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Administration

The course webpage is at

http://www.stats.ox.ac.uk/~evans/gms/

Here you will find problem sheets, slides and any other materials.

Problem Sheets and Classes

There will be four problem sheets, each covering roughly four lectures’ material. Part C
students should sign up for classes in the usual way, these will be in weeks 3, 5, 7 and
Hilary Week 0. MSc students will have classes in weeks 4, 5, 7 and 8:

Sheet Day Time Place

1 Wednesday Week 4 11:00 LG.01
2 Tuesday Week 5 12:00 LG.01
3 Tuesday Week 7 12:00 LG.01
4 Thursday Week 8 11:00 LG.01

Resources

Books are useful, though not required. Here are the main ones this course is based on.

1. S.L. Lauritzen, Graphical Models, Oxford University Press, 1996.

The ‘bible’ of graphical models, and much of the first half of this course is based on
this. One complication is that the book makes a distinction between two different types
of vertex, which can make some ideas look more complicated.
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2. M.J. Wainwright and M.I. Jordan, Graphical Models, Exponential Families, and Vari-
ational Inference, Foundations and Trends in Machine Learning, 2008.

Relevant for the later part of the course, and for understanding much of the compu-
tational advantages of graphical models. Available for free at https://people.eecs.
berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf.

3. J. Pearl, Causality, third edition, Cambridge, 2013.

Book dealing with the causal interpretation of directed models, which we will touch
upon.

4. D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques,
MIT Press, 2009.

A complementary book, written from a machine learning perspective.
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1 Introduction

The modern world is replete with sources of massively multivariate data, sometimes called
‘big data’. In many cases, the number of variables being measured (p) exceeds the number
of samples available (n), and in almost all cases the number of possible ways of classifying
individuals is greater than n.

Examples:

• There are around 25,000 human genes, which gives more possible human genomes
than humans who have ever existed. Even if a gene is present, whether or not it is
expressed depends upon other genes and also environmental factors. Good genetic
data sets might have a few thousand individuals in, the best ones have one hundred
thousand. How do we study what effect these genes have on diseases, or on each
other’s expression?

• A doctor has to diagnose one (or more) of hundreds of different possible diseases
in a patient with a handful out of thousands of possible symptoms, and with a few
pieces of information about his medical history. She can perhaps order some tests
to provide evidence in favour of one condition or another. How should she decide
whether the evidence is behind a particular condition?

• Photographs are typically made up of millions of pixels, each of which can take one
of 2563 ≈ 17 million colours. How do we train a computer to recognize the object in
an image?

The nature of these data sets leads to two related challenges: a statistical challenge and
a computational one. Both are features of the so-called curse of dimensionality. The
statistical problems are easy to see: suppose I ask 1,000 people 10 questions each with
two answers. This gives 210 = 1024 possible response patterns, so that it is impossible
to observe all the response patterns, and in practice we won’t observe most of them even
once. How can we sensibly estimate the probability of those missing response patterns in
future?

The computational problem is related. Suppose now that I know the distribution of
outcomes, so I have P (XV = xV ) for every xV ∈ XV . How can I compute the marginal
probability of a particular variable? Well:

P (Xi = xi) =
∑
xV \{i}

P (XV = xV ).

But notice that, if p = |V | is large, say 1,000 variables, then this sum could easily involve
21000 ≈ 10301 terms! Even for a very fast computer this is totally infeasible, and of course
we wouldn’t be able to store all the probabilities in the first place.

Each of these examples—although theoretically massive—has a lot of underlying structure
that makes the problem potentially tractable. Particular medical symptoms are closely
tied to particular diseases, with probabilities that we understand. Adjacent pixels in
photographs are often almost the same; if every pixel were completely different we would
never discern an image.

Graphical models provide a convenient way of modelling this structure, and make it com-
putationally feasible to perform calculations with the networks.
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2 Conditional Independence

The primary tool we will use to provide statistical and computationally feasible models
is conditional independence. This ensures that distributions factorize into smaller pieces
that can be evaluated separately and quickly.

2.1 Independence

Recall that two discrete variables X and Y are independent if

P (X = x, Y = y) = P (X = x) · P (Y = y) ∀x ∈ X , y ∈ Y.

Note that this is equivalent to

P (X = x |Y = y) = P (X = x) whenever P (Y = y) > 0, ∀x ∈ X .

In other words, knowing the value of Y gives us no information about the distribution of
X; we say that Y is irrelevant for X. Similarly, two variables with joint density fXY are
independent if

fXY (x, y) = fX(x) · fY (y) ∀x ∈ X , y ∈ Y.

The qualification that these expressions hold for all x ∈ X and y ∈ Y is very important1,
and sometimes forgotten.

Example 2.1. Suppose that X,W are independent Exponential(λ) random variables.
Define Y = X +W . Then the joint density of X and Y is

fXY (x, y) =

{
λ2e−λy if y > x > 0,
0 otherwise

.

Note that the expression within the valid range for x, y factorizes, so when performing the
usual change of variables one may mistakenly conclude that X and Y are independent.

2.2 Conditional Independence

Given random variables X,Y we denote the joint density p(x, y), and call

p(y) =

∫
X
p(x, y) dx.

the marginal density (of Y ). The conditional density of X given Y is defined as any
function p(x | y) such that

p(x, y) = p(y) · p(x | y).

Note that if p(y) > 0 then the solution is unique and given by the familiar expression

p(x | y) =
p(x, y)

p(y)
.

1Of course, for continuous random variables densities are only defined up to a set of measure zero, so
the condition should really read ‘almost everywhere’. We will ignore such measure theoretic niceties in
this course.
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Definition 2.2. Let X,Y be random variables defined on a product space X × Y; let Z
be a third random variable so that the joint density is p(x, y, z). We say that X and Y
are conditionally independent given Z if

p(x | y, z) = p(x | z), ∀x ∈ X , y ∈ Y, z ∈ Z such that p(y, z) > 0.

When this holds we write X ⊥⊥ Y | Z [p], possibly omitting the p for brevity.

In other words, once Z = z is known, the value of Y provides no additional information
that would allow us to predict or model X. If Z is degenerate—that is, there is some z
such that P (Z = z) = 1, then the definition above is the same as saying that X and Y
are independent. This is called marginal independence, and denoted X ⊥⊥ Y .

Example 2.3. LetX1, . . . , Xk be a Markov chain. ThenXk is independent ofX1, . . . , Xk−2
conditional upon Xk−1:

P (Xk = x | Xk−1 = xk−1, · · · , X1 = x1) = P (Xk = x | Xk−1 = xk−1)

for all x, xk−1, . . . , x1. That is, Xk ⊥⊥ X1, . . . , Xk−2 | Xk−1. This is known as the Markov
property, or memoryless property.

Although the definition of conditional independence appears to be asymmetric in X and
Y , in fact it is not: if X gives no additional information about Y then the reverse is also
true, as the following theorem shows.

Theorem 2.4. Let X,Y, Z be random variables on a Cartesian product space. The fol-
lowing are equivalent.

(i) p(x | y, z) = p(x | z) for all x, y, z such that p(y, z) > 0;

(ii) p(x, y | z) = p(x | z) · p(y | z) for all x, y, z such that p(z) > 0;

(iii) p(x, y, z) = p(y, z) · p(x | z) for all x, y, z such that p(z) > 0;

(iv) p(z) · p(x, y, z) = p(x, z) · p(y, z) for all x, y, z;

(v) p(x, y, z) = f(x, z) · g(y, z) for some functions f, g and all x, y, z.

Proof. Note that p(y, z) > 0 implies p(z) > 0, so (i) =⇒ (ii) follows from multiplying by
p(y | z), and (ii) =⇒ (iii) by multiplying by p(z). (iii) =⇒ (i) directly.

The equivalence of (iii) and (iv) is also clear, and (iii) implies (v). It remains to prove
that (v) implies the others. Suppose that (v) holds. Then

p(y, z) =

∫
p(x, y, z) dx = g(y, z)

∫
f(x, z) dx = g(y, z) · f̃(z).

If f̃(z) > 0 (which happens whenever p(z) > 0) we have

p(x, y, z) =
f(x, z)

f̃(z)
p(y, z).

But by definition f(x, z)/f̃(z) is p(x | y, z), and it does not depend upon y, so we obtain
(iii).
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Conditional independence is a complicated and often unintuitive notion, as the next ex-
ample illustrates.

Example 2.5 (Simpson’s Paradox). Below is a famous data set that records the races of
the victim and defendants in various murder cases in Florida between 1976 and 1987, and
whether or not the death penalty was imposed upon the killer. The data are presented as
counts, though we can turn this into an empirical probability distribution by dividing by
the total, 674.

Victim White Victim Black
Defendant White Black Defendant White Black

Yes 53 11 Yes 0 4
No 414 37 No 16 139

The marginal table has

Defendant White Black

Yes 53 15
No 430 176

Here we see that the chance of receiving a death sentence is approximately independent
of the defendant’s race. P (Death | White) = 53/(53 + 430) = 0.11, P (Death | Black) =
15/(15 + 176) = 0.08. (One could fiddle the numbers to obtain exact independence.)

However, restricting only to cases where the victim is white we see that black defendants
have nearly a 1/3 chance of receiving the death penalty, compared to about 1/8 for whites.
And for black victims the story is the same, a handful of blacks were were sentenced to
death while no white defendants were. (In fact we will see in Chapter 3 that this conditional
dependence is not statistically significant either, but for the purposes of this discussion
this doesn’t matter: we could multiply all the numbers by 10 and get a data set in which
the correlations are significant. For more on this data set, take a look at Example 2.3.2
in the book Categorical Data Analysis by Agresti).

The previous example teaches us the valuable lesson that marginal independence does
not imply conditional independence (nor vice versa). More generally, conditioning on
additional things may result in dependence being induced. However, there are properties
that relate conditional independences, the most important of which are given in the next
theorem.

Theorem 2.6 (Graphoid Axioms). Conditional independence satisfies the following prop-
erties, sometimes called the graphoid axioms.

1. X ⊥⊥ Y | Z =⇒ Y ⊥⊥ X | Z;

2. X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ Y | Z;

3. X ⊥⊥ Y,W | Z =⇒ X ⊥⊥W | Y,Z;

4. X ⊥⊥W | Y,Z and X ⊥⊥ Y | Z =⇒ X ⊥⊥ Y,W | Z;

5. if p(x, y, z, w) > 0, then X ⊥⊥W | Y,Z and X ⊥⊥ Y |W,Z =⇒ X ⊥⊥ Y,W | Z.
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These properties are sometimes referred to respectively as symmetry, decomposition, weak
union, contraction and intersection.

Proof. 1. Symmetry follows from Theorem 2.4

2. Starting from p(x, y, w | z) = p(x | z)p(y, w | z) and integrating out w gives p(x, y | z) =
p(x | z)p(y | z).

3. and 4: see Examples sheet.

5. By Theorem 2.4 we have p(x, y, w, z) = f(x, y, z)g(y, w, z) and p(x, y, w, z) = f̃(x,w, z)g̃(y, w, z).
By positivity, taking ratios shows that

f(x, y, z) =
f̃(x,w, z)g̃(y, w, z)

g(y, w, z)

=
f̃(x,w0, z)g̃(y, w0, z)

g(y, w0, z)

for any w0, since the LHS does not depend upon w; now we see that the right hand
side is a function of x, z times a function of y, z, so

f(x, y, z) = a(x, z) · b(y, z).

Plugging into the first expression gives the result.

Remark 2.7. Properties 2–4 can be combined into a single ‘chain rule’:

X ⊥⊥W | Y,Z and X ⊥⊥ Y | Z ⇐⇒ X ⊥⊥ Y,W | Z.

The fifth property is often extremely useful (as we shall see), but doesn’t generally hold if
the distribution is not positive: see the Examples Sheet.

2.3 Statistical Inference

Conditional independence crops up in various areas of statistics; here is an example that
should be familiar.

Example 2.8. Suppose that X ∼ fθ for some parameter θ ∈ Θ. We say that T ≡ t(X)
is a sufficient statistic for θ if the likelihood can be written as

L(θ | X = x) = fθ(x) = g(t(x), θ) · h(x).

Note that under a Bayesian interpretation of θ, this is equivalent to saying that X ⊥⊥ θ | T .

Conditional independence can also give huge computational advantages for dealing with
complex distributions and large datasets. Take random variables X,Y, Z on a product
space with joint density

pθ(x, y, z) = gη(x, y) · hζ(y, z), ∀x, y, z, θ,

for some functions g, h, where θ = (η, ζ) is a Cartesian product.
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Then suppose we wish to find the maximum likelihood estimate of θ; well this is just
θ̂ = (η̂, ζ̂) where

η̂ = arg max
η

n∏
i=1

gη(xi, yi), ζ̂ = arg max
ζ

n∏
i=1

hζ(yi, zi).

So we can maximize these two pieces separately. Notice in particular that we don’t need
all the data in either case!

If in a Bayesian mood, we might impose a prior π(η, ζ) = π(η)π(ζ). Then

π(η, ζ | x,y, z) ∝ π(η) · π(ζ) ·
∏
i

gη(xi, yi) · hζ(yi, zi)

=

{
π(η)

∏
i

gη(xi, yi)

}
·

{
π(ζ)

∏
i

hζ(yi, zi)

}
= π(η | x,y) · π(ζ | y, z).

Applying Theorem 2.4(ii) we see that η ⊥⊥ ζ | X,Y ,Z, and so we can perform inference
about this distribution for the two pieces separately (e.g. by running an MCMC procedure
or finding the posterior mode).

Indeed, each piece only require part of the data, and for large problems this can be a
tremendous computational saving.
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3 Contingency Tables

For much of the rest of the course we will be dealing with large numbers of random
variables, which we will denote by Xv, taking values in sets Xv, for some index v. For sets
of variables, V = {1, . . . , p}, we write XV ≡ (X1, . . . , Xp).

In this section we will assume that our variables Xv are discrete with a finite set of
levels Xv ≡ {1, . . . , dv}. Though we use integers as labels, they can represent something
completely arbitrary and unordered such as religion, social preference, or a car model.

Given a vector of these categories X
(i)
V = (X

(i)
1 , . . . , X

(i)
p ) sampled over individuals i =

1, . . . , n, it is helpful to cross-tabulate their responses. Define:

n(xV ) ≡
n∑
i=1

1{X(i)
1 = x1, . . . , X

(i)
p = xp},

i.e. the number of individuals who have the response pattern xV . These counts are the
sufficient statistics for a multinomial model, whose log-likelihood is

l(p;n) =
∑
xV

n(xV ) log p(xV ), p(xV ) ≥ 0,
∑
xV

p(xV ) = 1.

Each possibility xV is called a cell of the table. Given a subset of the responses A ⊆ V
we may be interested in the marginal table:

n(xA) ≡
∑
xB

n(xA, xB),

where B = V \A.

Example 3.1. Consider the death penalty data again:

Victim White Victim Black
Defendant White Black Defendant White Black

Yes 53 11 Yes 0 4
No 414 37 No 16 139

The marginal table has

Defendant White Black

Yes 53 15
No 430 176

3.1 Computation

As noted in the introduction, even a moderately sized contingency table will cause statisti-
cal problems in practice due to the curse of dimensionality. If we have p binary variables,
then the contingency table will have 2p cells. Even for p = 10 we will have over a thousand
possibilities, and for p = 50 there are too many to cells to store in a computer.

Conditional independence can help, however; suppose that XA ⊥⊥ XB | XS for some
A ∪B ∪ S = V , so that we have

p(xV ) = p(xS) · p(xA | xS) · p(xB | xS).
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Now we can store each of these factors in computer memory separately, which means
2s + 2a+s + 2b+s = 2s(1 + 2a + 2b) cells instead of 2s+a+b. This is a considerable saving if
s is small. For calculations, if we want to find P (X1 = 1) and 1 ∈ A, then we need only
sum over the 2s+a entries in p(xS) · p(xA | xS) rather than the 2a+b+s entries in p(xV ).

Of course, if there are several conditional independences then one might imagine that
further computational savings are possible: indeed this is correct, and is the main idea
behind graphical models.

3.2 Log-linear models

The log-linear parameters for p(xV ) > 0 are defined by the relation

log p(xV ) =
∑
A⊆V

λA(xA)

= λ∅ + λ1(x1) + · · ·+ λV (xV ),

and the identifiability constraint λA(xA) = 0 whenever xa = 1 for some a ∈ A. (Other
identifiability constraints can also be used.)

In the case of binary variables (that is, each variable takes only two states, dv = 2,
Xv = {1, 2}), there is only one possibly non-zero level for each log-linear parameter λA(xA),
which is when xA = (2, . . . , 2). In this case we will simply write λA = λA(2, . . . , 2). We
will proceed under this assumption from now on.

Example 3.2. Consider a 2 × 2 table with probabilities πij = P (X = i, Y = j). The
log-linear parametrization has

log π11 = λ∅ log π21 = λ∅ + λX

log π12 = λ∅ + λY log π22 = λ∅ + λX + λY + λXY .

From this we can deduce that

λXY = log
π11π22
π21π12

.

The quantity λXY is called the odds ratio between X and Y , and is a fundamental quantity
in statistical inference.

3.3 Conditional Independence

Log-linear parameters provide a convenient way of expressing conditional independence
constraints, since factorization of a density is equivalent to an additive separation of the
log-density.

Theorem 3.3. Let p > 0 be a discrete distribution on XV with associated log-linear
parameters λC , C ⊆ V . The conditional independence Xa ⊥⊥ Xb | XV \{a,b} holds if and
only if λC = 0 for all {a, b} ⊆ C ⊆ V .

Proof. See examples sheet.
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If there is a conditional independence, then the log-linear parameters can be calculated by
just looking at the distribution of each ‘piece’ of the conditional independence separately.
For example, suppose that XA ⊥⊥ XB | XC , where A∪B ∪C = V . Then by Theorem 2.4,
we have

p(xC) · p(xA, xB, xC) = p(xA, xC) · p(xB, xC),

and hence

log p(xA, xB, xC) = log p(xA, xC) + log p(xB, xC)− log p(xC).

Then applying the log-linear expansions to each term, we get∑
W⊆V

λW (xW ) =
∑

W⊆A∪C
λACW (xW ) +

∑
W⊆B∪C

λBCW (xW )−
∑
W⊆C

λCW (xW ),

where λBC By equating terms we can see that

λW (xW ) = λACW (xW ) for any W ⊆ A ∪ C with W ∩A 6= ∅
λW (xW ) = λBCW (xW ) for any W ⊆ B ∪ C with W ∩B 6= ∅
λW (xW ) = λACW (xW ) + λBCW (xW )− λCW (xW ) for any W ⊆ C.

So under this conditional independence, the log-linear parameters for p(xV ) are easily
obtainable from those for p(xA, xC) and p(xB, xC).

Example 3.4. Let us now try applying this to our death penalty dataset using R. The
file deathpen.txt is available on the class website.

> df <- read.table("deathpen.txt", header=TRUE)

> df

DeathPen Defendant Victim freq

1 Yes White White 53

2 No White White 414

3 Yes Black White 11

4 No Black White 37

5 Yes White Black 0

6 No White Black 16

7 Yes Black Black 4

8 No Black Black 139

We can fit log-linear models using the glm() command with a Poisson response. This
gives the model DeathPen ⊥⊥ Defendant | Victim.

> mod1 = glm(freq ~ DeathPen*Victim + Defendant*Victim,

+ family=poisson, data=df)

> summary(mod1)$coefficients

The output (edited for brevity) is:
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.0610 0.1258 32.283 < 2e-16 ***

DeathPenNo 1.9526 0.1336 14.618 < 2e-16 ***

VictimBlack -4.9711 0.5675 -8.760 < 2e-16 ***

DefendantBlack -2.2751 0.1516 -15.010 < 2e-16 ***

DeathPenNo:VictimBlack 1.7045 0.5237 3.255 0.00114 **

VictimBlack:DefendantBlack 4.4654 0.3041 14.685 < 2e-16 ***

We can verify that the coefficient of Victim-Defendant is the same as the marginal log
odds-ratio between those two variables by fitting a model that ignores whether or not the
death penalty was administered:

> mod2 = glm(freq ~ Defendant*Victim,

+ family=poisson, data=df)

> summary(mod2)$coefficients

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.45318 0.04627 117.84 <2e-16 ***

DefendantBlack -2.27513 0.15157 -15.01 <2e-16 ***

VictimBlack -3.37374 0.25423 -13.27 <2e-16 ***

DefendantBlack:VictimBlack 4.46538 0.30407 14.69 <2e-16 ***

Note that the parameter estimates relating to the Defendant’s race (and their standard
errors) are the same as in the larger model.

It is perhaps easier just to recover the predicted counts under the model:

> count1 <- predict.glm(mod1, type="response")

> count1

1 2 3 4 5 6 7 8

58.035 408.965 5.965 42.035 0.403 15.597 3.597 139.403

Compare these to the actual counts: a goodness of fit test can be performed by using
Pearson’s χ2 test or (almost equivalently) by looking at the residual deviance of the model.
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4 Undirected Graphical Models

Conditional independence is, in general, a rather complicated object. In fact, one can
derive a countably infinite number of properties like those in Theorem 2.6 to try to describe
it. Graphical models are a class of conditional independence models with particularly nice
properties. In this section we introduce undirected graphical models.

4.1 Undirected Graphs

Definition 4.1. Let V be a finite set. An undirected graph G is a pair (V,E) where:

• V are the vertices;

• E ⊆ {{i, j} : i, j ∈ V, i 6= j} is a set of unordered distinct pairs of V , called edges.

We represent graphs by drawing the vertices (also called nodes) and then joining pairs of
vertices by a line if there is an edge between them.

Example 4.2. The graph in Figure 1(a) has five vertices and six edges:

V = {1, 2, 3, 4, 5};
E = {{1, 2}, {1, 3}, {2, 3}, {3, 4}, {3, 5}, {4, 5}}.

We write i ∼ j if {i, j} ∈ E, and say that i and j are adjacent in the graph. The vertices
adjacent to i are called the neighbours of i, and the set of neighbours is often called the
boundary of i and denoted bdG(i).

A path in a graph is a sequence of adjacent vertices, without repetition. For example,
1 − 2 − 3 − 5 is a path in the graph in Figure 1(a). However 3 − 1 − 2 − 3 − 4 is not a
path, since the vertex 3 appears twice. The length of a path is the number of edges in it.
There is trivially a path of length zero from each vertex to itself.

Definition 4.3 (Separation). Let A,B, S ⊆ V . We say that A and B are separated by S
in G (and write A ⊥s B | S [G]) if every path from any a ∈ A to any b ∈ B contains at
least one vertex in S.

For example, {1, 2} is separated from {5} by {3} in Figure 1(a).

Note that there is no need for A,B, S to be disjoint for the definition to make sense,
though in practice this is usually assumed.

Given a subset of vertices W ⊆ V , we define the induced subgraph GW of G to be the graph
with vertices W , and all edges from G whose endpoints are contained in W . For example,
the induced subgraph of Figure 1(a) over {2, 3, 5} is the graph 2− 3− 5.

We remark that A and B are separated by S (where S ∩A = S ∩B = ∅) if and only if A
and B are separated by ∅ in GV \S .

4.2 Markov Properties

A graphical model is a statistical model based on the structure of a graph. We associate
each vertex v with a random variable Xv, and infer structure (a model) on the joint
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distribution of the random variables from the structure of the graph. In all the examples
we consider, the model will be defined by conditional independences arising from missing
edges in the graph.

Definition 4.4. Let G be a graph with vertices V , and let p be a probability distribution
over the random variables XV . We say that p satisfies the pairwise Markov property for
G if

i 6∼ j in G =⇒ Xi ⊥⊥ Xj | XV \{i,j} [p].

In other words, whenever an edge is missing in G there is a corresponding conditional
independence in p.

Example 4.5. Looking at the graph in Figure 2, we see that there are two missing edges,
{1, 4} and {2, 4}. Therefore a distribution obeys the pairwise Markov property for this
graph if and only if X1 ⊥⊥ X4 | X2, X3 and X2 ⊥⊥ X4 | X1, X3.

Note that, if the distribution is positive then we can apply Property 5 of Theorem 2.6 to
obtain that X1, X2 ⊥⊥ X4 | X3.

The word ‘Markov’ is used by analogy with Markov chains, in which a similar independence
structure is observed. In fact, undirected graph models are often called Markov random
fields or Markov networks in the machine learning literature.

Definition 4.6. We say that p satisfies the global Markov property for G if for any disjoint
sets A,B, S

A ⊥s B | S in G =⇒ XA ⊥⊥ XB | XS [p].

In other words, whenever a separation is present in G there is a corresponding conditional
independence in p.
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Proposition 4.7. The global Markov property implies the pairwise Markov property.

Proof. If i 6∼ j then clearly any path from i to j first visits a vertex in V \ {i, j}. Hence
V \ {i, j} separates i and j.

We will shortly see that the pairwise property ‘almost’ implies the global property.

It is common, though a pet peeve of your lecturer, to confuse a ‘graph’ with a ‘graphical
model’. A graph is—as should now be clear from the definitions above—a purely mathe-
matical (as opposed to statistical) object; a graphical model is a statistical model that is
based on the structure of a graph.

4.3 Cliques and Factorization

The pairwise Markov property implies a conditional independence involving all the vari-
ables represented in a graph for each edge that is missing from the graph; from Theorem 2.4
it is therefore a factorization on the joint distribution. A natural question is whether these
separate factorizations can be combined into a single constraint on the joint distribution;
in this section we show that they can, at least for positive distributions.

Definition 4.8. Let G be a graph with vertices V . We say C is complete if i ∼ j for every
i, j ∈ C. A maximal complete set is called a clique. We will denote the set of cliques in a
graph by C(G).

The cliques of Figure 1(a) are {1, 2, 3} and {3, 4, 5}, and the complete sets are any subsets
of these vertices. Note that {v} is trivially complete in any graph.

The graph in Figure 1(b) has cliques {1, 2}, {2, 3}, {3, 4} and {1, 4}.

Definition 4.9. Let G be a graph with vertices V . We say a distribution with density p
factorizes according to G if

p(xV ) =
∏

C∈C(G)

ψC(xC) (1)

for some functions ψC . The functions ψC are called potentials.

Recalling Theorem 2.4, it is clear that this factorization implies conditional independence
constraints. In fact, it implies those conditional independence statements given by the
global Markov property.

Theorem 4.10. If p(xV ) factorizes according to G, then p obeys the global Markov property
with respect to p.

Proof. Suppose that S separates A and B in G. Let Ã be the set of vertices that are
connected to A by paths in GV \S ; in particular, B ∩ Ã = ∅. Let B̃ = V \ (Ã ∪ S), so that

Ã and B̃ are separated by S, V = Ã ∪ B̃ ∪ S, and A ⊆ Ã, B ⊆ B̃.

Every clique in G must be a subset of either Ã ∪ S or B̃ ∪ S, since there are no edges
between Ã and B̃. Hence we can write∏

C∈C
ψC(xC) =

∏
C∈CA

ψC(xC) ·
∏
C∈CB

ψC(xC)

= f(xÃ, xS) · f(xB̃, xS).
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and hence XÃ ⊥⊥ XB̃ | XS . Then applying property 2 of Theorem 2.6 gives XA ⊥⊥ XB |
XS .

Theorem 4.11 (Hammersley-Clifford Theorem). If p(xV ) > 0 obeys the pairwise Markov
property with respect to G, then p factorizes according to G.

The proof of this is omitted, but if of interest it can be found in Lauritzen’s book.

We can now summarize our Markov properties as follows:

factorization =⇒ global Markov property =⇒ pairwise Markov property,

and if p is positive, then we also have

pairwise Markov property =⇒ factorization,

so all three are equivalent. The result is not true in general if p is not strictly positive.

Example 4.12. Let X3 and X4 be independent Bernoulli variables with P (X3 = 1) =
P (X4 = 1) = 1

2 , and P (X1 = X2 = X4) = 1. Then X4 ⊥⊥ X1 | X2, X3 and X4 ⊥⊥ X2 |
X1, X3, but X4 6⊥⊥ X1, X2 | X3.

Hence, P satisfies the pairwise Markov property with respect to Figure 2, but not the
global Markov property.

It is important to note that one can define models of the form (1) that are not graphical,
if the sets C do not correspond to the cliques of a graph. See the Examples Sheet.

4.4 Decomposability

Given the discussion in Section 2.3 we might wonder whether we can always perform
inference on cliques separately in graphical models? The answer turns out to be that, in
general, we can’t—at least not without being more careful. However, for a particularly
important subclass known as decomposable models, we can.

Definition 4.13. Let G be an undirected graph with vertices V = A ∪ S ∪ B, where
A,B, S are disjoint sets. We say that (A,S,B) constitutes a decomposition of G if:

• GS is complete;

• A and B are separated by S in G.

If A and B are both non-empty we say the decomposition is proper.

Example 4.14. Consider the graph in Figure 1(a). Here {1, 2} is separated from {4, 5}
by {3}, and {3} is trivially complete so ({1, 2}, {3}, {4, 5}) is a decomposition. Note that
({2}, {1, 3}, {4, 5}) is also a decomposition, for example. We say that a decomposition is
minimal if there is no subset of S that can be used to separate A and B.

The graph in Figure 1(b) cannot be decomposed, since the only possible separating sets are
{1, 3} and {2, 4}, which are not complete. A graph which cannot be (properly) decomposed
is called prime.
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Figure 3: Left: a decomposable graph. Right: the results of a possible decomposition of
the graph, ({1, 2}, {3, 4}, {5, 6}).

Definition 4.15. Let G be a graph. We say that G is decomposable if it is complete, or
there is a proper decomposition (A,S,B) and both GA∪S and GB∪S are also decomposable.

The graph in Figure 1(a) is decomposable, because using the decomposition ({1, 2}, {3}, {4, 5})
we can see that G{1,2,3} and G{3,4,5} are complete (and therefore decomposable by defini-
tion).

The graph in Figure 3 can be decomposed as shown, into G{1,2,3,4} and G{3,4,5,6}, both of
which are themselves decomposable.

Definition 4.16. Let C be a collection of subsets of V . We say that the sets C satisfy
the running intersection property if there is an ordering C1, . . . , Ck, such that for every
j = 2, . . . , k there exists σ(j) < j with

Cj ∩
j−1⋃
i=1

Ci = Cj ∩ Cσ(j).

In other words, the intersection of each set with all the previously seen objects is contained
in a single set.

Example 4.17. The sets {1, 2, 3}, {3, 4}, {2, 3, 5}, {3, 5, 6} satisfy the running intersection
property, under that ordering.

The sets {1, 2}, {2, 3}, {3, 4}, {1, 4} cannot be ordered in such a way.

Proposition 4.18. If C1, . . . , Ck satisfy the running intersection property, then there is
a graph whose cliques are precisely (the inclusion maximal elements of) C = {C1, . . . , Ck}.

Proof. This is left as an exercise for the interested reader.

Definition 4.19. Let G be an undirected graph. A cycle is a sequence of vertices
〈v1, . . . , vk〉 for k ≥ 3, such that there is a path v1 − · · · − vk and an edge vk − v1.

A chord on a cycle is any edge between two vertices not adjacent on the cycle. We say that
a graph is chordal or triangulated if whenever there is a cycle of length ≥ 4, it contains a
chord.

Beware of taking the word ‘triangulated’ at face value: the graph in Figure 4(b) is not
triangulated because of the cycle 1− 2− 5− 4, which contains no chords.
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Figure 4: Two undirected graphs: (a) is chordal, (b) is not.

Theorem 4.20. Let G be an undirected graph. The following are equivalent:

(i) G is decomposable;

(ii) G is triangulated;

(iii) every minimal a, b-separator is complete;

(iv) the cliques of G satisfy the running intersection property.

Proof. (i) =⇒ (ii). We proceed by induction on p, the number of vertices in the graph.
Let G be decomposable; if it is complete then it is clearly triangulated, so the result holds
for p = 1. Otherwise, let (A,S,B) be a proper decomposition, so that GA∪S and GB∪S
are both have strictly fewer vertices and are decomposable. By the induction hypothesis,
there are no chordless cycles entirely contained in A∪ S or B ∪ S, so any such cycle must
contain a vertex a ∈ A and b ∈ B. Then the cycle must pass through S twice, and since
S is complete this means there is a chord on the cycle.

(ii) =⇒ (iii). Suppose there is a minimal a, b-separator, say S, which is not complete;
let s1, s2 ∈ S be non-adjacent. Since the separator is minimal there is a path π1 from a
to b via s1 ∈ S, and another path π2 from a to b via s2 ∈ S, and neither of these paths
intersects any other element of S. By concatenating the paths we obtain a closed walk;
by shrinking the end of the paths to any vertices which are common to both we obtain
a cycle. Make the cycle of minimal length by traversing chords, and we end up with a
chordless cycle of length ≥ 4.

(iii) =⇒ (iv). If the graph is complete there is nothing to prove, otherwise pick a, b not
adjacent and let S be a minimal separator. As in Theorem 4.10, let Ã be the connected
component of a in GV \S , and B̃ the rest. Then apply the result by induction to the strictly
smaller graphs GÃ∪S and GB̃∪S . Then claim that this gives a series of cliques that satisfies
the RIP. [See Examples Sheet 2.]

(iv) =⇒ (i). We proceed by induction, on the number of cliques. If k = 1 there is nothing
to prove. Let Rk = V \ Ck, and Sk = Ck ∩

⋃k−1
i=1 Ci; we claim that (Rk, Sk, Ck \ Sk) is a

proper decomposition, and that the graph GRk∪Sk has k − 1 cliques that also satisfy the
running intersection property.

Corollary 4.21. Let G be decomposable and (A,S,B) be a proper decomposition. Then
GA∪S and GB∪S are also decomposable.
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Proof. If G is triangulated then so are any induced subgraphs of G.

This corollary reassures us that to check if a graph is decomposable we can just go ahead
and start decomposing, and we will never have to ‘back track’.

Definition 4.22. A forest is a graph that contains no cycles. If a forest is connected we
call it a tree.

All forests (and hence trees) are decomposable, since they are clearly triangulated. In fact,
the relationship between trees and connected decomposable graphs is more fundamental
than this. Decomposable graphs are ‘tree-like’, in a sense we will make precise later in the
course (Section 7). This turns out to be extremely useful for computational reasons.

4.5 Separator Sets

Let G be a decomposable graph, and let C1, . . . , Ck be an ordering of the cliques which
satisfies running intersection. Define the jth separator set for j ≥ 2 as

Sj ≡ Cj ∩
j−1⋃
i=1

Ci = Cj ∩ Cσ(j).

By convention S1 = ∅.
Lemma 4.23. Let G be a graph with decomposition (A,S,B), and let p be a distribu-
tion; then p factorizes with respect to G if and only if its marginals p(xA∪S) and p(xB∪S)
factorize according to GA∪S and GB∪S respectively, and

p(xV ) · p(xS) = p(xA∪S) · p(xB∪S). (2)

Proof. If (2) and the other factorizations hold then the fact that p factorizes with respect
to G is clear.

Now suppose the converse. From the decomposition, we have A ⊥s B | S in G, and so the
equation (2) must hold by Theorem 2.4. Since this is a decomposition, all cliques of G are
contained either within A∪S or B∪S (or both). Let A be the cliques contained in A∪S,
and B the rest.

Then p(xV ) =
∏
C∈A ψC(xC) ·

∏
C∈B ψC(xC) = h(xA, xS) · k(xB, xS). By Theorem 2.4, we

have that (2) holds; substituting p(xV ) into (2) and integrating both sides with respect to
xA gives

p(xS) · k(xB, xS)

∫
h(xA, xS) dxA = p(xS) · p(xB, xS)

p(xS) · k(xB, xS) · h̃(xS) = p(xS) · p(xB, xS),

which shows that p(xB, xS) = ψ′S(xS)
∏
C∈B ψC as required.

Theorem 4.24. Let G be a decomposable graph with cliques C1, . . . , Ck. Then p factorizes
with respect to G if and only if

p(xV ) =
k∏
i=1

p(xCi\Si | xSi) =
k∏
i=1

p(xCi)

p(xSi)
.

Further, these quantities are variation independent, so inference for p(xV ) can be based
on separate inferences for each p(xCi).
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Proof. If p factorizes in the manner suggested then it satisfies the factorization property
for G.

For the converse we proceed by induction on k. If k = 1 the result is trivial. Otherwise,
note that Ck \Sk is separated from Hk ≡

(⋃
i<k Ci

)
\Sk by Sk, so we have a decomposition

(Hk, Sk, Ck \ Sk), and hence applying Lemma 4.23,

p(xSk) · p(xV ) = p(xCk) · p(xHk , xSk)

where p(xHk , xSk) factorizes according to GHk∪Sk . This is the graph with cliques C1, . . . , Ck−1,
which trivially also satisfy running intersection. Hence, by the induction hypothesis

p(xSk) · p(xV ) = p(xCk) ·
k−1∏
i=1

p(xCi)

p(xSi)
,

giving the required result.

The variation independence follows from the fact that p(xCk\Sk | xSk) can take the form
of any valid probability distribution.

This result is extremely useful for statistical inference, since we only need to consider the
margins of variables corresponding to cliques. Suppose we have a contingency table with
counts n(xV ). The likelihood for a decomposable graph is

l(p;n) =
∑
xV

n(xV ) log p(xV )

=
∑
xV

n(xV )
k∑
i=1

log p(xCi\Si | xSi)

=
k∑
i=1

∑
xCi

n(xCi) log p(xCi\Si | xSi),

so inference about p(xCi\Si | xSi) should be based entirely upon n(xCi). Using Lagrange
multipliers (see also Sheet 0, Question 4) we can see that the likelihood is maximized by
choosing

p̂(xCi\Si | xSi) =
n(xCi)

n(xSi)
, i.e. p̂(xCi) =

n(xCi)

n
,

using the empirical distribution for each clique.

4.6 Non-Decomposable Models

It would be natural to ask at this point whether the closed-form results for decomposable
models also hold for general undirected graph models; unfortunately they do not. However,
we can say the following:

Theorem 4.25. Let G be an undirected graph, and suppose we have counts n(xV ). Then
the maximum likelihood estimate p̂ under the set of distributions that are Markov to G is
the unique element in which

n · p̂(xC) = n(xC).

In fact, more is true, but we will leave this point until we have studied exponential families
in Section 9.
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5 Multivariate Gaussian Distributions

Let XV = (X1, . . . , Xp)
T ∈ Rp be a random vector. Let µ ∈ Rp and Σ ∈ Rp×p be a positive

definite symmetric matrix. We say that XV has a multivariate Gaussian distribution
with parameters µ and Σ if the joint density is

f(xV ) =
1

(2π)p/2|Σ|1/2
exp

{
−1

2
(xV − µ)TΣ−1(xV − µ)

}
, xV ∈ Rp.

This is also called the multivariate normal distribution.

Exercise: show that EX = µ and CovX = Σ (hint: using the Cholesky decomposition
write Σ = LLT , where L is a lower triangular invertible matrix, and use a change of
variables).

The concentration matrix is K ≡ Σ−1.

Proposition 5.1. Let XV ∼ Np(µ,Σ), and let A be a q × p matrix of full rank q. Then

AXV ∼ Nq(Aµ,AΣAT ).

In particular, for any U ⊆ V we have XU ∼ Nq(µU ,ΣUU ).

Proof sketch (you should fill in the gaps). For q = p this just follows from applying the
transformation Z = AXV to the density of XV . If q < p then since Σ is positive definite
we can write Σ = LLT for a non-singular lower triangular matrix L; then construct a
non-singular p× p matrix

Ã =

(
A
B

)
whose first q rows are A, and such that ÃL has its first q rows orthogonal to its last p− q
rows. Then

ÃΣÃT =

(
AΣAT 0

0 BΣBT

)
and the first q components have the desired marginal distribution.

For simplicity of notation, we will assume throughout that µ = 0.

5.1 Gaussian Graphical Models

We only consider the case in which Σ is positive definite, so all our density functions are
strictly positive. Hence, by the Hammersley-Clifford Theorem, the pairwise and global
Markov properties, and the factorization criterion all lead to the same conditional inde-
pendence restrictions. If any of these hold, we will say that Σ ‘is Markov with respect to’
a graph, without ambiguity.

Proposition 5.2. Let XV have a multivariate Gaussian distribution with concentration
matrix K = Σ−1. Then XA ⊥⊥ XB | XV \(A∪B) if and only if KAB = 0.

In addition, XA ⊥⊥ XB if and only if ΣAB = 0.
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Proof. Looking at the log-likelihood, it is clear that the only term involving both xa and
xb is −1

2xaxbkab. Hence, if kab = 0 then the log-likelihood has separate terms for each
xa, xb, and the likelihood factorizes.

The second claim follows from Proposition 5.1.

Note that as a corollary of this, X ⊥⊥ Y and X ⊥⊥ Z does imply X ⊥⊥ Y,Z for jointly
Gaussian random variables.

Theorem 5.3. Let XV ∼ Np(µ,Σ) for positive definite Σ, with K = Σ−1. Then the
distribution of XV is Markov with respect to G if and only if kab = 0 whenever a 6∼ b in G.

Proof. This follows immediately from Proposition 5.2.

We introduce some notation for convenience. If M is a matrix whose rows and columns
are indexed by A ⊆ V , we write {M}A,A to indicate the matrix indexed by V whose
A,A-entries are M and with zeroes elsewhere.

Lemma 5.4. Let G be a graph with decomposition (A,S,B), and XV ∼ Np(0,Σ). Then
p(xV ) is Markov with respect to G if and only if

Σ−1 =
{

(ΣA∪S,A∪S)−1
}
A∪S,A∪S +

{
(ΣB∪S,B∪S)−1

}
B∪S,B∪S −

{
(ΣS,S)−1

}
S,S

,

and ΣA∪S,A∪S and ΣB∪S,B∪S are Markov with respect to GA∪S and GB∪S respectively.

Proof. We know from Lemma 4.23 that

p(xV ) · p(xS) = p(xA, xS) · p(xB, xS).

where p(xA, xS) and p(xB, xS) are Markov with respect to GA∪S and GB∪S respectively.
Since margins of multivariate Gaussians are also multivariate Gaussian, we can insert the
appropriate density for each term, take logs and rearrange to see that:

xTV Σ−1xV + xTS (ΣSS)−1xS = xTA∪S(ΣA∪S,A∪S)−1xA∪S + xTB∪S(ΣB∪S,B∪S)−1xB∪S + const.

Now, comparing coefficients for each term we have

Σ−1 =
{

(ΣA∪S,A∪S)−1
}
A∪S,A∪S +

{
(ΣB∪S,B∪S)−1

}
B∪S,B∪S −

{
(ΣS,S)−1

}
S,S

,

This gives the result.

Applying the previous result to a decomposable graph repeatedly we see that XV is Markov
with respect to G if and only if

Σ−1 =
k∑
i=1

{
(ΣCi,Ci)

−1}
Ci,Ci

−
k∑
i=2

{
(ΣSi,Si)

−1}
Si,Si

.
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Figure 5: A graph for the maths test data.

5.2 Maximum Likelihood Estimation

Let X
(1)
V , . . . , X

(n)
V be i.i.d. Np(0,Σ); then the maximum likelihood estimator of Σ is the

sample covariance matrix

Σ̂ = W ≡ 1

n

n∑
i=1

X
(i)
V X

(i)T
V .

Let Σ̂G denote the MLE for Σ under the restriction that the distribution satisfies the
Markov property for G, and K̂G its inverse.

Then, since the MLE of a saturated Gaussian is to have Σ = W , the maximum likelihood
estimate for K = Σ−1 is given by

(
Σ̂G
)−1

=

k∑
i=1

{
(WCi,Ci)

−1}
Ci,Ci

−
k∑
i=2

{
(WSi,Si)

−1}
Si,Si

.

5.3 Data Examples

Example 5.5. Whittaker (1990) analyses data on five maths test results administered
to 88 students, in analysis, algebra, vectors, mechanics and statistics. The empirical
concentration matrix (i.e. S−1) is given by the following table (entries multiplied by 103)

mechanics vectors algebra analysis statistics

mechanics 5.24 -2.43 -2.72 0.01 -0.15
vectors -2.43 10.42 -4.72 -0.79 -0.16
algebra -2.72 -4.72 26.94 -7.05 -4.70
analysis 0.01 -0.79 -7.05 9.88 -2.02

statistics -0.15 -0.16 -4.70 -2.02 6.45

Notice that some of the entries in the concentration matrix are quite small, suggesting
that conditional independence holds. Indeed, fitting the graphical model in Figure 5 gives
an excellent fit (see Example Sheet 2). The model suggests that ability in analysis and
statistics is independent of ability in mechanics and vector calculus, conditional on one’s
fundamental abilities in algebra.
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burglar earthquake

alarm

Figure 6: A directed graph representing a burglar alarm and the reasons it might go off.

6 Directed Graphical Models

Undirected graphs represent symmetrical relationships between random variables: the
vertices in an undirected graph are typically unordered. In many realistic situations the
relationships we wish to model are not symmetric: for example, in regression we have a
outcome that is modelled as a function of covariates, and implicitly this suggests that the
covariates ‘come before’ the outcome (in a temporal sense or otherwise).

A further limitation of undirected graphs is that they are only able to represent conditional
independences; marginal independences arise very naturally. For example, suppose that
we have independent inputs to a system, and an output that is a (random) function of the
inputs. An example is given in Figure 6.

Such situations are naturally represented by a directed graph.

Definition 6.1. A directed graph G is a pair (V,D), where

• V is a finite set of vertices; and

• D ⊆ V × V is a collection of edges, which are ordered pairs of vertices. Loops (i.e.
edges of the form (v, v)) are not allowed.

If (v, w) ∈ D we write v → w, and say that v is a parent of w, and conversely w a child of
v. Examples are given in Figures 6 and 7(a).

We still say that v and w are adjacent if v → w or w → v. A path in G is a sequence of
distinct vertices such that each adjacent pair in the sequence is adjacent in G. The path
is directed if all the edges point away from the beginning of the path.

For example, in the graph in Figure 7(a), 1 and 2 are parents of 3. There is a path
1→ 3← 2→ 5, and there is a directed path 1→ 3→ 5 from 1 to 5.

The set of parents of w is paG(w), and the set of children of v is chG(v).

Definition 6.2. A graph contains a directed cycle if there is a directed path from v to w
together with an edge w → v. A directed graph is acyclic if it contains no directed cycles.
We call such graphs directed acyclic graphs (DAGs).

All the directed graphs considered in this course are acyclic.

A topological ordering of the vertices of the graph is an ordering 1, . . . , k such that i ∈
paG(j) implies that i < j. That is, vertices at the ‘top’ of the graph come earlier in the
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ordering. Acyclicity ensures that a topological ordering always exists (see the Examples
Sheet).

We say that a is an ancestor of v if either a = v, or there is a directed path a→ · · · → v.
The set of ancestors of v is denoted by anG(v). The ancestors of 4 in the DAG in Figure
7(a) are anG(4) = {2, 4}. The descendants of v are defined analogously and denoted
deG(v); the non-descendants of v are ndG(v) ≡ V \ deG(v). The non-descendants of 4 in
Figure 7(a) are {1, 2, 3}.

6.1 Markov Properties

As with undirected graphs, we will associate a model with each DAG via various Markov
properties. The most natural way to describe the model associated with a DAG is via a
factorization criterion, so this is where we begin.

For any multivariate probability distribution p(xV ), given an arbitrary ordering of the
variables x1, . . . , xk, we can iteratively use the definition of conditional distributions to
see that

p(xV ) =
k∏
i=1

p(xi | x1, . . . , xi−1).

A directed acyclic graph model uses this form with a topological ordering of the graph,
and states that the right-hand side of each factor only depends upon the parents of i.

Definition 6.3 (Factorization Property). Let G be a directed acyclic graph with vertices
V . We say that a probability distribution p(xV ) factorizes with respect to G if

p(xV ) =
∏
v∈V

p(xv | xpaG(v)), xV ∈ XV .

This is clearly a conditional independence model; given a total ordering on the vertices V ,
let pre<(v) = {w | w < v} denote all the vertices that precede v according to the ordering.
It is not hard to see that we are requiring

p(xv | xpre<(v)) = p(xv | xpaG(v)), v ∈ V

for an arbitrary topological ordering of the vertices <. That is,

Xv ⊥⊥ Xpre<(v)\paG(v) | XpaG(v)
[p]. (3)

Since the ordering is arbitrary provided that it is topological, we can pick < so that as
many vertices come before v as possible; then we see that (3) implies

Xv ⊥⊥ XndG(v)\paG(v) | XpaG(v)
[p]. (4)

Distributions are said to obey the local Markov property with respect to G if they satisfy
(4) for every v ∈ V .

For example, the local Markov property applied to each vertex in Figure 7(a) would require
that

X1 ⊥⊥ X2, X4 X2 ⊥⊥ X1 X3 ⊥⊥ X4 | X1, X2

X4 ⊥⊥ X1, X3 | X2 X5 ⊥⊥ X1, X2 | X3, X4
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Figure 7: (a) A directed graph and (b) its moral graph.

There is some redundancy here, but not all independences that hold are given directly.
For example, using Theorem 2.6 we can deduce that X4, X5 ⊥⊥ X1 | X2, X3, but we might
wonder if there is a way to tell this immediately from the graph. For such a ‘global Markov
property’ we need to do a bit more work.

6.2 Ancestrality

We say that a set of vertices A is ancestral if it contains all its own ancestors. So, for
example, the set {1, 2, 4} is ancestral in Figure 7(a); however {1, 3} is not, because {2} is
an ancestor of {3} but it not included.

Ancestral sets play an important role in directed graphs because of the following proposi-
tion.

Proposition 6.4. Let A be an ancestral set in G. Then p(xV ) factorizes with respect to
G only if p(xA) factorizes with respect to GA.

Proof. See Examples Sheet 2.

Now suppose we wish to interrogate whether a conditional independence XA ⊥⊥ XB | XC

holds under a DAG model. From the previous result, we can restrict ourselves to asking
if this independence holds in the induced subgraph over the ancestral set anG(A∪B ∪C).

Definition 6.5. A v-structure is a triple i→ k ← j such that i 6∼ j.

Let G be a directed acyclic graph; the moral graph Gm is formed from G by joining any
non-adjacent parents and dropping the direction of edges.

In other words, the moral graph removes any ‘v-structures’ by filling in the missing edge,
and then drops the direction of edges. An example is given in Figure 7.

Proposition 6.6. If pV factorizes with respect to a DAG G, then it also factorizes with
respect to the undirected graph Gm.

Proof. This follows from an inspection of the factorization and checking the cliques from
Gm. See the Examples Sheet.
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Using this proposition, we see that the DAG in Figure 7(a) implies X1 ⊥⊥ X4, X5 | X2, X3,
by using the global Markov property applied to the moral graph in Figure 7(b). In fact,
moral graphs are used to define the global Markov property for DAGs.

Definition 6.7. We say that p(xV ) satisfies the global Markov property with respect to G
if whenever A and B are separated by C in (Gan(A∪B∪C))

m we have XA ⊥⊥ XB | XC [p].

The global Markov property is complete in the sense that any independence not exhibited
by a separation will not generally hold in distributions Markov to G. We state the result
formally here, but the proof is not given in this course.

Theorem 6.8 (Completeness of global Markov property.). Let G be a DAG. There exists
a probability distribution p such that XA ⊥⊥ XB | XC [p] if and only if A ⊥s B | C in
(Gan(A∪B∪C)m.

In other words, the global Markov property gives all conditional independences that are
implied by the DAG model.

We now give the main result concerning Markov equivalence, which says that each of our
three properties give equivalent models.

Theorem 6.9. Let G be a DAG and p a probability distribution. Then the following are
equivalent:

(i) p factorizes according to G;

(ii) p is globally Markov with respect to G;

(iii) p is locally Markov with respect to G.

Notice that, unlike for undirected graphs, there is no requirement of positivity on p: it
is true even for degenerate distributions. There is also a ‘pairwise’ Markov property for
directed graphs, which we will not cover; see Lauritzen’s book for interest.

Proof. (i) =⇒ (ii). Let W = anG(A ∪ B ∪ C), and suppose that there is a separation
between A and B given C in (GW )m. The distribution p(xW ) can be written as

p(xW ) =
∏
v∈W

p(xv | xpa(v)),

so in other words it is Markov w.r.t. GW and hence to (GW )m (see Propositions 6.6 and 6.4).
But if p factorizes according to the undirected graph (GW )m then it is also globally Markov
with respect to it by Theorem 4.10, and hence the separation implies XA ⊥⊥ XB | XC [p].

(ii) =⇒ (iii). Note that moralizing only adds edges adjacent to vertices that have a child
in the graph, and also that {v} ∪ ndG(v) is an ancestral set. It follows that in the moral
graph (G{v}∪ndG(v))

m, there is a separation between v and ndG(v) \ paG(v) given paG(v).

(iii) =⇒ (i). Let < be a topological ordering of the vertices in G. The local Markov
property implies that Xv is independent of Xnd(v)\pa(v) given Xpa(v), so in particular it is
independent of Xpre<(v)\pa(v) given Xpa(v). Hence

p(xV ) =
∏
v

p(xv | xpre<(v)) =
∏
v

p(xv | xpa(v))

as required.
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6.3 Statistical Inference

The factorization of distributions that are Markov with respect to a DAG is particularly
attractive statistically because, as with the decomposable models in Theorem 4.24, the
conditional distributions can all be dealt with entirely separately.

Consider again the example of a contingency table with counts n(xV ). The likelihood for
a DAG model is

l(p;n) =
∑
xV

n(xV ) log p(xV )

=
∑
xV

n(xV )
∑
v∈V

log p(xv | xpa(v))

=
∑
v∈V

∑
xv ,xpa(v)

n(xv, xpa(v)) log p(xv | xpa(v))

=
∑
v∈V

∑
xpa(v)

∑
xv

n(xv, xpa(v)) log p(xv | xpa(v)),

where each of the conditional distributions p(xv | xpa(v)) can be dealt with entirely sep-
arately. That is, we can separately maximize each inner sum

∑
xv
n(xv, xpa(v)) log p(xv |

xpa(v)) subject to the restriction that
∑

xv
p(xv | xpa(v)) = 1, and hence obtain the MLE

p̂(xv | xpa(v)) =
n(xv, xpa(v))

n(xpa(v))
;

hence p̂(xV ) =
∏
v∈V

p̂(xv | xpa(v)) =
∏
v∈V

n(xv, xpa(v))

n(xpa(v))
.

This looks rather like the result we obtained for decomposable models, and indeed we will
see that there is an important connection.

A slightly more general result is to say that if we have a separate parametric model
defined by some parameter θv for each conditional distribution p(xv | xpa(v); θv), then we
can perform our inference on each θv separately.

Formally: the MLE for θ satisfies

p(xV ; θ̂) =
∏
v∈V

p(xv | xpa(v); θ̂v), xV ∈ XV .

In addition, if we have independent priors π(θ) =
∏
v π(θv), then

π(θ | xV ) ∝ π(θ) · p(xV | θ)

=
∏
v

π(θv) · p(xv | xpa(v), θv),

which factorizes into separate functions for each θv, showing that the θv are independent
conditional on XV . Hence

π(θv | xV ) ∝ π(θv) · p(xv | xpa(v), θv),

so π(θv | xV ) = π(θv | xv, xpa(v)), and θv only depends upon Xv and Xpa(v).

In other words, the data from Xv, Xpa(v) are sufficient for each θv. This means that if
no vertex has many parents, even very large graphs represent manageable models. For
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Figure 8: (a)-(c) Three directed graphs, and (e) an undirected graph to which they are all
Markov equivalent; (d) a graph which is not Markov equivalent to the others.

a Gaussian distribution we can use our results about conditional distributions to obtain
closed form expressions for the covariance matrices that are Markov with respect to a
graph (see Example Sheet 2).

6.4 Markov Equivalence

For undirected graphs, the independence Xa ⊥⊥ Xb | XV \{a,b} is implied by the graphical
model if and only if the edge a − b is not present in the graph. This shows that (under
any choice of Markov property) each undirected graphical model is distinct.

For directed graphs this is not the case. The graphs in Figures 8 (a), (b) and (c) are all
different, but all imply precisely the independence X1 ⊥⊥ X2 | X3.

We say that two graphs G and G′ are Markov equivalent if any p which is Markov with
respect to G is also Markov with respect to G′, and vice-versa. This is an equivalence
relation, so we can partition graphs into sets we call Markov equivalence classes.

In model selection problems we are not trying to learn the graph itself, but rather the
Markov equivalence class of indistinguishable models. The presence or absence of edges
induces all conditional independences, so unsurprisingly the graph of adjacencies is very
important.

Given a DAG G = (V,D), define the skeleton of G as the undirected graph skel(G) = (V,E),
where {i, j} ∈ E if and only if either (i, j) ∈ D or (j, i) ∈ D. In other words, we drop the
orientations of edges in G.

For example, the skeleton of the graphs in Figures 8(a)–(d) is the graph in Figure 8(e).

Lemma 6.10. Let G and G′ be graphs with different skeletons. Then G and G′ are not
Markov equivalent.

Proof. Suppose without loss of generality that i→ j in G but that i 6∼ j in G. Then let p
be any distribution in which Xv ⊥⊥ XV \{v} for each v ∈ V \ {i, j}, but that Xi and Xj are
dependent.
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The local Markov property for G is clearly satisfied, since each variable is independent of
its non-descendants given its parents. For G′, however, we claim that the global Markov
property is not satisfied. By Sheet 2 Question 5, there is some set C such that the GMP
requires Xi ⊥⊥ Xj | XC .

Let c ∈ C; under p we have Xc ⊥⊥ XV \{c}, so by applying property 2 of the graphoid
axioms, Xc ⊥⊥ Xj , XC\{c}. Then using properties 3 and 4 we see that Xi ⊥⊥ Xj | XC

is equivalent to Xi ⊥⊥ Xj | XC\{c}. Repeating this we end up with a requirement that
Xi ⊥⊥ Xj , which does not hold by construction. Hence p is not Markov with respect to G′,
and the graphs are not Markov equivalent.

Theorem 6.11. Directed graphs G and G′ are Markov equivalent if and only if they have
the same skeletons and v-structures.

Proof. We will prove the ‘only if’ direction for now: the converse is harder.

If G and G′ have different skeletons then the induced models are different by the previous
Lemma. Otherwise, suppose that a→ c← b is a v-structure in G but not in G′.

Let p be a distribution in which all variables other than Xa, Xb, Xc are independent of all
other variables. By the factorization property, we can then pick an arbitrary

p(xV ) = p(xc | xa, xb)
∏

v∈V \{c}

p(xv)

and obtain a distribution that is Markov with respect to G.

In G′ there is no v-structure, so either a→ c→ b, a← c→ b, or a← c← b. In particular,
either a or b is a child of c. Now let A = anG({a, b, c}); we claim that there is no d ∈ A
such that a→ d← b. To see this, note that if this is true, then d is a descendant of each
of a, b and c, and if d ∈ A it is also an ancestor of one a, b and c, so the graph is cyclic.

Now, it follows that in the moral graph (G′A)m, there is no edge between a and b, so
a ⊥s b | A \ {a, b} in (G′A)m. But by a similar argument to the previous Lemma, the
corresponding independence does not hold in p, and therefore p is not Markov with respect
to G′ if p(xc | xa, xb) is chosen not to factorize.

6.5 Directed Graphs, Undirected Graphs, and Decomposability

Closely related to the previous point is whether an undirected graph can represent the
same conditional independences as a directed one. The undirected graph in Figure 8(e)
represents the same model as each of the directed graphs in Figures 8(a)–(c), so clearly in
some cases this occurs.

However the graph in Figure 8(d) does not induce the same model as any undirected
graph. Indeed, it is again this ‘v-structure’ that is the important factor in determining
whether the models are the same.

Theorem 6.12. A directed graph is Markov equivalent to an undirected graph if and only
if it contains no v-structures.

Proof. We proceed by induction on p; the result is clearly true for graphs of size p ≤ 2.
We have already established that if G is a DAG, then p being Markov with respect to G
implies that it is also Markov with respect to Gm.
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undirected directed

decomposable

Figure 9: Venn diagram of model classes introduced by directed and undirected graphs.

Now suppose that p is Markov with respect to Gm. Let v be a vertex in G without
children. We will attempt to show that p(xV \{v}) is Markov with respect to GV \{v} and
that Xv ⊥⊥ XV \(pa(v)∪{v}) | Xpa(v) under p, and hence that p satisfies the local Markov
property with respect to G.

The neighbours of v in Gm are its parents in G, and in the moral graph Gm these are all
adjacent, so there is a decomposition ({v}, paG(v),W ) in Gm, whereW = V \({v}∪paG(v)).
By Lemma 4.23, we have Xv ⊥⊥ XW | Xpa(v), and that p(xV \{v}) is Markov with respect to
(Gm)V \{v}. Now, since G has no v-structures, (Gm)V \{v} = (GV \{v})m, so by the induction
hypothesis, p(xV \{v}) is Markov with respect to GV \{v}.

Corollary 6.13. A undirected graph is Markov equivalent to a directed graph if and only
if it is decomposable.

Proof. This can be seen by the same decomposition and induction as in the proof of the
Theorem above.

This shows that decomposable models represent the intersection of undirected and directed
graphical models.
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Figure 10: The ‘Chest Clinic’ network, a fictitious diagnostic model.

7 Junction Trees and Message Passing

In this chapter we answer some of the problems mentioned in the introduction: given
a large network of variables, how can we efficiently evaluate conditional and marginal
probabilities? And how should we update our beliefs given new information?

Consider the graph in Figure 10, which is a simplified diagnostic model, containing pa-
tient background, diseases, and symptoms. In practice, we observe the background and
symptoms and with to infer the probability of disease given this ‘evidence’. Of course,
to calculate the updated probability we just need to use Bayes’ formula, but for large
networks this is computationally infeasible. Instead we will develop an algorithm that
exploits the structure of the graph to simplify the calculations.

A

T L

S

B

E

X
C

We abbreviate the variable names as indicated in the graph below. From the DAG fac-
torization, we have

p(a, s, t, l, b, e, x, c) = p(a) · p(s) · p(t | a) · p(l | s) · p(b | s) · p(e | t, l) · p(x | e) · p(c | e, b).

Suppose a patient smokes, has not visited Asia (tuberculosis is endemic in several Asian
countries), has a negative x-ray, and a cough. Then to work out the probability of lung
cancer:

p(l | x, c, a, s) =
p(l, x, c | a, s)∑
l p(l, x, c | a, s)
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The quantity we need can be obtained from the factorization of the directed graph as

p(l, x, c | a, s) =
∑
t,e,b

p(t | a) · p(l | s) · p(b | s) · p(e | t, l) · p(x | e) · p(c | e, b).

There is more than one way to evaluate this quantity, because some of the summations
can be ‘pushed in’ past terms that do not depend upon them. So, for example,

p(l, x, c | a, s)

= p(l | s)
∑
e

p(x | e)

(∑
b

p(b | s) · p(c | e, b)

)(∑
t

p(t | a) · p(e | t, l)

)
.

If calculated in this way we require 144 multiplications and additions. The näıve way
implied by the first expression requires 816 multiplications and additions. Over larger
networks with dozens or hundreds of variables these differences are very substantial.

This section provides a method for systematically arranging calculations of this sort in an
efficient way, using the structure of a graph.

7.1 Junction Trees

We have already seen that we can write distributions that are Markov with respect to an
undirected graph as a product of ‘potentials’, which are functions only of a few variables.
A junction tree is a way of arranging these potentials that is computationally convenient.

Let T be a tree (i.e. a connected, undirected graph without any cycles) with vertices V
contained in the power set of V ; that is, each vertex of T is a subset of V . We say that
T is a junction tree if whenever we have Ci, Cj ∈ V with Ci ∩ Cj 6= ∅, there is a (unique)
path π in T from Ci to Cj such that for every vertex C on the path, Ci ∩ Cj ⊆ C.

The graph in Figure 11(b) is a junction tree. Note that, for example, {2, 4, 5} and {4, 6}
have a non-zero intersection {4}, and that indeed 4 is contained on the intermediate vertex
{2, 3, 4}.

The graph in Figure 12 is not a junction tree, because the sets {1, 2} and {1, 3} have
the non-empty intersection {1}, but the intermediate sets in the tree (i.e. {2, 3}) do not
contain {1}; this more general object is sometimes called a clique tree. The fact that these
sets cannot be arranged in a junction tree is a consequence of these sets not satisfying the
running intersection property (under any ordering), as the next result shows.

Proposition 7.1. If T is a junction tree then its vertices V can be ordered to satisfy
the running intersection property. Conversely, if a collection of sets satisfies the running
intersection property they can be arranged into a junction tree.

Proof. We proceed by induction on k = |V|. If k ≤ 2 then both the junction tree and
running intersection conditions are always satisfied. Otherwise, since T is a tree it contains
a leaf (i.e. a vertex joined to exactly one other), say Ck which is adjacent to Cσ(k).

Consider T −k, the graph obtained by removing Ck from T . The set of paths between Ci
and Cj vertices in T −k is the same as the set of such paths in T : we cannot have paths
via Ck because it would require repetition of Cσ(k). Hence T −k is still a junction tree, and
by induction its elements C1, . . . , Ck−1 satisfy the RIP.
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Figure 11: (a) A decomposable graph and (b) a possible junction tree of its cliques. (c)
The same junction tree with separator sets explicitly marked.

1, 2 2, 3 1, 3

Figure 12: A tree of sets that is not a junction tree.
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But then by the definition of a junction tree, Ck ∩
⋃
i<k Ci = Ck ∩ Cσ(k), so C1, . . . , Ck

satisfies the RIP.

For the converse result, again by induction just join the final set Ck to Cσ(k) and it is clear
that we obtain a junction tree by definition of running intersection.

In other words, this result shows that junction trees are available for the cliques of de-
composable graphs. The graph in Figure 11(a) for example has cliques {1, 2}, {2, 3, 4},
{2, 4, 5}, {4, 6} and {6, 7, 8}. Since it is a decomposable graph, these satisfy the running
intersection property, and can be arranged in a junction tree such as the one in Figure
11(b). Notice that this is not unique, since we could join either (or both) of {1, 2} or {4, 6}
to {2, 4, 5} instead of {2, 3, 4}.

We can explicitly add in the separator sets as nodes in our tree, so that each edge contains
an additional node, as shown in Figure 11(c).

We will associate each node C in our junction tree with a potential ψC(xC) ≥ 0, which is
a function over the variables in the corresponding set. We say that two potentials ψC , ψD
are consistent if ∑

xC\D

ψC(xC) = f(xC∩D) =
∑
xD\C

ψD(xD).

That is, the margins of ψC and ψD over C ∩D are the same.

Of course, the standard example of when we would have consistent margins comes when
each potential is the margin of a probability distribution. Indeed, this relationship turns
out to be quite fundamental.

Proposition 7.2. Let C1, . . . , Ck satisfy the running intersection property with separator
sets S2, . . . , Sk, and let

p(xV ) =
k∏
i=1

ψCi(xCi)

ψSi(xSi)

(where ψ∅ = 1 by convention). Then each ψCi(xCi) = p(xCi) and ψSi(xSi) = p(xSi) if
(and only if) each pair of potentials is consistent.

Proof. The only if is clear, since margins of probabilities are indeed consistent in this way.

For the converse we proceed by induction on k; for k = 1 there is nothing to prove.
Otherwise, let Rk = Ck \ Sk

(
= Ck \

⋃
i<k Ci

)
, so

p(xV \Rk) =
∑
xRk

p(xV ) =

k−1∏
i=1

ψCi(xCi)

ψSi(xSi)
× 1

ψSk(xSk)

∑
xRk

ψCk(xCk)

Since the cliques are consistent, we have∑
xRk

ψCk(xCk)

ψSk(xSk)
=
ψSk(xSk)

ψSk(xSk)
= 1,

so

p(xV \Rk) =

k−1∏
i=1

ψCi(xCi)

ψSi(xSi)
. (5)
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By the induction hypothesis, we have that ψCi(xCi) = p(xCi) for i ≤ k − 1. In addition,
by the RIP Sk = Ck ∩ Cj for some j < k, and hence by consistency

ψSk(xSk) =
∑

xCj\Sk

ψCj (xCj ) =
∑

xCj\Sk

p(xCj ) = p(xSk).

Finally, substituting (5) into our original expression, we have

p(xV ) = p(xV \Rk)
ψCk(xCk)

ψSk(xSk)
= p(xV \Rk)

ψCk(xCk)

p(xSk)
,

and so p(xRk | xV \Rk) =
ψCk (xCk )

p(xSk )
by definition of conditional probabilities. Since this only

depends upon xCk , this is also p(xRk | xSk). Hence,

ψCk(xCk) = p(xRk | xSk) · p(xSk) = p(xCk)

as required.

If a graph is not decomposable then we can triangulate it by adding edges. We discuss
will this further later on.

7.2 Message Passing and the Junction Tree Algorithm

We have seen that having locally consistent potentials is enough to deduce that we have
correctly calculated marginal probabilities. The obvious question now is how we arrive at
consistent margins in the first place. In fact we shall do this with ‘local’ update steps,
that alter potentials to become consistent without altering the overall distribution. We
will show that this leads to consistency in a finite number of steps.

Suppose that two cliques C and D are adjacent in the junction tree, with a separator set
S = C ∩D. An update from C to D consists of replacing ψS and ψD with the following:

ψ′S(xS) =
∑
xC\S

ψC(xC), ψ′D(xD) =
ψ′S(xS)

ψS(xS)
ψD(xD).

This operation is also known as message passing, with the ‘message’ ψ′S(xS) being passed
from C to D. We note three important points about this updating step:

• after updating, ψC and ψ′S are consistent;

• if ψD and ψS are consistent, then so are ψ′D and ψ′S : to see this, note that

∑
xD\S

ψ′D(xD) =
∑
xD\S

ψ′S(xS)

ψS(xS)
ψD(xD)

=
ψ′S(xS)

ψS(xS)

∑
xD\S

ψD(xD),

so if ψS and ψD are consistent then ψS(xS) =
∑

xD\S
ψD(xD) and we are left with

ψ′S .
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• the product ∏
C∈C ψC(xC)∏
S∈S ψS(xS)

=

∏
C∈C ψ

′
C(xC)∏

S∈S ψ
′
S(xS)

.

is unchanged: the only altered terms are ψD and ψS , and by definition of ψ′D we
have

ψ′D(xD)

ψ′S(xS)
=
ψD(xD)

ψS(xS)
.

Hence, updating preserves the joint distribution and does not upset margins that are
already consistent. The junction tree algorithm is a way of updating all the margins such
that, when it is complete, they are all consistent.

Let T be a tree. Given any node t ∈ T , we can ‘root’ the tree at t, and replace it with
a directed graph in which all the edges point away from t.2 The junction tree algorithm
involves messages being passed from the edge of the junction tree (the leaves) towards a
chosen root (the collection phase), and then being sent away from that root back down to
the leaves (the distribution phase). Once these steps are completed, the potentials will all
be consistent. This process is also called belief propagation.

Algorithm 1 Collect and distribute steps of the junction tree algorithm.

function Collect(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in k, . . . , 2 do

send message from ψt to ψσ(t);
end for
return updated potentials ψt

end function

function Distribute(rooted tree T , potentials ψt)
let 1 < . . . < k be a topological ordering of T
for t in 2, . . . , k do

send message from ψσ(t) to ψt;
end for
return updated potentials ψt

end function

The junction tree algorithm consists of running Collect(T , ψt) and Distribute(T , ψ′t),
as given in Algorithm 1.

Theorem 7.3. Let T be a junction tree with potentials ψCi(xCi). After running the
junction tree algorithm, all pairs of potentials will be consistent.

Proof. We have already seen that each message passing step will make the separator node
consistent with the child node. It follows that each pair ψCi and ψSi are consistent after the
collection step. We also know that this consistency will be preserved after future updates
from ψCσ(i) . Hence, after the distribution step, each ψCi and ψSi remain consistent, and

2This process always gives a Markov equivalent graph although, of course, we are not really applying
the Markov property to our junction tree. The directions are just for convenience.
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(a)

1, 2 2, 3, 4

2, 4, 5
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6, 7, 8

1

1

1

2

(b)

Figure 13: Illustration of the junction tree algorithm with {2, 3, 4} chosen as the root. (a)
Collect steps towards the root: note that the {4, 6} to {2, 3, 4} step must happen after the
{6, 7, 8} to {4, 6} update. (b) Distribute steps away from the root and towards the leaves:
this time the constraint on the ordering is reversed.

ψCσ(i) and ψSi become consistent for each i. Hence, every adjacent pair of cliques is now
consistent.

But whenever Ci∩Cj 6= ∅ there is a path in the junction tree such that every intermediate
clique also contains Ci ∩ Cj , so this local consistency implies global consistency of the
tree.

Remark 7.4. In practice, message passing is often done in parallel, and it is not hard to
prove that if all potentials update simultaneously then the potentials will converge to a
consistent solution in at most d steps, where d is the width of the tree.

Example 7.5. Suppose we have just two tables, ψXY and ψY Z arranged in the junction
tree:

X,Y Y Y,Z

representing a distribution in which X ⊥⊥ Z | Y . We can initialize by setting

ψXY (x, y) = p(x | y) ψY Z(y, z) = p(y, z) ψY (y) = 1,

so that p(x, y, z) = p(y, z) · p(x | y) = ψY ZψXY /ψY .

Now, we could pick Y Z as the root node of our tree, so the collection step consists of
replacing

ψ′Y (y) =
∑
x

ψXY (x, y) =
∑
x

p(x | y) = 1;

so ψ′Y and ψY are the same; hence the collection step leaves ψY and ψY Z unchanged.

The distribution step consists of

ψ′′Y (y) =
∑
z

ψY Z(y, z) =
∑
z

p(y, z) = p(y);

ψ′XY (x, y) =
ψ′′Y (y)

ψY (y)
ψXY (x, y) =

p(y)

1
p(x | y) = p(x, y);

Hence, after performing both steps, each potential is the marginal distribution correspond-
ing to those variables.
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Figure 14: The moral graph of the Chest Clinic network, and a possible triangulation.
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Figure 15: A possible junction tree for the Chest Clinic network, and (right) with separator
sets drawn on.

In junction graphs that are not trees it is still possible to perform message passing, but
convergence is not guaranteed. This is known as ‘loopy belief propagation, and is a topic
of current research.

7.3 Directed Graphs and Triangulation

How does any of this relate to directed graphs? And what should we do if our model is not
decomposable? In this case we cannot immediately form a junction tree. However, all is
not lost, since we can always embed our model in a larger model which is decomposable.

For a directed graph, we start by taking the moral graph, so that we obtain an undirected
model. If the directed model is decomposable then so is the moral graph. If the moral
graph is still not decomposable, then we can triangulate it by adding edges to obtain a
decomposable graph. Figure 14(b) contains a triangulation of the moral graph of Figure
10. We can arrange the cliques as

{L,E,B}, {T,E,L}, {L,B, S}, {E,C,B}, {A, T}, {E,X},

giving rise to the junction tree in Figure 15

Taking the 4-cycle in Figure 16(a) as an example, we can add chords to the cycle until
we obtain a graph that is triangulated; a resulting graph is called a triangulation. This
process is not unique, as is obvious from this example. Given the new graph we can form
a junction tree for the larger model.
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Figure 16: A non-decomposable graph, and a possible triangulation of it.

Naturally, to keep our computations efficient we want the cliques in the model to remain
small when we triangulate: after all, we could always embed our graph in the complete
model! Finding a triangulation that is ‘optimal’—in the sense of giving the smallest
cliques—is a very hard problem in general. Some approximate and heuristic methods
exist. A simple method, Tarjan elimination, is given on Examples Sheet 3.

Suppose we have a directed graphical model embedded within a decomposable model
C1, . . . , Ck. For each vertex v, the set {v} ∪ paG(v) is contained within at least one of
these cliques. Assigning each vertex arbitrarily to one such clique, let v(C) be the vertices
assigned to C. Then we can set ψC(xC) =

∏
v∈v(C) p(xv | xpa(v)) and ψS(xS) = 1, and we

have

k∏
i=1

ψCi(xCi)

ψSi(xSi)
=
∏
v∈V

p(xv | xpa(v)) = p(xV ).

This is called initialization. Now if we run the junction tree algorithm to obtain consistent
potentials, then these will just be the marginal probabilities for each clique.

7.4 Evidence

The junction tree gives us a mechanism for calculating marginal distributions for quantities
that are contained in the same clique. How should we deal with queries about conditional
distributions for quantities that may not be adjacent? For example, what difference does
it make to our chest clinic network if a patient smokes?

We can answer this by introducing ‘evidence’ into our tables, and then propagating it
through the tree. The new evidence corresponds to replacing an existing marginal table
with one in which the event that occurred has probability 1: for example,

p(s) =
smokes doesn’t smoke

0.25 0.75
becomes p̃(s) =

smokes doesn’t smoke

1 0
.

Let our evidence be the event {Xe = ye} for some relevant node e; we can write the new
joint distribution as

p(xV | Xe = ye) = p(xV , xe)
1{xe=ye}

p(xe)
.

Thus, replacing

ψ′C(xC)← ψC(xC) ·
1{xe=ye}

p(ye)
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for any potential with C 3 e will alter the joint distribution in the required way. If the
potentials are already consistent then p(ye) can be calculated from ψC directly.

Of course, after replacing ψC the potentials will no longer be consistent, and therefore the
junction tree algorithm needs to be run again. In fact, only a distribution step with ψC
chosen as the root node is needed.

Proposition 7.6. Suppose that potentials Ψ are all consistent except for ψC . Then after
running Distribute(T ,Ψ), all potentials are consistent.

Proof. Each separator set potential is already consistent with the clique potential(s) ‘away’
from C in the graph. This consistency is preserved, and distribution will ensure that
each separator set is consistent with the clique potentials ‘towards’ C. Hence, all clique
potentials and separator sets are now consistent.

If we try to introduce evidence in two different places without propagating in between
then we may not obtain the conditional distribution that we want. To see this, consider
again our very simple example with two cliques:

X,Y Y Y,Z

If the potentials are already consistent, then ψXY = p(x, y) and ψY Z = p(y, z) with
ψY = p(y). Now suppose we want to introduce two pieces of evidence: {X = x∗} and
{Z = z∗}. To introduce the first, we replace ψXY with

ψ′XY = ψXY
1{x=x∗}

p(x∗)
= p(y | x∗)1{x=x∗}.

This means that the potentials are jointly representing the distribution q in which

q(x, y, z) =
ψ′XY (x, y)ψY Z(y, z)

ψY (y)
=
p(y | x∗) · p(y, z)

p(y)
1{x=x∗} = p(y, z | x∗)1{x=x∗},

as required.

Now, the second would be introduced by replacing ψY Z with

ψ′Y Z = p(y | z∗)1{z=z∗}.

But now this gives

r(x, y, z) =
ψ′XY (x, y)ψ′Y Z(y, z)

ψY (y)
=
p(y | x∗) · p(y | z∗)

p(y)
1{x=x∗,z=z∗}

=
p(y, x∗) · p(y, z∗)
p(y)p(x∗)p(y∗)

1{x=x∗,z=z∗}

= p(y | x∗, z∗) p(x∗, z∗)

p(x∗)p(z∗)
1{x=x∗,z=z∗},

where the last equality holds from applying Theorem 2.4(iv) to X ⊥⊥ Z | Y . Now since
X 6⊥⊥ Z in general, this final expression is not equal to p(y | x∗, z∗).
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8 Causal Inference

Causal inference, at its heart, asks what would happen if we were to perform an experiment
in a system. This is different to usual ‘prediction’ with conditional distributions, as the
following example illustrates.

Example 8.1. Suppose that a health and safety inspector is interested in the safety of a
set of outdoor steps. She commissions a study that monitors the weather conditions each
day, and whether anyone slips on the steps.

She finds that it rains (making the steps wet, W = 1) on 40% of days, and that the
temperature is below freezing (making the steps icy, I = 1) on one day out of 10, and that
these happen independently. Given the four possible conditions, she finds the probability
of someone slipping each day is:

P (S = s |W, I)
W I s = 0 s = 1

0 0 0.95 0.05
1 0 0.9 0.1
0 1 0.8 0.2
1 1 0.5 0.5

So, for example, if it is icy but not wet then the probability of someone slipping is 0.2.

Now, suppose we know that someone has slipped on the steps: what is the probability
that the steps were wet? Using Bayes’ formula,

P (W = 1 | S = 1) =

∑
i P (W = 1) · P (I = i) · P (S = 1 |W = 1, I = i)∑

f,w P (W = w) · P (I = i) · P (S = 1 |W = w, I = i)

=
0.06

0.1
= 0.59.

Unsurprisingly, if someone slips then this is predictive of wet steps: since the probability
increases from 0.4 to 0.59. Similarly, if there is no slip then the probability decreases
slightly to P (W = 1 | S = 0) = 0.38.

Now suppose the health and safety inspector insists that salt and grit be placed on the
steps, so that they never get icy. Given this event, how would we estimate the probability
of slipping? Well, this should just depend on whether the steps are wet as before, but
always with I = 0. So our new distribution is P (R = r, S = s | I = 0). In particular, this
means that the overall probability of someone slipping is P (S = 1 | I = 0) = 0.07, down
from P (S = 1) = 0.1.

Consider a third scenario: suppose that the health and safety inspector shuts the steps,
so that no-one can slip (S = 0). What happens to the probability of the steps being icy?
Following the same approach as above, we would look at P (I = 1 | S = 0) = 0.34, which is
higher than P (I = 1) = 0.1 But this is surely absurd: health and safety inspector’s actions
will have no affect on the local climate! Indeed, we would expect that the probability of
icy steps remains at P (I = 1) = 0.1, regardless of the action taken to fix S = 0.

The asymmetry in the previous example is an example of a causal relationship. Ordinary
prediction is, in some sense, symmetric: if the steps being icy increase the chance of a
slip, then a slip makes it more likely that it was icy. However, causal prediction is not
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Figure 17: (a) A causal DAG on three vertices; (b) after intervening on ‘slip’ none of the
variables are correlated.

Z X Y

(a)

Z X Y

(b)

Figure 18: (a) A causal DAG on three vertices, and (b) after intervening on X.

symmetric: if I make it rain then that will makes the steps wet, but if I make the steps
wet then it will not cause it to start raining.

The scenarios of adding grit to prevent ice, or of closing the steps are examples of interven-
tions or treatments that affect the variables in the system and the relationships between
them. If we intervene in a system in such a way as to set a variable such as S = s, we
denote the resulting distribution of other variables as

P (R = r, I = i | do(S = s)).

The example above shows that in some cases this is the same as the relevant conditional
distribution, but not always:

P (S = s | do(I = i)) = P (S = s | I = i)

P (I = i | do(S = s)) = P (I = i).

Directed graphs provide a convenient framework for representing the structural assump-
tions underlying a causal system, and the asymmetry in interventions. We can think of
each edge v → w as saying that Xv is a ‘direct cause’ of Xw; i.e. that it affects it in a way
that is not mediated by any of the other variables. In our example, the system could be
represented by the graph in Figure 17(a).

8.1 Interventions

Let G be a directed acyclic graph representing a causal system, and let p be a probability
distribution over the variables XV . An intervention on a variable w ∈ V does two things:

• graphically we represent this by removing edges pointing into w (i.e. of the form
v → w);
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• probabilistically, we replace our usual factorization

p(xV ) =
∏
v∈V

p(xv | xpa(v))

with

p(xV \{w} | do(x∗w)) = p(xV )
1{xw=x∗w}

p(x∗w | xpa(w))

= 1{xw=x∗w}
∏

v∈V \{w}

p(xv | xpa(v)).

In words, we are assuming that w no longer depends upon its parents, but has been fixed
to x∗w; hence the p(xw | xpa(w)) factor is replaced with the indicator function that assigns
probability 1 to the event that {Xw = x∗w}. Other variables will continue to depend upon
their parents according to the same conditionals p(xv | xpa(v)).

When we say a graph and its associated probability distribution is causal, we mean that we
are making the assumption that, if we were to intervene on a variable Xv via some exper-
iment, then the distribution would change in the way described above. This assumption
is something that has to be justified in specific applied examples.

Example 8.2 (Confounding). Consider the graph in Figure 18(a); here Z causally affects
both X and Y , so some of the observed correlation between X and Y will be due to this
‘common cause’ Z. We say that X and Y are ‘confounded’ by Z. Suppose we intervene
to fix X = x, so that it is no longer causally affected by Z. Hence, we go from

p(z, x, y) = p(z) · p(x | z) · p(y | z, x)

to

p(z, y | do(x∗)) = p(z) · p(y | z, x∗).

Note that this last object is not generally the same as the ordinary conditional distribution:

p(z, y | x∗) = p(z | x∗) · p(y | z, x∗)
p(z, y | do(x∗)) = p(z) · p(y | z, x∗).

Example 8.3. Suppose we have a group of 64 people, half men and half women. We ask
them whether they smoke, and test them for lung damage. The results are given by the
following table.

women men
not smoke smoke not smoke smoke

no damage 21 6 6 6
damage 3 2 2 18

Given that a person smokes, the probability that they have lung damage is P (D = 1 |
S = 1) = 20

32 = 5
8 . If someone doesn’t smoke the probability is P (D = 1 | S = 0) = 5

32 .

What happens if we had prevented everyone from smoking? Would this mean that only
5
32 × 64 = 10 of our participants showed lung damage? If we assume the following causal
model, then the answer is no.
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gender

smokes damage

We have (taking G = 0 to represent male) that

P (D = 1 | do(S = 0)) =
∑
g

P (D = 1 | S = 0, G = g) · P (G = g)

= P (D = 1 | S = 0, G = 0) · P (G = 0) + P (D = 1 | S = 0, G = 1) · P (G = 1)

=
2

8
· 1

2
+

3

24
· 1

2

=
3

16
>

5

32
.

So in fact, we would expect 3
16 × 64 = 12 people to have damage if no-one was able to

smoke.

The difference can be accounted for by the fact that some of the chance of getting lung
damage is determined by gender. If we ‘observe’ that someone does not smoke then they
are more likely to be female; but forcing someone not to smoke does not make them more
likely to be female!

8.2 Adjustment Sets and Back-Door Paths

For this section we will assume we are interested in the distribution of Y after intervening
on Z. The method given above for finding p(y | do(z)) appears to involve summing over
all the variables in the graph:

p(y | do(z)) =
∑
xW

p(y, z, xW )

p(z | xpa(z))

Here we present some methods for ‘adjusting’ by only a small number of variables.

Lemma 8.4. Let G be a causal DAG. Then

p(y | do(z)) =
∑
xpa(z)

p(y | z, xpa(z)) · p(xpa(z)).

Proof. Let XV be divided into Y, Z,Xpa(z) and XW , where XW is any other variable (that
is, not Y , Z, nor a parent of Z). Then

p(y, xpa(z), xW | do(z)) =
p(y, z, xpa(z), xW )

p(z | xpa(z))
= p(y, xW | z, xpa(z)) · p(xpa(z)).

Then

p(y | do(z)) =
∑

xW ,xpa(z)

p(y, xW | z, xpa(z)) · p(xpa(z))

=
∑
xpa(z)

p(xpa(z))
∑
xW

p(y, xW | z, xpa(z))

=
∑
xpa(z)

p(xpa(z))p(y | z, xpa(z))
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Figure 19: A causal directed graph.

as required.

This result is called an ‘adjustment’ formula. Applied to the graph in Figure 19, for
example, it would tell us that p(y | do(x)) =

∑
z,t p(y | x, z, t) · p(z, t), so, for example, we

do not need to consider W . In fact, though, you might notice that Y ⊥⊥ T | X,Z, so we
can write

p(y | do(x)) =
∑
z,t

p(y | x, z) · p(z, t)

=
∑
z

p(y | x, z) · p(z),

and we only need to adjust for Z! Further,

p(y | do(x)) =
∑
z

p(y | x, z) · p(z) =
∑
z,w

p(y, w | x, z) · p(z)

=
∑
z,w

p(y | x,w, z) · p(w | x, z) · p(z)

=
∑
z,w

p(y | x,w) · p(w | z) · p(z)

=
∑
z,w

p(y | x,w) · p(w, z)

=
∑
w

p(y | x,w) · p(w);

the fourth equality here uses the fact that W ⊥⊥ X | Z and Y ⊥⊥ Z | W,X, which can be
seen from the graph.

So, in other words, we could adjust by W instead of Z! This illustrates that there are often
multiple equivalent ways of obtaining the same causal quantity. We will give a criterion
for valid adjustment sets, but we first need an extra definition and theorem to prove this
criterion correct.

8.3 Paths and d-separation

Let G be a directed graph and π a path in G. We say that an internal vertex t on π is a
collider if the edges adjacent to t meet as → t←. Otherwise (→ t→, ← t←, or ← t→)
we say t is a non-collider.

Let π be a path from a to b. We say that π is open given (or conditional on) C ⊆ V \{a, b}
if
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• all colliders on π are in anG(C);

• all non-colliders are outside C.

(Recall that C ⊆ anG(C).) A path which is not open given C is said to be blocked by C.

Example 8.5. Consider the graph in Figure 19. There are two paths from T to W :

T → X ← Z →W T → X → Y ←W.

Without conditioning on any variable, both these paths are both blocked, since they
contain colliders. Given {Y }, however, both paths are open, because Y is the only collider
on the second path, and the only collider on the first is X, which is an ancestor of Y .
Given {Z, Y }, the first path is blocked because Z is a non-collider, but the second is open.

Definition 8.6. Let A,B,C be disjoint sets of vertices in G (C may be empty). We say
that A and B are d-separated given C if every path from a ∈ A to b ∈ B is blocked by C.

Theorem 8.7. Let G be a DAG and let A,B,C be disjoint subsets of G. Then A is
d-separated from B by C in G if and only if A is separated from B by C in (Gan(A∪B∪C))

m.

In other words, this gives us an alternative version of the global Markov property for
DAGs: instead of being based on paths in moral graphs, we can use paths in the original
DAG.

Proof (not examinable). Suppose A is not d-separated from B by C in G, so there is an
open path π in G from some a ∈ A to some b ∈ B. Dividing the path up into sections
of the form ← · · · ←→ · · · →, we see that π must lie within anG(A ∪ B ∪ C), because
every collider must be an ancestor of C, and the extreme vertices are in A and B. Each
of the colliders i → k ← j gives an additional edge i − j in the moral graph and so can
be avoided; all the other vertices are not in C since the path is open. Hence we obtain a
path from a ∈ A to b ∈ B in the moral graph that avoids C.

Conversely, suppose A is not separated from B by C in (Gan(A∪B∪C))
m, so there is a path π

in (Gan(A∪B∪C))
m from some a ∈ A to some b ∈ B that does not traverse any element of C.

Each such path is made up of edges in the original graph and edges added over v-structures.
Suppose an edge corresponds to a v-structure over k; then k is in anG(A ∪ B ∪ C). If k
is an ancestor of C then the path remains open; otherwise, if k is an ancestor of A then
there is a directed path from k to a′ ∈ A, and every vertex on it is a non-collider that is
not contained in C. Hence we can obtain a path with fewer edges over v-structures from
a′ to b. Repeating this process we obtain a path from A to B in which every edge is either
in G or is a v-structure over an ancestor of C. Hence the path is open.

8.4 Back-door Adjustment

We say that C is a back-door adjustment set for the ordered pair (v, w) if

• no vertex in C is a descendant of v.

• every path from v to w with an arrow into v (i.e. starting v ← · · · ) is blocked by C;
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Theorem 8.8. Let C be a back-door adjustment set for (v, w). Then

p(xw | do(xv)) =
∑
xC

p(xC) · p(xw | xv, xC).

That is, C is a valid adjustment set for the causal distribution.

Proof. Since no vertex in C is a descendant of v, we have that Xv ⊥⊥ XC | Xpa(v) using
the local Markov property. We also claim that w is d-separated from paG(v) by C ∪ {v}.
To see this, note that if there is an open path from w to some t ∈ paG(v) given C ∪ {v},
then there is an open path given C obtained by adding the edge t→ v. Hence the global
Markov property implies that Xw ⊥⊥ Xpa(v) | Xv, XC . Then:

p(xw | do(xv)) =
∑
xpa(v)

p(xpa(v)) · p(xw | xv, xpa(v))

=
∑
xpa(v)

p(xpa(v))
∑
xC

p(xw, xC | xv, xpa(v))

=
∑
xpa(v)

p(xpa(v))
∑
xC

p(xw | xC , xv, xpa(v)) · p(xC | xv, xpa(v))

=
∑
xpa(v)

p(xpa(v))
∑
xC

p(xw | xC , xv) · p(xC | xpa(v))

=
∑
xC

p(xw | xC , xv)
∑
xpa(v)

p(xpa(v)) · p(xC | xpa(v))

=
∑
xC

p(xC) · p(xw | xv, xC).

Proposition 8.9. Let G be a causal DAG. The set paG(v) is a back-door adjustment set
for (v, w).

Proof. Any (v, w) back-door path starts with an edge v ← t, so clearly t ∈ paG(v) is a
non-collider on the path, which is therefore blocked.

8.5 Example: HIV Treatment

Figure 20 depicts a situation that arises in HIV treatment, and more generally in the
treatment of chronic diseases. A doctor prescribes patients with AZT (A), which is known
to reduce AIDS related mortality, but also harms the immune system of the patient,
increasing the risk of opportunistic infections such as pneumonia (L). If pneumonia arises,
patients are generally treated with antibiotics (B), and the outcome of interest is 5 year
survival (Y ).

An epidemiologist might ask what the effect on survival would be if we treated all patients
with antibiotics and AZT from the start, without waiting for an infection to present. What
would this do to survival?

Well,

p(y | do(a, b)) =
∑
l

p(y | a, l, b)p(l | a),
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A L B

Y

Figure 20: Causal diagram representing treatment for HIV patients. A is treatment with
AZT (an anti-retroviral drug), L represents infection with pneumonia, B treatment with
antibiotics, and Y survival.

so the answer can be determined directly from observed data without having to perform
an experiment.

P (Y = 1 | do(A = 1, B = 1)) =
1∑
l=0

P (Y = 1 | A = 1, L = l, B = 1) · P (L = l | A = 1).

Note that, in this case, there is no ‘back-door’ like solution, because L is a descendant of
A so cannot form part of a back-door set, but without including on L the back-door path
B ← L→ Y will introduce spurious (i.e. non-causal) correlations.

8.6 Gaussian Causal Models

The adjustment formula can be thought of as averaging the conditional distribution over
a portion of the population:

p(y | do(z)) =
∑
xC

p(xC) · p(y | z, xC).

If the variables we are dealing with are multivariate Gaussian, then conditional distribu-
tions such as p(y | z, xC) are determined by regressing Y on Z,XC using a simple linear
model.

The regression coefficient between Z and Y in such a model is the same for all values
of XC = xC , and therefore in this case we can forget the averaging and just look at the
regression to obtain the causal effect. Consider the example in Figure 19: if we regress Y on
X then the estimate we obtain is biased because of the back-door path X ← Z →W → Y ;
but if we add in Z or W (or both), then the estimate will be unbiased. See slides for an
example.
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9 Variational and Monte Carlo Methods

Not all interesting graphs can be triangulated in such a way as to give a junction tree
with small cliques. This makes operations such as marginalization and updating with
evidence intractable for large graphs. Alternative approaches to inference are based on
either Markov chain Monte Carlo or, more recently, approximations to the model with
variational methods.

9.1 Exponential Families

Let p(·; θ) be a collection of probability densities over X indexed by θ. We say that p is
an exponential family if it can be written as

p(x; θ) = exp

{∑
i

θiφi(x)−A(θ)

}
.

The functions φi are the sufficient statistics, and the components θi are called the canonical
parameters. We can replace the sum with an inner product of vectors θ = (θi) and
φ = (φi(x)):

p(x; θ) = exp {〈θ, φ〉 −A(θ)} .

You may be used to seeing an additional function of x in the definition of an exponen-
tial family. However, one can incorporate this quantity into the ‘base measure’ used for
integrating over x, so we do not write it explicitly.

The function A(θ) is the cumulant function, and must be chosen so that the distribution
normalizes, i.e.

A(θ) = log

∫
exp {〈θ, φ〉} dx.

Z(θ) ≡ eA(θ) is also called the partition function.

Lemma 9.1. We have

∇A(θ) = Eθφ(X), ∇∇TA(θ) = Covθ φ(X).

Consequently we call the function µ(θ) ≡ ∇A(θ) the mean function.

Proof. For the first part,

eA(θ)
∂

∂θi
A(θ) =

∂

∂θi
eA(θ)

=
∂

∂θi

∫
exp {〈θ, φ〉} dx

=

∫
∂

∂θi
exp {〈θ, φ〉} dx

=

∫
φi(x) exp {〈θ, φ〉} dx

= eA(θ)
∫
φi(x) exp {〈θ, φ〉 −A(θ)} dx

= eA(θ)Eθφi(X).

The second part follows similarly, see Examples Sheet 4.
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The property of convexity plays an important role in the computational advantages of
exponential families. Recall that a real valued function f is convex if f((x + y)/2) ≤
(f(x) + f(y)) /2 for all x, y. Convex functions are easy to work with for the purposes of
optimization: in particular, they do not contain multiple local minima.

As a consequence of the fact that the Hessian matrix of A is a covariance matrix and
therefore positive definite, it follows that A is a convex function. Hence log p(x; θ) is a
concave function of θ for each x.

Example 9.2. Let X ∼ Poisson(λ). We have

pλ(x) = e−λ
λx

x!
=

1

x!
exp {x log λ− λ} .

Clearly the canonical parameter is θ = log λ, so we can rewrite as

pθ(x) =
1

x!
exp

{
θx− eθ

}
,

giving A(θ) = eθ (which is convex, as expected). Note that A′(θ) = A′′(θ) = eθ = λ, which
is indeed the mean and variance of a Poisson distribution. We can incorporate 1/x! into
the measure so that expectations over a density p(x) are calculated as

Eθf(X) =
∑
x

p(x)

x!
f(x).

Examples: Binary Graphical Model

Let G(V,E) be an undirected graph with cliques C. Let

C̃ = {C : ∅ 6= C ⊆ D for some D ∈ C} ;

i.e., C̃ is the collection of (non-empty) complete sets in G.

Suppose that XV ∈ {0, 1}|V |; we already know that p(xV ) > 0 is Markov with respect to
G if and only if

log p(xV ) = λ∅ +
∑
A∈C̃

λA(xA)

for functions λA that are zero unless all entries in xA are 1. We can rewrite this as

log p(xV ) = λ∅ +
∑
A∈C̃

θAφA(xA),

where φA(xA) =
∏
a∈A xa, and θA are constants. This is an exponential family form with

cumulant function A(θ) = −λ∅, and the sufficient statistics φA(xA) are the ‘raw moments’
of XA. Note that EφA(xA) = E

∏
a∈AXa = P (XA = 1).

Since

P (XA = 1) =
∑
xC\A

P (XA = 1, XC\A = xC\A) ∀A ⊆ C,

it follows from the Möbius transformation that (Examples Sheet 1)

P (XA = 1, XC\A = 0) =
∑

B:A⊆B⊆C
(−1)|B\A|P (XB = 1) ∀A ⊆ C

Hence the distribution of each clique C is determined by the raw moments of XA for
A ⊆ C.
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Examples: Gaussian

Let G(V,E) be an undirected graph, and take

p(xV ) = exp

∑
i∈V

(
θixi + θiix

2
i

)
+

∑
{i,j}∈E

θijxixj −A(θ)

 , xV ∈ R|V |

= exp

{
θTV xV −

1

2
xTVK(θE)xV −A(θ)

}
where Kij = Kji = −θij . Then, assuming that K(θE) is positive definite, we have

p(xV ) = exp

{
−1

2
(xV −K−1θV )TK(xV −K−1θV ) +

1

2
θTVK

−1θV −A(θ)

}
,

which proportional to a multivariate Gaussian distribution with mean µ = K−1θV and
covariance matrix K−1. It follows that

A(θ) =
1

2
θTVK

−1θV +
1

2
log detK−1.

So the Gaussian graphical model corresponds to the exponential family whose sufficient
statistics are (xi, x

2
i , i ∈ V ) and (xixj , {i, j} ∈ E).

9.2 Empirical Moment Matching

To find the maximum likelihood estimate in an exponential family, we maximize the log-
likelihood

l(θ;x(1), . . . , x(n)) =

〈
n∑
i=1

φ(x(i)), θ

〉
− nA(θ)

n−1l(θ;x(1), . . . , x(n)) = 〈φ(x), θ〉 −A(θ)

where φ(x) = n−1
∑

i φ(x(i)) is the sample mean of the sufficient statistics. To maximize
this, we can differentiate and set to zero, obtaining

φ(x)−∇A(θ) = 0,

so in other words when we choose θ so that the mean of the sufficient statistics matches
the empirical mean from the data.

Note also that if we differentiate just with respect to θi, we obtain the same result for each
sufficient statistic separately; hence if we update the parameters to match the moment
φi(x) = Eθφi(X), then we increase the log-likelihood. If we iterate this over i, we will
converge to the global maximum likelihood estimate, because the log-likelihood is a concave
function.

Iterative Proportional Fitting

For graphical models, this update process has a particularly nice interpretation. Suppose
that we have an undirected model with cliques C. We have seen above that this corre-
sponds to the exponential family with sufficient statistics given by the relevant marginal
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distributions {p(xC), C ∈ C}. The previous commentary shows that we can obtain the
maximum likelihood estimator by finding the unique distribution in the model with those
margins. Formally this result is given by the following theorem, also given as Theorem
4.25.

Theorem 9.3. Let G be an undirected graph with cliques C, and let n(xV ) be a table
of counts. Then the MLE under G is the unique distribution p̂(xV ) that is Markov with
respect to G and such that

np̂(xC) = n(xC) for all C ∈ C.

The iterative proportional fitting (IPF) algorithm, also sometimes called the iterative pro-
portional scaling (IPS) algorithm, starts with a discrete distribution that satisfies the
Markov property for the graph G (usually we pick the uniform distribution, so that every-
thing is independent), and then iteratively fixes each margin p(xC) to match the required
distribution using the update step:

p(t+1)(xV ) = p(t)(xV ) · p(xC)

p(t)(xC)
(6)

= p(t)(xV \C | xC) · p(xC).

Note that this is closely related to the message passing algorithm in Section 7.

Algorithm 2 Iterative Proportional Fitting (IPF) algorithm.

function IPF(collection of consistent margins q(xCi) for sets C1, . . . , Ck)
set p(xV ) to uniform distribution;
while maxi maxxCi |p(xCi)− q(xCi)| > tol do

for i in 1, . . . , k do
update p(xV ) to p(xV \Ci | xCi) · q(xCi);

end for
end while
return distribution p with margins p(xCi) = q(xCi).

end function

The sequence of distributions in IPF converges to the MLE p̂(xV ). To see this, first
note that the update (6) ensures that the moments for the sufficient statistics involving
the clique C are matched. Second, after each update step the joint distribution remains
Markov with respect to G: this can be seen easily by considering the factorization. Per-
forming each step increases the likelihood, and since the log-likelihood is concave, this sort
of co-ordinate based iterative updating scheme will converge to the global maximum.

Example 9.4. Consider the 4-cycle in Figure 16(a), with cliques {1, 2}, {2, 3}, {3, 4}, {1, 4}.

Suppose we have data from n = 96 observations as shown in the table below (the column
count).

55



X1 X2 X3 X4 count step 0 step 1 step 2 step 3 step 4 n̂

0 0 0 0 5 6 7.5 13 13 12.59 12.6
1 0 0 0 10 6 3.75 6.5 6.5 6.97 6.95
0 1 0 0 20 6 9.25 11.97 11.97 11.59 11.58
1 1 0 0 1 6 3.5 4.53 4.53 4.86 4.87
0 0 1 0 0 6 7.5 2 1.17 1.13 1.13
1 0 1 0 3 6 3.75 1 0.58 0.63 0.63
0 1 1 0 4 6 9.25 6.53 3.81 3.69 3.69
1 1 1 0 0 6 3.5 2.47 1.44 1.55 1.55
0 0 0 1 24 6 7.5 13 13 13.33 13.35
1 0 0 1 0 6 3.75 6.5 6.5 6.11 6.1
0 1 0 1 9 6 9.25 11.97 11.97 12.28 12.27
1 1 0 1 3 6 3.5 4.53 4.53 4.26 4.28
0 0 1 1 1 6 7.5 2 2.83 2.91 2.91
1 0 1 1 2 6 3.75 1 1.42 1.33 1.33
0 1 1 1 4 6 9.25 6.53 9.25 9.49 9.46
1 1 1 1 10 6 3.5 2.47 3.5 3.29 3.3

The marginals over the cliques are:

n(x12) X2 = 0 1

X1 = 0 30 37
1 15 14

n(x23) X3 = 0 1

X2 = 0 39 6
1 33 18

n(x34) X4 = 0 1

X3 = 0 36 36
1 7 17

n(x14) X4 = 0 1

X1 = 0 29 38
1 14 15

To implement IPF, we start with a uniform table, given in the column ‘step 0’. We then
scale the entries so as to match the X1, X2 margin above. For instance, the four entries
corresponding to X1 = X2 = 0 are scaled to add up to 30; this gives the column ‘step
1’. This is repeated for each of the other cliques, giving steps 2–4. By the fourth step
the distribution of all cliques has been updated, but note that the margin over X1, X2 is
now 29.96, 15.04, 37.04, 13.96. We keep cycling until the process converges to the final
column, which matches all four margins.

9.3 Maximum Entropy

Let p(x), x ∈ X be a probability distribution. The entropy (or Shannon entropy) of p is
defined as

H(p) = −E log p(X) = −
∫
X
p(x) log p(x) dx.

This is the expected ‘self-information’ provided by a draw from p.

The principle of maximum entropy says that, given some knowledge about a model, any
remaining aspects should be chosen so as to maximize the uncertainty about the model in
the form of the entropy.

Example 9.5. The maximum entropy distribution such that EX = µ and VarX = σ2 is
the Gaussian. (See exercise sheet.)
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Now suppose we have some general set of statistics Eφi(X) = µi to match. The optimiza-
tion problem is:

maximize H(p) = −Ep log p subject to Epφi(X) = µi, i = 1, . . . , k.

We can write this as a Lagrange multiplier problem, so that the solution is a stationary
point of

L(p, θ) = H(p) +

k∑
i=1

θi(µi − Eφi(X)) + θ0(1−
∑
x

p(x))

= −
∑
x

p(x) log p(x) +
k∑
i=1

θi(µi −
∑
x

p(x)φi(x)) + θ0(1−
∑
x

p(x))

=
∑
x

{
−p(x) log p(x) +

k∑
i=1

θip(x)(µi − φi(x)) + θ0(1− p(x))

}

Differentiating with respect to p(x) and looking for a stationary point, we obtain

∂L

∂p(x)
= − log p(x)− 1 +

k∑
i=1

θi(µi − φi(x))− θ0 = 0

and rearranging this,

p(x) ∝ exp

{
k∑
i=1

θiφ(x)

}
.

The distribution which maximizes the entropy is therefore of the form

p(x) = exp

{∑
i

θiφi(x)−A(θ)

}
,

which is the exponential family with sufficient statistics φi and canonical parameters θi!
Note that the Lagrange multiplier θ0 does not appear in the final result directly, since A is
chosen to ensure normalization. The same result can also be obtained for the continuous
case using techniques from Calculus of Variations.

9.4 Duality and Variation

We saw above that µ = ∇A(θ) = Eθφ(X) is a map from the canonical parameter θ to the
mean of the sufficient statistics; the derivative of this is positive definite, from which it
follows that this map µ(θ) is smooth and bijective with inverse θ(µ). Thus we can equally
well describe a particular distribution pθ(x) using the canonical parameter θ or the mean
parameter µ(θ) = Eθφ(x).

The conjugate dual function to A(θ) is defined as

A∗(µ) = 〈µ, θ(µ)〉 −A(θ(µ)).

The mappings µ(θ) and θ(µ) are not necessarily easy to evaluate (think about the Möbius
transformation). However, when we consider the right hand side as a function of separate
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parameters µ and θ we have 〈µ, θ〉 − A(θ), and we have already seen that this expression
is maximized by choosing the θ such that Eθφ(X) = µ, i.e. by θ = θ(µ). Hence

A∗(µ) ≥ 〈µ, θ〉 −A(θ) (7)

with equality if and only if θ = θ(µ). This inequality is called the variation bound, and
plays a key part in variational inference.

9.5 The EM Algorithm

Suppose we have random variables X,Y from an exponential family

pθ(x, y) = exp {〈θ, φ(x, y)〉 −A(θ)} .

If the observations X are unobserved, then this computationally nice family becomes
intractable to deal with. The log-likelihood is

log pθ(y) = log

∫
X

exp {〈θ, φ(x, y)〉 −A(θ)} dx

= log

∫
X

exp {〈θ, φ(x, y)〉} dx−A(θ)

≡ Ay(θ)−A(θ).

Notice that for fixed y,

pθ(x | y) = exp {〈θ, φ(x, y)〉 −Ay(θ)}

is an exponential family with sufficient statistics φ(X, y). Applying the variation bound
(7) we see that

Ay(θ) ≥ 〈µy, θ〉 −A∗y(µy),

where A∗y is the conjugate dual for this exponential family on X | Y = y.

Using this dual representation we have

log pθ(y) ≥ 〈θ, µy〉 −A∗y(µy)−A(θ).

The EM algorithm (Expectation-Maximization) arises from iteratively maximizing the
right hand side of this expression with respect to µy and θ. In the first case we want to
maximize

〈θ, µy〉 −A∗y(µy)

with respect to µy, which, by the variation bound discussion is achieved at µy = Eθ[φ(X, y) |
Y = y]. So, in other words, we pick µy to be the mean of our sufficient statistics given the
current parameter values. This is the E-step. For the second case we maximize

〈µy, θ〉 −A(θ)

with respect to θ. This corresponds to just finding the MLE of the original full exponential
family, but with the unknown φ(X, y) replaced by its conditional mean Eθ[φ(X, y) | Y = y].
This is the M-step.
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Example 9.6. Suppose that we have X ∼ Bernoulli(π) and Yi | X = x ∼ Bernoulli(θx)
independently for i = 1, . . . , I. If we observe only Y1, . . . , YI , what should we conclude
about π, θx? The log-likelihood for one observation is

l(π, θ1, θ0;X,Y ) = X log π + (1−X) log(1− π) +X

I∑
i=1

{Yi log θ1 + (1− Yi) log(1− θ1)}

+ (1−X)

I∑
i=1

{Yi log θ0 + (1− Yi) log(1− θ0)}

= X

{
log π + log θ1

∑
i

Yi + log(1− θ1)
∑
i

(1− Yi)

}

+ (1−X)

{
log(1− π) + log θ0

∑
i

Yi + log(1− θ0)
∑
i

(1− Yi)

}
,

= αX + β(1−X),

and hence, conditional on Y1, . . . , YI , the distribution ofX is still Bernoulli with probability

µY =
eα

eα + eβ
=

πθ1
∑
i Yi(1− θ1)

∑
i(1−Yi)

πθ1
∑
i Yi(1− θ1)

∑
i(1−Yi) + (1− π)θ0

∑
i Yi(1− θ0)

∑
i(1−Yi)

. (8)

This is the E-step. Now, returning to the complete data log-likelihood, the maximization
with respect to the parameters occurs after replacing each X with µy = Eθ[X | Y = y].
This gives

l(π, θ1, θ0;X,Y ) =
∑
j

µjY

{
log π + log θ1

∑
i

Y j
i + log(1− θ1)

∑
i

(1− Y j
i )

}

+
∑
j

(1− µjY )

{
log(1− π) + log θ0

∑
i

Y j
i + log(1− θ0)

∑
i

(1− Y j
i )

}
.

But this is straightforward: differentiating the log-likelihood and solving gives

π̂ = n−1
∑
j

µjY θ̂1 =

∑
j µ

j
Y

∑
i Y

j
i∑

j µ
j
Y

θ̂0 =

∑
j(1− µ

j
Y )
∑

i Y
j
i

n−
∑

j µ
j
Y

.

These updates are the M-step. Iterating between the E-step and the M-step leads to a local
maximum in the marginal likelihood p(y;π, θ0, θ1); convergence to the global maximum
is not guaranteed (and often fail in practice), though this can be overcome by restarting
the algorithm from several different places and comparing the likelihood values for the
different solutions.

9.6 Conjugate Priors

Now suppose we take a Bayesian approach and include a conjugate prior distribution for
our likelihood, of the form

pξ,λ(θ) = exp {〈ξ, θ〉 − λA(θ)−B(λ, ξ)} .
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Note that this is an exponential family over θ with sufficient statistics (θ,−A(θ)) and
natural parameters (ξ, λ). This means that

p(θ | x, y, ξ, λ) ∝ pξ,λ(θ)pθ(x, y)

∝ exp {〈φ(x, y) + ξ, θ〉 − (1 + λ)A(θ)−B(λ, ξ)}
∝ exp {〈φ(x, y) + ξ, θ〉 − (1 + λ)A(θ)} ,

i.e. the same exponential family with the statistics (ξ, λ) replaced by (ξ + φ(x, y), λ+ 1).
In the case with n i.i.d. samples this becomes (ξ +

∑
i φ(xi, yi), λ+ n).

Example 9.7. Suppose X ∼ Bernoulli(π), so that

log p(x;π) = x log π + (1− x) log(1− π) = x logitπ + log(1− π)

which is in exponential family form with canonical parameter logitπ. A conjugate prior
for π is one with the form

log pξ,λ(π) = ξ logitπ + λ log(1− π) = ξ log π + (λ− ξ) log(1− π).

This is a Beta distribution with parameters ξ and λ − ξ, so the posterior distribution is
the Beta distribution with parameters ξ + x and λ − ξ + 1 − x. One can verify that this
is correct using the ordinary parameterizations of the Bernoulli and Beta distribution.

Example 9.8. Suppose X ∼ N(η, τ−1), so that τ is the inverse variance. We have seen
that

log p(x; η, τ) =
1

2
log τ − τ

2
x2 + τηx− τ

2
η2.

which is in exponential family form with canonical parameters τ and τη. A conjugate
prior is of the form

log pξ,λ(η, τ) = ξ1τ + ξ2τη − λ
τ

2
η2 + λ

1

2
log τ +B(ξ1, ξ2, λ)

= ξ1τ − λ
τ

2
(η − λ−1ξ2)2 + λ

1

2
log τ +B′(ξ1, ξ2, λ).

This is a Gamma distribution for τ with parameters λ/2,−ξ1, and a conditional normal
distribution for η | τ with mean λ−1ξ2 and variance (τλ)−1.

9.7 Variational Bayes

Now suppose we are interested in finding the marginal likelihood, that is

pξ∗,λ∗(y) =

∫
X

∫
pθ(x, y) · pξ∗,λ∗(θ) dθ dx.

This is a fundamental problem in Bayesian inference, since it is used in the computation
of the Bayes factor for a model.

Taking logs, multiplying and dividing the right-hand side by pξ,λ(θ), and rearranging we
obtain

log pξ∗,λ∗(y) = log

∫ ∫
X
pθ(x, y) dx · pξ,λ(θ)

pξ∗,λ∗(θ)

pξ,λ(θ)
dθ.
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Now, for a concave function f , Jensen’s inequality says that f(EX) ≥ Ef(X); applying
this to the density pξ,λ(θ) and the function f(x) = log(x) Jensen’s inequality, we can write

log pξ∗,λ∗(y) ≥
∫
θ
pξ,λ(θ) · log

{∫
X
pθ(x, y) dx ·

pξ∗,λ∗(θ)

pξ,λ(θ)

}
dθ

≥
∫
θ
pξ,λ(θ) · log

∫
X
pθ(x, y) dx dθ +

∫
θ
pξ,λ(θ) log

pξ∗,λ∗(θ)

pξ,λ(θ)
dθ

≥
∫
θ
pξ,λ(θ) · {Ay(θ)−A(θ)} dθ +

∫
θ
pξ,λ(θ) log

pξ∗,λ∗(θ)

pξ,λ(θ)
dθ (9)

by the same method as used for the EM algorithm. Using the dual bound, we can lower-
bound the first term by∫

θ
pξ,λ(θ) ·

{
〈µ, θ〉 −A∗y(µ)−A(θ)

}
dθ = 〈µ,Eξ,λθ〉 −A∗y(µ)− Eξ,λA(θ).

However, note that the value of µ at which we obtain equality is dependent upon θ, so it
should be different at each point in the integral. Thus, this is certainly an approximation
to the original problem and, unlike EM, we will not obtain the exact value of the marginal
likelihood. Instead we will get a lower-bound.

The second term, meanwhile, is∫
θ
pξ,λ(θ) {〈θ, ξ∗ − ξ〉 − (λ∗ − λ)A(θ)−B(ξ∗, λ∗) +B(ξ, λ)} dθ

= 〈Eξ,λθ, ξ∗ − ξ〉 − (λ∗ − λ)Eξ,λA(θ)−B(ξ∗, λ∗) +B(ξ, λ)

By definition of the conjugate dual B∗ we have

B(ξ, λ) = 〈Eξ,λθ, ξ〉+ 〈−Eξ,λA(θ), λ〉 −B∗(Eξ,λθ,Eξ,λA(θ)),

so substituting this in gives

〈Eξ,λθ, ξ∗〉 − λ∗Eξ,λA(θ)−B(ξ∗, λ∗)−B∗(Eξ,λθ,Eξ,λA(θ)).

Since ξ∗, λ∗ are fixed, we can ignore B(ξ∗, λ∗), and combining with the first term again we
want to maximize

〈µ+ ξ∗,Eξ,λθ〉 − (1 + λ∗)Eξ,λA(θ)−A∗y(µ)−B∗(Eξ,λθ,Eξ,λA(θ))

With respect to µ, this involves setting

µ̂ = Eθ̂[φ(X, y) | Y = y],

similar to the E-step in EM. With respect to θ we note that

〈µ+ ξ∗,Eξ,λθ〉 − (1 + λ∗)Eξ,λA(θ)−B∗(Eξ,λθ,Eξ,λA(θ))

looks like the conjugate dual for the original family with hyperparameters (µ+ ξ∗, 1 +λ∗),
so it will be maximized at the mean parameter for this distribution. Hence, the ‘M-step’
is to set

(ξ(t), λ(t)) = (µ(t) + ξ∗, 1 + λ∗) θ(t+1) =

∫
θpξ(t),λ(t)(θ) dθ.
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Example 9.9. Suppose Xj ∼ Bernoulli(π) and that Yij | Xj = x ∼ Bernoulli(θx), with
priors π ∼ Beta(a, b) and θx ∼ Beta(c, d).

Then the posterior distribution for θ given the Yij can be approximated using variational
Bayes. The full data likelihood is

l(µx, π;x, y) =
n∑
j=1

xj log π + (1− xj) log(1− π) +
1∑

x=0

1{xj=x}
∑
i

{yij log θx + (1− yij) log(1− θx)} .

As in EM, the E-step is to replace xi with

µy =
πθ1

∑
i Yi(1− θ1)

∑
i(1−Yi)

πθ1
∑
i Yi(1− θ1)

∑
i(1−Yi) + (1− π)θ0

∑
i Yi(1− θ0)

∑
i(1−Yi)

.

the updated hyperparameters are

a = a∗ +
∑
j

µjy b = b∗ + n−
∑
j

µjy

c1 = c∗ +
∑
j

µjy
∑
i

Yij d1 = d∗ +
∑
j

µjy
∑
i

(1− Yij)

c0 = c∗ +
∑
j

(1− µjy)
∑
i

Yij d0 = d∗ +
∑
j

(1− µjy)
∑
i

(1− Yij).

Under the distributions with these hyper-parameters, we want the expected natural pa-
rameters, i.e. logitπ = log π − log(1− π) and logit θx. These are computed using

Ea,b log π =
1

B(a, b)

∫ 1

0
πa−1(1− π)b−1 log π dπ = ψ(a)− ψ(a+ b),

where ψ is the digamma function (ψ(x) = ∂
∂x log Γ(x)). Then

logit π̂ = ψ(a)− ψ(b) logit θ̂x = ψ(cx)− ψ(dx).

These steps are computationally easy to iterate. Upon convergence (which is guaranteed),
we can evaluate the lower bound (9) from above. One can verify that

A(µ, θ0, θ1) = − log(1− π)− log(1− θ1)
∑
j

µjY − log(1− θ0)
∑
j

(1− µjY )

Ea,b,c,dA(µ, θ0, θ1) = ψ(a+ b)− ψ(b) + {ψ(c1 + d1)− ψ(d1)}
∑
j

µjY

+ {ψ(c0 + d0)− ψ(d0)}
∑
j

(1− µjY ),

and we are approximating Ay(θ) by Ay(θ̂)+〈µ, θ− θ̂〉, where Ay(θ̂) = − log(1−µY ). These
calculations are relatively straightforward.

9.8 Gibbs Sampling

Finally, we discuss Gibbs Sampling, which gives a method of sampling from complicated
joint distibutions, even if we are unable to obtain the normalizing constant. The idea
is that we divide our distribution into simpler univariate conditional distributions, which
often have nice parametric forms. Even if the univariate conditional is not a simple
model, computing the normalizing constant only requires a one-dimensional integral (or
sum), which is relatively easy to evaulate.
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Example 9.10 (Ising Model). Let Xv ∈ {−1,+1}, and let G(V,E) be a graph. The Ising
model assumes that

p(x; θ) ∝ exp

θ ∑
{i,j}∈E

xixj

 ;

this is commonly used in the case of variables arranged on a p× p grid such as in a black
and white image.

Note that

p(x; θ) =
exp

{
θ
∑
{i,j}∈E xixj

}
∑

xV
exp

{
θ
∑
{i,j}∈E xixj

} =
exp

{
θ
∑
{i,j}∈E xixj

}
Z(θ)

;

cannot generally be computed because the sum to obtain Z(θ) is intractable. The quantity
Z(θ) is sometimes called the partition function.

Of course, if G is decomposable then we can perform these calculations using the expression
from Theorem 4.24. But for non-decomposable graphs, there is generally no such nice
expression.

To avoid this problem we introduce a very useful Markov chain Monte Carlo method called
Gibbs Sampling. Suppose we wish to simulate from a distribution p(x1, . . . , xk), and are
given each of the conditionals:

p(xi | x−i) = p(xi | x1, . . . , xi−1, xi+1, . . . , xk).

The Gibbs Sampler is an algorithm that samples as follows:

Algorithm 3 Single iteration of the Gibbs sampler.

function Gibbs(current state x1, . . . , xk, conditional distributions p(xi | x−i))
for i in 1, . . . , k do

sample x∗i from p(xi | x∗1, . . . , x∗i−1, xi+1, . . . , xk) ;
end for
return new state (x∗1, . . . , x

∗
k)

end function

Repeatedly applying this algorithm gives a Markov chain on x1, . . . , xk. Under mild con-
ditions, the unique stationary distribution of the Markov chain is the joint distribution p,
and the distribution of the state of the chain will converge to p. Hence, the state can be
used as a sample from p. A potential disadvantage is that it may take a long time for the
Markov chain to converge. We will not attempt to prove these facts, but see the Advanced
Simulation course next term for more details.

Example 9.11. Suppose that p is a bivariate normal distribution with mean µ = (µ1, µ2)
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and covariance matrix K−1. Then

log p(x1 | x2) = −1

2
(x− µ)TK(x− µ) + const

= −1

2
k11(x1 − µ1)2 − k12(x1 − µ1)(x2 − µ2)−

1

2
k22(x2 − µ2)2 + const

= −1

2
k11x

2
1 + (k11µ1 − k12(x2 − µ2))x1 + const

= −1

2
k11

(
x1 − µ1 +

k12
k11

(x2 − µ2)
)2

+ const.

Hence, the conditional distribution of X1 | X2 = x2 is Gaussian with mean µ1− k12
k11

(x2−µ2)
and variance k−111 .

A similar result holds for X2 | X1 = x1. Hence the Gibbs sampler consists of the following

steps, starting from some initial (x
(0)
1 , x

(0)
2 ), for t = 1, 2, . . .,

• draw x
(t)
1 from N(µ1 − k12

k11
(x

(t−1)
2 − µ2), k−111 );

• draw x
(t)
2 from N(µ2 − k12

k22
(x

(t)
1 − µ1), k

−1
22 ).

In the case where µ1 = µ2 = 0 and the variances are 1, one can show that K =

1
1−ρ2

(
1 −ρ
−ρ 1

)
, where ρ is the correlation. This gives updates of the form x1 | x2 ∼

N(ρx2, (1− ρ2)−1). We implement this in the R code below.

> ## Gaussian Gibbs sampler

> rho <- 0.9 ## correlation

> N <- 200 ## number of samples

> x <- y <- numeric(N)

> x[1] <- y[1] <- 0

>

> for (i in 2:N) {
+ x[i] <- rnorm(1, mean=rho*y[i-1], sd=sqrt(1-rho^2))

+ y[i] <- rnorm(1, mean=rho*x[i], sd=sqrt(1-rho^2))

+ }
>

> plot(x,y, type="l")
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Notice that there is correlation between the samples, as evidenced by the fact that the
Markov chain tends to stay close to the previous step.

Applying Gibbs sampling to the Ising model makes it much easier to obtain samples from.
Even though the joint distribution is hard to evaluate, the full conditional distribution of
each variable is simple, because we have:

p(xi | xV \{i}, θ) ∝ exp

θxi ∑
j∈bdG(i)

xj


p(xi | xV \{i}, θ) =

exp
{
θxi
∑

j∈bdG(i) xj

}
∑

xi
exp

{
θxi
∑

j∈bdG(i) xj

} ;

this is much easier to compute, because we only have to sum over a single variable xi.

Example 9.12. Consider a model in which X ∼ Bernoulli(π) and Y | X = x ∼ N(θx, 1)
independently for i = 1, . . . , n. We place priors π ∼ Beta(a, b) and θx ∼ N(0, 1) for
x = 0, 1.

Now suppose we observe Y but not X. The posterior distribution for the parameters is

p(π, θ0, θ1 | y) ∝ p(y | π, θ0, θ1)p(π, θ0, θ1).

Unfortunately this is (relatively) hard to evaluate because p(Y | π, θ0, θ1) does not have a
simple form. However, we can instead consider

p(x, π, θ0, θ1 | y) ∝ p(y | x, θ0, θ1) · p(x | π) · p(π, θ0, θ1).
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This is easy to work with because each factor on the right hand side has a simple closed
form. In particular,

P (X = 1 | Y, θ0, θ1, π) =
π exp(−(Y − θ1)2/2)

π exp(−(Y − θ1)2/2) + (1− π) exp(−(Y − θ0)2/2)

π | X ∼ Beta(a+X, b+ (1−X))

θ1 | X,Y ∼ N
(

1

2
XY,

1

1 +X

)
θ0 | X,Y ∼ N

(
1

2
(1−X)Y,

1

1 + (1−X)

)
.

Since the full conditionals are easy to evaluate, we can just run a Gibbs sampler to obtain
a sample from the joint posterior distribution of X and the parameters given Y . We can
(if we choose) then just ignore the X samples and keep the sample of parameters.

> set.seed(674)

> ## generate data

> n <- 1000

> pi <- 0.3

> theta <- c(-1,1)

> X <- rbinom(n, 1, pi)

> Y <- rnorm(n, mean=theta[X+1], sd=1)

>

> ## initial states

> N <- 1000

> pi_samps <- numeric(N)

> theta_samps <- matrix(0, N, 2)

> X_samp <- rbinom(n, 1, 0.5) # random starting point

>

> a <- b <- 1 ## prior for pi

>

> ## run Gibbs sampler

> for (i in 1:N) {
+ sumX <- sum(X_samp)

+ pi_samps[i] = rbeta(1, a+sumX, b+n-sumX)

+ theta_samps[i,1] = rnorm(1, sum(Y*(1-X_samp))/(1+n-sumX), 1/(1+n-sumX))

+ theta_samps[i,2] = rnorm(1, sum(Y*X_samp)/(1+sumX), 1/(1+sumX))

+ p <- pi_samps[i]*dnorm(Y, theta_samps[i,2])

+ p <- p/(p + (1-pi_samps[i])*dnorm(Y, theta_samps[i,1]))

+ X_samp <- rbinom(n, 1, p)

+ }
>

> par(mfrow=c(1,2))

> plot(pi_samps, type="l")

> plot(theta_samps[,1], type="l")
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> par(mfrow=c(1,2))

> hist(pi_samps, col=2, breaks=50)

> hist(theta_samps[,1], col=4, breaks=50)
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