe’ that someone smokes . . .

P (D = 1 | S = 1) =
5

8
,

. . . and prediciting damage when we intervene to make someone smoke:

P (D = 1 | do(S = 1)) =
32

64
=

1

2
.
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Gaussian

X

Z W

T Y
0.8

−1.5

1

0.7

−1

> set.seed(513)

> n <- 1e3

> Z <- rnorm(n)

> T <- rnorm(n)

> W <- Z + rnorm(n)

> X <- 0.8*T - 1.5*Z + rnorm(n)

> Y <- 0.7*W - X + rnorm(n)
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Back-Door Paths

> summary(lm(Y ~ X))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.035 0.04

X -1.285 0.02

> summary(lm(Y ~ X + Z))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.043 0.038

X -1.024 0.032

Z 0.645 0.062

> summary(lm(Y ~ X + W))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.029 0.031

X -1.011 0.019

W 0.668 0.027
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Instruments

Adding in unnecessary variables to the regression generally increases the
variance.

> summary(lm(Y ~ X + W + T))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.029 0.031

X -1.006 0.022

W 0.671 0.027

T -0.018 0.036

> summary(lm(Y ~ X + W + Z))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.028 0.031

X -1.026 0.026

W 0.682 0.031

Z -0.053 0.061
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Example: HIV Treatment

A L B

Y

A treatment with AZT (an HIV drug);
L opportunisitic infection;
B treatment with antibiotics;
Y survival at 5 years.

p(a, l, b, y) = p(a) · p(l | a) · p(b | l) · p(y | a, l, b)
p(l, y | do(a, b)) = p(l | a) · p(y | a, l, b)

p(y | do(a, b)) =
∑
l

p(l | a) · p(y | a, l, b).
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Iterative Proportional Fitting
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The Iterative Proportional Fitting Algorithm

function IPF(collection of margins q(xCi))
set p(xV ) to uniform distribution;
while maxi maxxCi

|p(xCi)− q(xCi)| > tol do
for i in 1, . . . , k do

update p(xV ) to p(xV \Ci
| xCi) · q(xCi);

end for
end while
return distribution p with margins p(xCi) = q(xCi).

end function

If any distribution satisfying p(xCi) = q(xCi) exists, then the algorithm
converges to the unique distribution with those margins and which is
Markov with respect to the graph with cliques C1, . . . , Ck.
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Some Data

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 5 10 18 1

1 0 3 4 0

X4 = 1
0 24 0 9 3
1 1 2 2 7
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Margins

Suppose we want to fit the 4-cycle model:

1 2

34

The relevant margins are:

n(x12) X2 = 0 1
X1 = 0 30 33

1 15 11

n(x23) X3 = 0 1
X2 = 0 39 6

1 31 13

n(x34) X4 = 0 1
X3 = 0 34 36

1 7 12

n(x14) X4 = 0 1
X1 = 0 27 36

1 14 12
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Start with a Uniform Table

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 5.56 5.56 5.56 5.56

1 5.56 5.56 5.56 5.56

X4 = 1
0 5.56 5.56 5.56 5.56
1 5.56 5.56 5.56 5.56
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Set Margin X1, X2 to Correct Value

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 7.5 3.75 8.25 2.75

1 7.5 3.75 8.25 2.75

X4 = 1
0 7.5 3.75 8.25 2.75
1 7.5 3.75 8.25 2.75

Replace

p(i+1)(x1, x2, x3, x4) = p(i)(x1, x2, x3, x4) ·
n(x1, x2)

p(i)(x1, x2)
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Set Margin X2, X3 to Correct Value

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 13 6.5 11.62 3.88

1 2 1 4.88 1.62

X4 = 1
0 13 6.5 11.62 3.88
1 2 1 4.88 1.62

Replace

p(i+1)(x1, x2, x3, x4) = p(i)(x1, x2, x3, x4) ·
n(x2, x3)

p(i)(x2, x3)
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Set Margin X3, X4 to Correct Value

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 12.63 6.31 11.29 3.76

1 1.47 0.74 3.59 1.2

X4 = 1
0 13.37 6.69 11.96 3.99
1 2.53 1.26 6.16 2.05

Replace

p(i+1)(x1, x2, x3, x4) = p(i)(x1, x2, x3, x4) ·
n(x3, x4)

p(i)(x3, x4)
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Set Margin X1, X4 to Correct Value

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 11.76 7.36 10.52 4.39

1 1.37 0.86 3.35 1.4

X4 = 1
0 14.15 5.74 12.66 3.42
1 2.67 1.08 6.52 1.76

Replace

p(i+1)(x1, x2, x3, x4) = p(i)(x1, x2, x3, x4) ·
n(x1, x4)

p(i)(x1, x4)

Notice that sum of first column is now 29.96.
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Set Margin X1, X2 to Correct Value

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 11.78 7.37 10.53 4.39

1 1.37 0.86 3.34 1.39

X4 = 1
0 14.14 5.73 12.64 3.42
1 2.68 1.09 6.54 1.77
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Eventually:

Waiting for this process to converge leads to the MLE:

X2 = 0 X2 = 1
X1 = 0 1 0 1

X4 = 0
X3 = 0 11.76 7.33 10.5 4.4

1 1.38 0.86 3.35 1.4

X4 = 1
0 14.18 5.72 12.66 3.44
1 2.68 1.08 6.48 1.76
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