1. You have been asked to analyse some data which is in a text file. The data is formatted in blocks of varying sizes, with a header for each block. Consulting your notes, you discover you need the function `readLines` which you have never used. How would you find out how to use it?

2. (a) Create a character vector called `filmNames` containing the names of 4 films (imaginary or genuine!).
 (b) Create a numeric vector called `filmTimes` containing the estimated running times in minutes for these films.
 (c) Create a list of length 2 called `filmsList` consisting of the two elements: `filmNames` and `filmTimes`.
 (d) Create a vector called `goodFilms` containing the logical values TRUE, FALSE, TRUE, TRUE.
 (e) How could you extract a vector from `filmsList` containing those film names which correspond to TRUE values in `goodFilms`?
 (f) Use `lapply` to extract the names and running times for those films which correspond to FALSE values in `goodFilms`. What will be the format of the result?

3. Write a function which contains a “for” loop and for any given \(n \) acquires \(n \) uniform random numbers and then calculates their mean. How in practice would you do this in R?

4. Suppose `betas` is a \(n \) by \(p \) matrix containing some results from a Bayesian MCMC model fitting: values of the parameters \((\beta_i, i = 1, \ldots, p) \) for each of \(n \) steps of the chain. Write the code to do the following:
 (a) Use `apply` to calculate the acf for each column of the matrix. (Assume the function `acf(x)`, if called with a vector \(x \), will return a list which has a component named `acf` which is an array of dimensions \(c(maxlag + 1, 1, 1) \) containing the auto-correlations at lags from 0 upwards for some maximum lag `maxlag`. It will also produce a plot: to suppress this you should use the argument `plot=FALSE`.)
 (b) Find the maximum absolute value among the columns of auto-correlation at lag 1.
 (c) Extract a sub matrix containing every 10th row.
 (d) Write a function to iterate this: calculate the maximum absolute value of the auto-correlation at lag 1 and then thin by extracting every 10th row until the maximum absolute value of the auto-correlation at lag 1 is less than \(p/\sqrt{(m)} \), where \(m \) is the number of rows in the sub matrix, for some specified \(p \), and then return the thinned matrix.

Some credit will be given for pseudo-code mixed with R.

answers

1. 1 mark

?readLines
2. (a) 1/2 mark
   ```r
   filmNames <- c("Local Hero", "Gone With the Wind", "Psycho", "Brief Encounter")
   ```
 (b) 1/2 mark
   ```r
   filmTimes <- c(95, 130, 100, 80)
   ```
 (c) 1/2 mark
   ```r
   filmsList <- list(filmNames, filmTimes)
   ```
 (d) 1/2 mark
   ```r
   goodFilms <- c(TRUE, FALSE, TRUE, TRUE)
   ```
 (e) 1 mark
   ```r
   filmsList[[1]][goodFilms] ## note [[]
   ```
 (f) 1 mark
   ```r
   lapply(filmsList, function(x) x[!goodFilms])
   ```
 Result will be a list

3. 5 marks
   ```r
   myfn <- function(n)
   {
     store <- 0
     x <- runif(n)
     for (i in 1:n)
     {
       store <- store + x[i]
     }
     store/n
   }
   ```
   ```r
   n <- 100
   mean(runif(n))
   ```

4. (a) 2 marks
   ```r
   myacf <- apply(betas, 2, acf, plot=FALSE)
   ```
 (b) 2 mark
   ```r
   myacfval <- sapply(myacf, function(x)x$acf[2, 1, 1])
   mymax <- max(myacfval)
   ```
 (c) 1 mark
   ```r
   betas <- betas[c(rep(FALSE, 9), TRUE), ]
   ```
 (d) 5 marks
   ```r
   myfn <- function(betas, p)
   {
     repeat
     {
       ```
myacf <- apply(betas, 2, acf, plot=FALSE)
myacfval <- sapply(myacf, function(x)x$acf[2, 1, 1])
mymax <- max(abs(myacfval))
if (mymax < p/sqrt(nrow(betas))){
 break
}
betas <- betas[c(rep(FALSE, 9), TRUE),]
}
betas
}