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Course Website

The class site is at

http://www.stats.ox.ac.uk/~evans/gms/

You'll find

e |ecture notes;
e slides;
e problem sheets;

e data sets.


http://www.stats.ox.ac.uk/~evans/gms/

Course Information

There will be four problem sheets and four associated classes.

Part C students, your classes are weeks 3, 5, 7 and HTO. Signal your
preference on the sign-up sheet for:

e Thursdays 3pm—4:30pm;
e Fridays 1pm—2:30pm.
Hand in work by Tuesday, 5pm.

MSc students, class times are:

Sheet Day Time Place
1 Wednesday Week 4 11:00 LG.01
2 Tuesday Week 5 12:00 LG.01
3 Tuesday Week 7 12:00 LG.01
4 Thursday Week 8 11:00 LG.01



These books might be useful.

Lauritzen (1996). Graphical Models, OUP.

Wainwright and Jordan (2008). Graphical Models, Exponential
Families, and Variational Inference. (Available online).

Pearl (2009). Causality, (3rd edition), Cambridge.

Koller and Friedman (2009), Probabilistic Graphical Models:
Principles and Techniques, MIT Press.
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Main Issues

There are two main problems with large data sets that we will consider
in this course:

e statistical;
we need to predict outcomes from scenarios that have never been
observed (i.e., we need a model).

e computational:

e we can't store probabilities for all combinations of variables;
e even if we could, we can't sum/integrate them to find a marginal or
conditional probability:

P(X=z)=) P(X=2zY =y).

The solution is to impose nonparametric structure, in the form of
conditional independences.



Conditional Independence



Simpson’s Paradox

Death Penalty? } Defendant’s Race

White Black
Yes 53 15
No 430 176



Simpson's Paradox

Defendant's Race
S, ?
Victim's Race Death Penalty? White Black
_ Yes 53 11
White No 414 37
Yes 0 4
Black No 16 139
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Undirected Graphical Models
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Undirected Graphs

V ={1,2,3,4,5)
E={{1,2},{1,3},{2,3},{3.4},{3,5}, {4,5}}.
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Paths:

m:1-2-3-95

T 3

Note that paths may consist of one vertex and no edges.
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Induced Subgraph

The induced subgraph Gy 5 45, drops any edges that involve {3}.
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Separation

All paths between {1,2} and {5} pass through {3}.
Hence {1,2} and {5} are separated by {3}.
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Cliques and Running Intersection

Cliques:

(1,2} (2,3,4} {2,4,5) {4,6).

Separator sets:
0 {2} {2,4} {4}.
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Cliques and Running Intersection

A different ordering of the cliques:
{2,3,4} {2,4,5} (4,6} (1,2},
Separator sets:
0 {2,4} {4} {2}.
Any ordering works in this case as long {1,2} and {4,6} aren't the first

two entries.
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Given a decomposition of the graph, we have an associated conditional
independence: e.g. ({1,3},{2,4},{5,6}) suggests

X1, X3 L X5, X | Xo, X4

p(123456) - P(T24) = p(@1234) - P(T2456)-

And p(x1234) and p(x2456) are Markov with respect to Gio34 and Gogse
respectively.
18



Repeating this process on each subgraph we obtain:

P($123456) 'P($24) 'P($2) 'P(1U4) = p(9012) 'P(93234) 'P(93245) 'P(9346)-

i.e.

p(x12) - p(234) - P(T245) 'p($46)'

p(7123456) = p(x24) - p(x2) - p(4)

19



Non-Decomposable Graphs

But can’t we do this for any factorization?

No! Although

p(r1234) = V12(712) - Y23(w23) - ¥34(234) - P14(714),
the s are constrained by the requirement that
> plwigse) = 1.
1234

These is no nice representation of the s in terms of p.
20



Non-Decomposable Graphs

If we ‘decompose’ without a complete separator set then we introduce
constraints between the separate terms:

p(x1234) = p(z1 | 22, 24) - p(x3 | 2, 24),

but how to ensure that Xo 1L X, | X7, X357

21



Gaussian Graphical Models
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The Multivariate Gaussian Distribution

Let Xy ~ N,(0,%), where ¥ € RP*P is a non-singular symmetric
matrix.

1 1
logp(zy; X) = ) log |X] — 51‘52_%\/ + const.
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Gaussian Graphical Models

We have X, I Xp | Xy\(qp) if and only if kg = 0.

analysis vectors

statistics mechanics

mechanics vectors algebra analysis statistics

mechanics k11 k12 k13 0 0
vectors koo kos 0 0
algebra ki33 k‘34 k‘35
analysis k44 k45

statistics kss
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Likelihood

From Lemma 4.23, we have

logp(xy) 4+ log p(xs) = logp(ra, zs) + logp(zp, xs).
This becomes

U2 ey + 25 (Sss) tws — 2 g(Bas,as) tras — 255 (Ssp,s8) trss =0

But can rewrite each term in the form x‘T/Ma:V, e.g.

(Sasas)™ o
2l o(Sas.as) twas =zl A5,A5 0| v
0 0 0
Equating terms gives:
0 00 0 0 0 0
-1
0 0 0 o \T5BSB 0 0 0
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Maximum Likelihood Estimation

Iterating this process with a decomposable graph shows that:

k k
»l= Z {(Eci,ci)_l}ci,ci - Z {(ESi,Si)_l}si,gi :
i=1

i=1

For maximum likelihood estimation, using Lemma 4.23 we have

{(20“01')71}01-,01- B é {(25“51')71}51-,51-

k
{(Wci,ci)il}Ci,Ci o Z {(WSi’Si)il}SnSi
=1

Efl

I

=1

I

=1

)T

where Weoo = %ZZ Xg)Xg is the sample covariance matrix.
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> true_inv # true concentration matrix

(.11 [,21 [,3] [,4]
[1,] 1.0 0.3 0.2 0.0

[2,] 0.3 1.0 -0.1 0.0
[3,] 0.2 -0.1 1.0 0.3
[4,] 0.0 0.0 0.3 1.0

> solve(true_inv) # Sigma

(11 [,21 [,31 [,4]
[1,] 1.17 -0.382 -0.30 0.090
[2,] -0.38 1.136 0.21 -0.063
[3,] -0.30 0.209 1.19 -0.356
[4,] 0.09 -0.063 -0.36 1.107

> dat <- rmvnorm(1000, mean=rep(0,4), sigma = solve(true_inv))
> W <- cov(dat) # sample covariance
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Fit the model in which there is a decomposition ({1, 2}, {3}, {4}):

®
ete 0

> K_hat[1:3, 1:3] = solve(W[1:3, 1:3])
> K_hat[3:4, 3:4] = K_hat[3:4, 3:4] + solve(W[3:4, 3:4])
> K_hat[3, 3] = K_hat[3, 3] - 1/W[3, 3]
> K_hat
[,11 [,21 [,3] [,4]
[1,] 0.97 0.28 0.17 0.00
[2,] 0.28 0.97 -0.12 0.00
[3,] 0.17 -0.12 1.08 0.31
[4,] 0.00 0.00 0.31 1.00

Note this is close to the true concentration matrix. o8



Directed Graphical Models
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Directed Graphs

We have so far used undirected graphs.
In directed graphs each edge has an orientation.
A directed graph G is a pair (V, D), where

e V is a set of vertices;
e D is a set of ordered pairs of vertices (7, j) such that 4,5 € V' and

i .

If (i,7) € D we write i — j. 0 e
V =1{1,2,3,4,5}
D:{(173)’(273)7(274)7(3’5)’(475)} e e

30



Acyclicity

Paths are sequences of adjacent vertices, without repetition:

1232245 1—-+3—=5.
The path is directed if all the arrows point away from the start.
(A path of length 0 is just a single vertex.)

A directed cycle is a directed path from ¢ to j # 4, together with j — .

Graphs that contain no directed cycles are called acyclic. or more
specifically, directed acyclic graphs (DAGs).

All the directed graphs we consider are acyclic.
31



Happy Families

j) 1 is a parent of j

i i € pag(j
J € chg(i

~— —

j is a child of ¢

a— =D a € ang(b) a is an ancestor of b
ora=>o

b e deg(a) bis a descendant of a

If w ¢ deg(v) then w is a non-descendant of v:

ndg(v) =V \ deg(v).

(Notice that no v is a non-descendant of itself).

32



{1,2} ang(4) = {2,4}
chg(5) =0 deg(1) = {1,3,5}

ndg(1) = {2, 4}.
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Topological Orderings

If the graph is acyclic, we can find a topological ordering: i.e. one in
which no vertex comes before any of its parents. (Proof: induction)

Topological orderings:
1,2,3,4,5 e

1,2,4,3,5
2,1,3,4,5 9

2,1,4,3,5
2,4,1,3,5

34



Parameter Estimation

. group assigned to patient;
. patient’s age in years;

. whether patient received flu vaccine;

TS e Q@

. patient hospitalized with respiratory problems;

O—O—®
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Parameter Estimation

We can model the data (G;, 4;,V;, H;) as

group : G; ~ Bernoulli(p);
age : A; ~ N(v,c?);
vaccine : V; | A;, G; ~ Bernoulli(y;) where

log i = Bo + P1Ai + B2Gi.
hospital : H; | V; ~ Bernoulli(exp(6y + 61V;)).

Assuming independent priors:

G Vv H
O

36



Bayesian Inference

From our argument, we have

(8| G, A V,H)=n(B|G,AYV)
xp(V[AGB) 7(B).

Looking at the moral graph we see
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Markov Equivalence

All undirected graphs induce distinct models.

v b w = Xy L X | Xon\ fv,0} implied

The same is not true for directed graphs:

p(x) -plylz) -plz|z,y) Yxyz(z,y,2)

p(2) -p(x | 2)-ply | 2, 2)

38



Markov Equivalence

p(x) -p(z | x) ply|2) p(z)-p(z|2)-ply|2)
X1lY|Z X1lY|Z

®\@/@ vy ®\@/@
(z | 2,y)

Yxz(x,2) - Yyz(y, 2)

X1Y XL1Y|Z
39



Expert Systems

40



Expert Systems

The ‘Chest Clinic' network, a fictitious diagnostic model.

41



A has the patient recently visited Asia?
S does the patient smoke?
T,C,B Tuberculosis, lung cancer, bronchitis.
E logical: Tuberculosis OR lung cancer.
X shadow on chest X-ray?
C does the patient have a persistent cough?
42



Conditional Probability Tables

ONOR0.

We have our factorization:

p(a7 s, t, l> b7 6T, C) = p(a) ' p(S) p(t ‘ (1) ' p(l ’ S) : p(b ‘ 8)'
-ple|t,1)-p(z|e)- plc|e,b).
Assume that we are given each of these factors. How could we calculate

p(l ]z, ca,s)?
43



Probabilities

__yes no __yes no
P(9) =501 0.99 P($) =05 05
A yes no S yes no
p(t ’ CL) = yes 0.05 0.95 p(l ’ S) = yes 0.1 0.9
no || 0.01 0.99 no || 0.01 0.99
S yes no FE yes no
p(b|s)= vyes || 0.6 0.4 p(z|e)= vyes | 098 0.02
no || 0.3 0.7 no || 0.05 0.95
B E | ys o
ves || 0.9 0.1
ple|be)= " o || 08 0.2
ves || 0.7 0.3
" w01 09
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Factorizations

p(l,@,c| a,s)
l =
p( | e S) le(l,x,c ‘ a, 8)

From the graph p(l,z,c| a,s) is

Y p(tla)-pl]s)-pb]s)-plelt,)pla]e)-ple]eb).

t,e,b

But this is:

p(l18)> p(x|e) <Zp(b |s) - plc| e,b)> (Zp(t | a)-ple | tJ)) :

b t

45



Junction Trees

A junction tree:

e is a connected undirected graph without cycles (a tree);
e has vertices C; that consist of subsets of a set V;

e satsifies the property that if C; N Cj = S then every vertex on the
(unique) path from C; to C; contains S.

Example.
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Junction Trees

The following graph is not a junction tree:
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Junction Trees

Junction trees can be constructed directly from sets of cliques satisfying

running intersection.

@

cinlJC =cinCyy),.

j<i

48



Example: Junction Trees and RIP

Given sets {1,2}, {2,3,4}, {2,4,5}, {4,6}, {6,7,8}, we can build this

tree:
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Example: Junction Trees and RIP

Equally, we could use a different ordering:

{6,7,8},{4,6},{2,4,5},{1,2},{2,3,4}.

50



Forming A Junction Tree

Steps to Forming a Junction Tree:
Moralize

Drop directions
Triangulate (add edges to get a decomposable graph)

51



Forming A Junction Tree

Finally, form the tree of cliques.
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Initialization

p(a) _ yes no p(s) — yes no
0.01 0.99 05 05
A yes no S yes no
p(t ’ a) = yes 0.05 0.95 p(l ’ 8) = yes 0.1 0.9
no || 0.01 0.99 no || 0.01 0.99
S yes no E yes no
p(b|s)= vyes || 0.6 0.4 p(z|e)= vyes | 098 0.02
no || 0.3 0.7 no || 0.05 0.95
B E || ys o
yes || 0.9 0.1
ple|be)= " no || 08 02
yes 0.7 0.3
" o || 01 09
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Initialization

Can set, for example:
Yar(a,t) =pla)-p(t|a)  Yrps(l,b,s) =p(s)-p(l]s) pb]s)
Yren(t,el) =ple|t1) Yerplel,b) =1
Yex(e,r) =p(z|e) YEcs(e,c,b) =p(c|e,b).
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Updating / Message Passing

Suppose we have two vertices and one separator set.

XY E Y,Z
Yxy (r,y) Yy z(y, )
o003 09 y=0 1 0] 03 01
1 07 o1 11 Y 1] 02 04

Initialize with

Uxy(z,y) =pl|y)  dyz(y,2)=plz]y) -ply)  vy(y) =1

55



Updating / Message Passing

Suppose we have two vertices and one separator set.

[71
XY ILI Y. Z
¢XY(m7y) ¢YZ(va)
0] 03 009 y=0 1 0] 03 01
Y1) 07 01 11 Y 11 02 04
Pass message from X,Y to Y, Z. We set
Uy (y) =Y txy(z,y) = (1,1);
!
Yy 4y, 2) = Yy (v) Yy z(y,2) = Yy z(y,2).
Yy (y)

So in this case nothing changes.
56



Updating / Message Passing

Suppose we have two vertices and one separator set.

[
X,Y [v] Y, Z

Yxy(x,y) Yy 5 (Y, 2)
ly=0 1 by (y) [2=0 1
L 0[03 09 y=0 1 0| 03 01
1] 07 o1 1 Y 1] 02 04

Pass message from Y, Z to X, Y. We set

Zwyz (y,2) = (0.4,0.6);

”(y) 012 054
) XY@ = 008 006

by (
y) =

,(/);(Y(Iay)

And now we note that ¢y (z, p(x,y) as intended.
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Given a tree, we can pick any vertex as a ‘root’, and direct all edges
away from it.
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Collection and Distribution

function COLLECT(rooted tree 7, potentials ;)
let 1 < ... < k be a topological ordering of T
fortink,...,2do
send message from 1)1 to ¥y (p);
end for
return updated potentials v
end function
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Collection and Distribution

function DISTRIBUTE(rooted tree T, potentials 1))
let 1 < ... < k be a topological ordering of T
fortin2,... .k do

send message from 1, (;) to ¢
end for
return updated potentials v
end function

60



Now, suppose we want to calculate p(z | z = 0).

XY Ej Y, Z
Yxy(r,y) Yy z(y, 2)
[y=0 1 vy (y) [ 2=0 1
0] 012 054 y=0 1 0 06 0
T 1] 028 0.6 04 06 Y 1] 04 0

Replace ¥y z(y, z) with p(y | z=0).
Pass message from Y, Z to X,Y. We set

§:¢y2y, = (0.60.4);

Yy (2,y) = ¢ng;1/’XY( Y) = 8}12 882

And now calculate 3 ¢xy(z,y) = (0.54,0.46).
61



Causal Inference
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Correlation

T USED T THINK, THEN I TOOK A | | SOUNDS LIKE THE
CORRELATION mmED STATISTICS CLASS, CLA‘SS HELPED.
CAUSATION. Now I DON'T, WELL, F‘?HYBE

07 15959

63



Controlling for Covariates

0.0 0.5 1.0 15
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Causation

Example. Smoking is strongly predictive of lung cancer. So maybe
smoking causes lung cancer to develop.

BUT: how do we know that this is a causal relationship? And what do
we mean by that?

The central question is: "“if we stop people from smoking, will they be
less likely to get lung cancer?”

That is: does this ‘intervention’ on one variable change the distribution
of another variable?

66



Alternative Explanations

|

Reverse Causation. Lung cancer causes smoking: people with
(undiagnosed) lung cancer smoke to soothe irritation in the lungs.

gene

Confounding / Common Cause. There is a gene that makes people
likely to smoke, and also more likely to get lung cancer.

67



Suppose we take 32 men and 32 women, ask them whether they smoke

and check for lung damage.

women men
not smoke smoke not smoke smoke
no damage 21 6 6 6
damage 3 2 2 18

Marginally, there is clearly a strong relationship between smoking and

damage

not smoke smoke
no damage 27 12
damage 5 20

5

P(D=1|5=1)=2

5

PD=1|S=0)=—.

32

68



This might suggest that if we had prevented them all from smoking,
only % x 64 = 10 would have had damage, whereas if we had made
them all smoke, % x 64 = 40 would have damage.

But: both smoking and damage are also correlated with gender, so this
effect may be inaccurate. If we repeat this separately for men and
women:

no-one smoking:

32 32 =12
2+ T er2”
everyone smoking
2 X 32 + x 32 =32
6+ 2 18+ 6 T

Compare these to 10 and 40.
69



In this example there is a difference between predicting damage when
we ‘observe’ that someone smokes ...

P(D:1|S:1):§,

...and prediciting damage when we intervene to make someone smoke:

32 1

70



Gaussian

> set.seed(513)

> n <- 1e3

> Z <- rnorm(n)

> T <- rnorm(n)

> W <- Z + rnorm(n)

> X <= 0.8%T - 1.5%Z + rnorm(n)
> Y <= 0.7*xW - X + rnorm(n)
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Back-Door Paths

> summary (lm(Y ~ X))$coefficients[,1:2]
Estimate Std. Error

(Intercept) 0.035 0.04

X -1.285 0.02

> summary(lm(Y ~ X + Z))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.043 0.038
X -1.024 0.032
Z 0.645 0.062

> summary (lm(Y ~ X + W))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.029 0.031
X -1.011 0.019
W 0.668 0.027
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Instruments

Adding in unnecessary variables to the regression generally increases the
variance.

> summary(lm(Y ~ X + W + T))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.029 0.031
X -1.006 0.022
W 0.671 0.027
T -0.018 0.036

> summary (Im(Y ~ X + W + Z))$coefficients[,1:2]

Estimate Std. Error

(Intercept) 0.028 0.031
X -1.026 0.026
W 0.682 0.031
Z -0.053 0.061
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99
)

A treatment with AZT (an HIV drug);
L opportunisitic infection;

B treatment with antibiotics;

Y survival at 5 years.

pla,l,b,y) =pla) -p(l|a) -p|l)- ply|alb)
p(l,y | do(a, ))= p(l]a) ply|a,lb)

p(y | do(a Zplla p(y | a,1,b).
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lterative Proportional Fitting
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The lterative Proportional Fitting Algorithm

function IPF(collection of margins ¢(x¢,))
set p(xy) to uniform distribution;
while max; max;._|p(zc;) — q(zc,)| > tol do
foriinl, ...,k do
update p(zv) to p(zv\¢, | z¢,) - a(zc,);
end for
end while
return distribution p with margins p(z¢;) = q(z¢,).
end function

If any distribution satisfying p(z¢,) = ¢(x¢,) exists, then the algorithm
converges to the unique distribution with those margins and which is
Markov with respect to the graph with cliques C1, ..., Ck.
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Margins

Suppose we want to fit the 4-cycle model:

The relevant margins are:

n(a;lg) X2 =0 1
X1=0 30 33
1 15 11
n .7334) X4 =0 1
X3=0 34 36
1 7 12

39
31

Xy=0

27
14

36
12
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Start with a Uniform Table

X;=0 1 0 1

X, =0 X3=0 556 556 | 556 5.56
1 556 556 | 556 5.56
X, =1 0 556 556 | 556 5.56
1 556 556 | 5.56 5.56
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Set Margin X7, X5 to Correct Value

Xo Xy =1
X1 =0 1 0 1

I
o

x.—o Xs=0[ 75 375]825 275
4= 1| 75 375|825 275
1 0| 75 375|825 275
4= 1 75 375|825 275
Replace
) ) n(ry,x
PO (21, 29, 23, 24) = pP (21, T2, 23, 24) - (21, 22)

p@ (21, 29)
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Set Margin X5, X3 to Correct Value

Replace

p(

Xy =0 Xy =1
X;=0 1 0 1
O X3=0 13 6.5 | 11.62 3.88
X4=0 1 2 1 | 488 1.62
0 13 6.5 | 11.62 3.88
Xy =1 1 2 1 | 488 1.62
) ) n(xg, T
Z+1)(x17:r2>$37$4) :p(l)($17$2,x37x4) . ( 2 3)

P(i)(fﬁm $3)
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Set Margin X3, X, to Correct Value

Xy =0 Xy =1
X;1=0 1 0 1

X, —0 X3=0] 1263 6.31 | 11.29 3.76
1 1| 147 074 359 1.2
0| 1337 6.69 1196 3.99

Xi=1
1 2.53 1.26 | 6.16 2.05

Replace
. . n(xs,
p(l+1)(x17$2>$37$4) :p(l)($17$2,x37x4) . ( 3 4)

p(l) ($37 $4)
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Set Margin X7, X, to Correct Value

Xo=0 Xo=1

X1=0 1 0 1
X, =0 X3=0] 11.76 7.36 | 10.52 4.39
1 137 086 | 335 1.4
X, =1 0| 1415 574 | 1266 3.42
1 2.67 1.08 | 6.52 1.76

Replace

n(xy,xq)

Y (21, w9, 23, 24) = p¥ (21, 22, 23, 24) - N OTY
P (21, 24)

Notice that sum of first column is now 29.96.
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Set Margin X7, X5 to Correct Value

. _o Xs=0] 1178 7371053 439
4= 1| 137 086 334 1.39
0| 14.14 573 | 1264 3.42

X, =1
1| 268 1.00]| 654 1.77
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Eventually:

Waiting for this process to converge leads to the MLE:

Xo=0 Xo=1

X1=0 1 0 1
X, =0 X3=0]| 11.76 733 | 105 4.4
1 138 086 | 335 1.4
X, =1 0| 1418 5.72| 1266 3.44
1 2.68 1.08 | 6.48 1.76
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