R Programming: Worksheet 7

By the end of today you should feel comfortable working with numerical optimization methods in R:

\texttt{optim()}, \texttt{nlm()}, \texttt{uniroot()}

1. **Maximum Likelihood**

Suppose we have non-negative integer valued data \(Y_1, \ldots, Y_n \), and an observed covariate \(x_1, \ldots, x_n \). In a Poisson valued generalized linear model, we assume that

\[Y_i \sim \text{Poisson}(\lambda_i) \]

independently, where

\[\log \lambda_i = \beta_0 + \beta_1 x_i. \]

(a) Write down the log-likelihood for \(\beta = (\beta_0, \beta_1)^T \) given these data.

(b) Write a function of three numeric vector arguments: \texttt{beta}, \texttt{y}, \texttt{x}, which returns minus the log-likelihood for the above model evaluated at \(\beta = (\beta_0, \beta_1) \). [Don’t use \texttt{dpois()} for this.]

(c) Let \(n = 100 \). Generate a covariate vector \texttt{x} as independent standard normal random variables. Use this to generate data from the above model with \(\beta_0 = 1, \beta_1 = \frac{1}{2} \).

The R function \texttt{optim()} performs generic minimization of functions. Its arguments are \texttt{par}, a vector of starting parameters (so in this case some starting value for \(\beta \)), and \texttt{fn}, a function with first argument to be minimized over.

(d) Use the function \texttt{optim()} to find the MLE for your dataset.

(e) Check your answer by running the command

\begin{verbatim}
> glm(y ~ x, family = poisson)
\end{verbatim}

[If you haven’t seen GLMs before, you will do soon.]

(f) Try doing the same thing as in (d) but using the function \texttt{nlm()} (which is similar to \texttt{optim()}).

(g) * Give the output of \texttt{optim()} from (d) the class \texttt{optimum}. Write a print method for objects of this class which neatly displays (i) the optimal parameters, (ii) the value of the function at the optimum, and (iii) a suitable explanation of the error code (see \texttt{?optim}).
2. Estimating Equations

Consider a time series model

\[X_t = \phi X_{t-1} + \phi^2 X_{t-2} + \epsilon_t, \quad t = 2, \ldots, T \]

where \(X_0 = X_1 = 0, \ |\phi| < \frac{1}{2}, \) and \(\epsilon_t \) are independent, identically distributed random variables with mean 0 and finite variance.

(a) Write a function with arguments \(T \) and \(\phi \), which generates a time series of the form above; have the errors be \(t_5 \)-distributed.

(b) Generate some data with your function, using \(\phi = 0.4 \) and \(T = 100 \).

(c) Let

\[g(\eta, X) = \frac{1}{T} \sum_{t=2}^{T} X_{t-1} \left(X_t - \eta X_{t-1} - \eta^2 X_{t-2} \right) \]

Prove that

\[\mathbb{E}X_t X_{t-1} = \phi \mathbb{E}X_{t-1}^2 + \phi^2 \mathbb{E}X_{t-1}X_{t-2}. \]

and deduce that \(\mathbb{E}g(\phi, X) = 0 \).

If we don’t know the distribution of the \(\epsilon_t \)s (let’s pretend we don’t), we can’t write down a likelihood for \(\phi \). However, we can find a root of the equation \(g \): that is choose \(\hat{\phi}_T \) such that \(g(\hat{\phi}_T, X) = 0 \). This is called the method of estimating equations. Under reasonable conditions on the choice of \(g \) we find that \(\hat{\phi}_T \to \phi \) as \(T \) grows.

(d) Write an \(R \) version of the function \(g \), with first argument \(\text{phi} \), and second \(y \).

(e) Now solve the estimating equation: that is, find \(\hat{\phi} \) such that \(g(\hat{\phi}) = 0 \). Use the function \texttt{uniroot()}.

(f) Observe that \(\hat{\phi}_T \) is just the solution to a quadratic equation, and write a function to solve it exactly. [But note that it would be easy to construct an example without such an exact solution.]

(g) Generate a single large data set (sample size \(n = 10^4 \)) and use the function from the previous part to find solutions to the estimating equation using the first 100, 300, 1000, 3000, and \(10^4 \) observations.

Repeat this a large number of times (say 100), and comment on the accuracy of the estimates (of course the estimates improve, but how quickly?)
3. *Violation of Modelling Assumptions*

(a) Write a function which takes a single integer \(n \), and returns a list with entries \(x \) and \(y \), where \(x \) is a vector of \(n \) independent uniform random variables on \([-1, 1]\),

\[
y_i = x_i^2 + \varepsilon_i, \quad i = 1, \ldots, n,
\]

and \(\varepsilon_i \overset{i.i.d.}{\sim} N(0, 1) \).

(b) Generate a sample of size 1,000 using the function from (a), and fit a linear model using the command \(\text{lm1} = \text{lm}(y \sim x) \). Look at the summary of your model output, as well as the diagnostic plots with \(\text{plot(lm1)} \). What do you notice?

(c) Write a second function which generates \(x \) as before, but

\[
y_i = x_i + \varepsilon_i, \quad i = 1, \ldots, n,
\]

where \(\varepsilon_i \overset{i.i.d.}{\sim} t_3 \). (Use the \(\text{rt()} \) function.)

(d) Repeat (b) with your new function.

(e) Write a function with argument \(n \) which generates a sample using the function from (c), fits a linear model, and then reports a 95% confidence interval for the coefficient of \(x \) (the slope).

(f) For a sample size \(n = 10 \), use the function from the previous part to generate \(N = 1,000 \) confidence intervals for different data sets. How many of them contain the ‘true’ value of the slope?

(g) Try increasing the sample size and repeating the previous part.