R Programming: Worksheet 1

Try to focus on questions 1–3; there are a couple extra for those who finish quickly. Bits with an asterisk (*) are slightly harder, and are either non-examinable or will be covered later.

Functions used:

\texttt{seq()}, \texttt{rep()}
\texttt{sample()}, \texttt{rnorm()}
\texttt{matrix()}, \texttt{t()}, \texttt{solve()}, \texttt{ncol()}
\texttt{apply()}
\texttt{sd()}, \texttt{var()}, \texttt{cumsum()}
\texttt{rbinom()}, \texttt{pbinom()}, \texttt{diag()}, \%\%\%
\texttt{plot()} # 1-dimensional data

1. **Sequences**

Generate the following sequences and matrices

(a) 1, 3, 5, 7, \ldots, 21.
(b) 50, 47, 44, \ldots, 14, 11.
(c) 1, 2, 4, 8, \ldots, 1024.
(d) \[
\begin{pmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16
\end{pmatrix}
\]

2. **Sampling**

The command \texttt{sample()} performs random sampling; for example, to give a random permutation of the numbers 1 to 10, we could do one of:

```r
> sample(10)
> sample(1:10)
```

(a) A scientist needs to experiment upon 4 conditions, 5 times each. Generate a vector (1,1,1,1,1,2,\ldots,4,4)^T of length 20, representing these conditions.
(b) The scientist wants to do the 20 experiments in a completely random order; use \texttt{sample()} to reorder the elements of the vector from (a).
(c) The scientist calls the conditions A, B, C and D. How would you return a character vector with entries "A", "B", "C", "D" containing your random permutation?

3. **Matrices and \texttt{apply()}**

Remember that a matrix can be created with the command \texttt{matrix()}, and that it fills in by column first:
The command `apply()` allows you to neatly perform an operation on each row (or column) of a matrix. For example, if you want the row-by-row averages of the matrix `A`, you could use

```r
> apply(A, 1, mean)
```

or for the column means, use

```r
> apply(A, 2, mean)
```

(a) Create a 10 × 11 matrix of independent standard normal random variables; call it `A`.

(b) How would you find the maximum entry in each row of `A`?

(c) Calculate the standard deviation of each column of `A` (the command you need is `sd()`).

(d) Select the last column of `A`, and call it `b`. Then remove the last column from the original `A`. Do this using the function `ncol()`.

(e) Solve the system of linear equations `Ax = b`.

(f) Find a vector containing the sums of each row of `A`.

Can you think of (or find) any other ways of achieving this?

(g) * Create a second matrix `B`, where the `i`th column of `B` is the sum of the first `i` columns of `A`.

4. Random Walks

A random walk on the integers is a sequence `X_0, X_1, X_2, \ldots` with `X_0 = 0`, and

\[X_i = X_{i-1} + D_i, \]

where the `D_i` are independent with \(P(D_i = +1) = P(D_i = -1) = \frac{1}{2} \).

(a) Have a look at the documentation for the function `sample()`. Use it to generate a vector \((D_1, \ldots, D_{25})^T\).

(b) Use the command `cumsum()` to generate \((X_0, X_1, \ldots, X_{25})^T\) from this.

(c) Plot your random walk:

```r
> plot(X, type = "l")
```

Try plotting the first 1,000 steps of a random walk.

(d) We can rewrite

\[X_n = \sum_{i=1}^{n} D_i = 2Z_n - n \]

where the distribution of `Z_n` is binomial (with what parameters?) To generate a random binomial distribution use `rbinom()`.
> rbinom(1, 25, 0.5)

What does each of the arguments 1, 25, and 0.5 do? Remember to use the help file if necessary.

Write some code to generate a realization of X_{25}.

(e) Generate a vector containing the value of X_{25} for 100,000 independent realizations of the symmetric random walk. How could we estimate the probability of X_{25} exceeding 10?

(f) How could we calculate this exactly? Compare to your answer above. [Try looking at ?pbinom.]

5. Diagonals

(a) Create a diagonal matrix whose diagonal entries are $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{10}$. Call it D.

(b) Now define a 10×10 matrix whose entries are all -1, except on the diagonal, where the entries should be 4. Call it U.

(c) What is the length of the first column vector in U?
 Renormalize the entries of U so that each column is a unit vector.
 Check directly that your approach is correct.

(d) Calculate the matrix UDU^T, and call it X.

(e) Find the eigenvalues of X numerically (try typing ??eigenvalue). Is this what you expected?

(f) * Can you use vector recycling to calculate DU^T without using matrix multiplication?