Today we'll study a few useful functions we haven’t come across yet:

all(), any(), `%in%`, match(), pmax(), pmin(), unique()

We’ll also apply our knowledge to the bootstrap.

1. Some Useful Functions
 The `any()` and `all()` functions are useful generalizations of the ‘and’ and ‘or’ operators. They determine whether (respectively) any or all of the elements of a logical vector are `TRUE`.

   ```r
   > any(c(TRUE, FALSE, FALSE))
   ## [1] TRUE
   > all(c(TRUE, FALSE, FALSE))
   ## [1] FALSE
   ```

 (a) Write a function with argument `n` that randomly permutes the numbers 1,...,n, and checks whether any of them are in their original correct position. For example, in the permutation 4,1,3,2, the number 3 is still in the 3rd entry, so the function would return `TRUE`.

 (b) Use replicate to estimate the probability of getting `TRUE` for a few different values of `n`.

 We have seen the `max()` and `min()` functions, which determine the largest and smallest elements of a vector. There are vectorized versions of these functions available for comparing entries pointwise in a vector: `pmax()` and `pmin()`.

   ```r
   > x = c(1, -4, 9)
   > y = c(1, 3, 3)
   > pmin(x, y)
   ## [1] 1 -4 3
   ```

 Of course, vector recycling can be used here:

 (c) Write a function which truncates the numbers in a vector above 1 or below 0. For example:

   ```r
   > x <- c(0.2, 0.9, -0.3, 1.1, 0.5)
   > trunc01(x)
   ## [1] 0.2 0.9 0.0 1.0 0.5
   ```
The function `match()` and the binary operator `%in%` are useful for finding items within vectors or lists. Given two vectors, `%in%` returns a logical vector telling you whether or not each entry in the first vector is contained somewhere in the second.

```r
> c(3, 2, 5) %in% c(5, 4, 5, 6, 2)
## [1] FALSE TRUE TRUE
> "U" %in% LETTERS[1:10]
## [1] FALSE
```

`match()` is similar, but also tells you where in the second vector the item is found.

```r
> match(c("C", "B", "E"), c("E", "D", "E", "F", "B"))
## [1] NA 5 1
```

Note that it only gives the first position if the element is repeated, and (by default) it returns `NA` if there is no match.

(d) How would you check whether every element of a vector `x` is contained within a second vector `y`?

(e) Write a function `rmv()` of two vector arguments `x` and `y`. The function should remove any element of `y` which is also in `x` and then return what remains. It should make use of `match()` and/or `%in%`. For example:

```r
> rmv(c(1, 2), c(0, 1, 2, 1, 3, 1, 4))
## [1] 0 3 4
> rmv(c("A", "E", "I", "O", "U"), LETTERS)
## [1] "B" "C" "D" "F" "G" "H" "J" "K" "L" "M" "N" "P" "Q" "R" "S" "T" "V"
## [18] "W" "X" "Y" "Z"
```

You might find the function `na.omit()` useful. Note that the function `setdiff()` does exactly this, but using it wouldn’t be as fun as making our own routine, would it?

2. **Counting**

Look at the data set `faithful` in the MASS package.

(a) Plot the data as a scatter plot, and comment.

(b) Dichotomize (i.e. split into two groups) each of the two series using the `cut()` command. Choose a sensible point to split in each case, and label your groups ‘short’ and ‘long’.

(c) Produce a two-way contingency table of these discretized data.
3. Bootstrap

Suppose we have \(X_1, \ldots, X_n \) i.i.d. random variables from some unknown distribution \(P \), and we have a function \(\hat{\theta} = f(X_1, \ldots, X_n) \) used to estimate some parameter \(\theta(P) \). For example, if \(\theta(P) \) is the mean of the distribution \(P \), we might use the function

\[
f(X_1, \ldots, X_n) = \frac{1}{n} \sum_{i=1}^{n} X_i.
\]

Now, suppose we wish to estimate the amount of uncertainty associated with using the estimator \(f \). Ideally, we would draw lots of independent samples of size \(n \) from \(P \), and see how much the value of our estimator changes.

Unfortunately \(P \) is unknown, so instead we can draw a sample from \(P^* \), the empirical distribution of the data \((X_1, \ldots, X_n) \). In other words, we draw a sample of size \(n \) with replacement from the set \(\{X_1, \ldots, X_n\} \). If we repeat this a large number of times it mimics the properties of samples from the original distribution. This is called the bootstrap method.

(a) Write a function \texttt{bootsamp(x)} which, given a vector \(x \) of length \(n \), returns a single bootstrap sample of size \(n \).

(b) Let \(N = 100 \). Draw a sample of \(N \) independent gamma variables with shape 2 and rate 3 (use \texttt{rgamma()}); then take a bootstrap sample and see how many \texttt{unique} values it contains. The function \texttt{unique()} may be useful here.

(c) Try this a few times, and for various \(N \) (e.g. 1,000, 10,000, 100,000). Any comments?

Now suppose we wish to obtain a bootstrap estimate of the uncertainty in the standard deviation function. To compute the sample standard deviation we can just use the \texttt{sd()} function, so this will be our \(f \).

(f) Write a function \texttt{bootsd(x, B)} with arguments \(x \), a vector, and \(B \) an integer. The function should draw a bootstrap sample of \(x \), and find the sample standard deviation of that sample. It should repeat this a total of \(B \) times, and return the results as a vector of length \(B \). Set \(B \) to default to 1,000. Try to do this without using a loop.

(g) Apply your function to the \texttt{Nile} data, and plot the results as a histogram. Add the actual sample standard deviation as a vertical line on your histogram.

(h) The kurtosis of a distribution with mean \(\mu \) and standard deviation \(\sigma \) is defined as \(\beta_2 \equiv \sigma^{-4}E(X - \mu)^4 \), and is typically estimated in a sample \(X_1, \ldots, X_n \) by

\[
\hat{\beta}_2 = \frac{1}{n-1} \frac{\sum_{i=1}^{n} (X_i - \bar{X}_n)^4}{s^4},
\]

where \(\bar{X}_n \) is the sample mean and \(s \) is the sample standard deviation. Obtain the sample kurtosis of the Nile data.

(i) Generate 10,000 bootstrap samples for the Nile data, and use them to obtain a 95% confidence interval for the sample kurtosis.
4. *Gibbs Sampler*

Let

\[
\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\begin{pmatrix} 0 \\ \rho \end{pmatrix}, \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix} \right),
\]

so that \(X \mid Y \sim N(\rho Y, 1 - \rho^2) \) and vice-versa.

A **Gibbs sampler** explores a distribution by repeatedly drawing samples from the univariate conditional distributions. In other words, choose some starting values \((X_0, Y_0)\), and then draw

\[
X_{i+1} \sim N(\rho Y_i, 1 - \rho^2) \\
Y_{i+1} \sim N(\rho X_{i+1}, 1 - \rho^2)
\]

for \(i = 0, 1, 2, \ldots \).

(a) Write a function which implements a Gibbs sampler to explore the joint distribution of \((X,Y)^T\). It should take arguments \(n \) giving the number of steps to take, and \(\rho \) which defaults to 0. It should return a \((n + 1) \times 2\)-matrix with a row for each observation, starting with \((X_0, Y_0) = (0, 0)\).

(b) Write a function which generates \(n \) samples using the Gibbs sampler, and then estimates the mean of \(X \). Do this \(N = 1000 \) different times with \(\rho = 0.5 \) and \(n = 100 \) (this might take a few seconds). What would you expect the distribution of the mean to be if we had \(n \) independent samples from the distribution?

(c) Try repeating the previous function with \(\rho = 0, 0.8, 0.99 \) and comparing the variance of your estimates with your answer above. What do you find? Why? (Try plotting your samples as a line.)

The difference in efficiency between independent samples and dependent ones is related to the **effective sample size**.

By simulating estimates of the mean of \(X \) a large number of times, estimate the effective sample size for \(n = 1,000 \) and \(\rho = 0.9 \).