R Programming: Worksheet 5

By the end of today you should understand the apply() family of functions, as well as creating and manipulating multi-way arrays.

1. Warm Up

Use apply(), tapply(), sapply(), mapply() and replicate() to solve these problems.

(a) Generate a list of 50 random datasets, each consisting of 10 independent \(t_5 \) distributed random variables. [The relevant function is rt().]
(b) Generate a list of length 20, where the \(i \)th entry in the list is the sequence of numbers 1, \ldots, \(i \).
(c) Generate the following random matrix \(X \):

\[
\begin{array}{c|cc}
\text{Victim} & \text{White} & \text{Black} \\
\hline
\text{Defendant} & \text{Yes} & 53 & 11 \\
& \text{No} & 414 & 37 \\
\end{array}
\]

(d) Look at the data frame CO2 (this is preloaded into R). How would you determine which columns are numeric? [Hint: there is a function called is.numeric()]

2. Death Penalty Data

Here is a famous data set which is used to illustrate Simpson’s paradox. It records the races of the victim and defendants in various murder cases in Florida between 1976 and 1987, and whether or not the death penalty was imposed upon the killer. The data are presented as counts.

\[
\begin{array}{c|cc|c|cc}
\text{Victim} & \text{White} & \text{Black} & \text{Defendant} & \text{White} & \text{Black} \\
\text{Defendant} & \text{Yes} & 0 & 4 & \text{Yes} & 53 & 11 \\
& \text{No} & 16 & 139 & \text{No} & 414 & 37 \\
\end{array}
\]

(a) Create a 3-way array in R to hold these data, with the three dimensions representing the penalty, the defendant’s race and the victim’s race respectively.

You can include suitable dimension names on a table with the dimnames() function.

\[
\begin{array}{c|cc|c|cc}
\text{Victim} & \text{White} & \text{Black} & \text{Defendant} & \text{White} & \text{Black} \\
\text{Defendant} & \text{Yes} & 0 & 4 & \text{Yes} & 53 & 11 \\
& \text{No} & 16 & 139 & \text{No} & 414 & 37 \\
\end{array}
\]

(b) Create a similar list of dimension names for your death penalty data, called (say) listOfNames. Set it to the table by running

\[
\begin{array}{c|cc|c|cc}
\text{Victim} & \text{White} & \text{Black} & \text{Defendant} & \text{White} & \text{Black} \\
\text{Defendant} & \text{Yes} & 0 & 4 & \text{Yes} & 53 & 11 \\
& \text{No} & 16 & 139 & \text{No} & 414 & 37 \\
\end{array}
\]
(c) Obtain the marginal distribution (i.e. summing out over the other variables) of
the penalty imposed against the defendant’s race.
(d) Use this to estimate the probability of imposing the death penalty conditional
upon race of the defendant. What do you conclude?
(e) Now do the same but only for white victims. What do you conclude? What
about only for black victims?
(f) * Can you explain how this is possible?

[You can also use the function conditionTable() in the excellent(!) package rje
to do the bits in part (d) and (e).]

3. Central Limit Theorem

(a) Write a function with arguments n and k, which generates k data sets each
consisting of n independent uniform random variables on (0, 1), and returns
their mean. Do this in three different ways, using (i) a loop; (ii) replicate();
(iii) the function rowMeans(). [The function runif() may be useful.]
(b) Using system.time(), time your functions for a few different values of n and
k. Which is the fastest? Which function is the easiest for you to read and
understand?
(c) Run your preferred function for k = 10,000 and each of n = 1, 2, 3, 5, 10; plot
the results as a histogram in each case. (Use hist(), and play around with the
breaks and col options.)
(d) For the case n = 5, plot a normal density over your histogram with the same
mean and variance as the random variables generated by your function: here I
mean the exact mean and variance. The function dnorm() may be useful. [Hint:
recall that the variance of a Uniform(0, 1) random variable is 1/12].

4. Confidence Intervals

(a) Write a function which, given a real vector x, calculates a 95% confidence interval
for the mean, using the usual t-distribution approximation. [See ?qt]
(b) Write a second function with argument n, which generates 20 data sets each
consisting of n standard normal random variables, and calculates a 95% confi-
dence interval for each data set. The function should return a list containing
two vectors of length 20 named lower and upper, consisting of the lower and
upper ends of each interval.
(c) Write a third function which obtains 20 confidence intervals as above, and then
plots them. The plot should consist of 20 horizontal lines, one drawn below the
other.
Plot these a few times and watch the lines dance around!
(d) Improve your plot function in the following ways:
 (i) make the true mean always be in the centre of the plot;
 (ii) plot intervals which cover the true mean in a different colour.
(e) Try changing the mean you use to generate the data, and see how this changes
your plot.
(f) * How might you use this function to explain the frequentist interpretation of
confidence intervals to a student?