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Abstract

In their 2007 paper, E.S. Allman and J.A. Rhodes characterise the phylogenetic ideal
of general Markov distributions for binary data on the leaves of a tree. Further, as yet
unpublished, results by Zwiernik, Maclagan and Smith enable us to check simple inequality
constraints to ensure the joint probabilities are valid for the model. We investigate the use
of these results in the finding of maximum likelihood estimates for the joint distribution. We
demonstrate a method of finding the MLEs using the ideals for the quartet tree, and make a
comparison with the EM algorithm.

1 Introduction

This paper discusses how phylogenetic invariants might be used to fit general Markov models
for binary data. Some authors, for example Pachter and Sturmfels [12], have contended that
all statistical models are algebraic varieties, meaning that they can be characterised by a set
of algebraic constraints on the joint probabilities. For the purposes of most statisticians, one
also requires a set of semi-algebraic, or inequality, constraints to ensure, for example, that the
probabilities are real and lie on [0, 1].

In the case of binary data following the general Markov model on a tree, these algebraic constraints
are available explicitly, due to Allman and Rhodes [2]. Futher, Zwiernik et al. [17] allow us to
characterise the additional semi-algebraic constraints required to ensure that we are inside the
general Markov model. This paper discusses how the algebraic constraints may be used to fit a
model, and compares this approach to a standard EM algorithm as used by, for example, Felsenstein
[6].

We begin in section 2 by setting up the model, and mentioning a biological context for phylogenetic
trees. Section 3 contains the Allman and Rhodes result, as well as the main contribution of this
paper: a method of fitting models directly using this result. Section 4 outlines the fitting the
maximum likelihood estimators via the EM algorithm and message passing. We introduce semi-
algebraic constraints on the model in section 5, and discuss how these might be applied to the
direct fitting. In section 6 we compare experimentally the two approaches to fitting, and discuss
the practicalities. Section 7 suggests the direction of future work, whilst section 8 contains some
proofs which were not considered informative enough to be in the main body of the paper.
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2 Preliminaries

The Global Markov Property

We being by showing, in the case of a tree, an equivalence between models staisfying the global
Markov property on directed acyclic graphs (DAGs) and undirected graphs.

Definition 1
A tree is a connected acyclic graph. The leaves of a tree are the vertices of order one (i.e. with
exactly one incident edge).

The picture below is instructive; for a more formal approach see, for example, Bollobás [4].
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The leaves in this example are the nodes 1, 3, 5, 8 and 9. We refer to other vertices as internal.

Lemma 1
Let T = (V,E) be a tree, and let i, j ∈ V be distinct vertices of the tree. Then there exists a
unique path πi,j from i to j.

Proof. See section 8.

We will assume that the distribution of the random variables follows the global Markov property
(GMP); for a discussion see, for example, Jensen [9]. When this holds, we say that the distribution
is in the general Markov model on the tree. The lemma above shows that the GMP will yield the
same independence structure on an undirected tree as a rooted directed one: given an undirected
tree T = (V,E), we can pick any vertex r ∈ V to be the root of our tree, and direct all edges in
such a way as they point away from r. Then notice that there are no colliders on the directed
graph.

In light of this, we can use undirected and (rooted) directed trees interchangeably from now on;
in either case, for any two vertices i and j with associated random outcomes Yi and Yj, we have
Yi ⊥⊥ Yj|D, where D is any subset of the vertices on the unique path πi,j from i to j. Intuitively
then, if we know the outcome of any vertex ‘in between’ i and j, knowledge of Yi will tell us nothing
further about Yj, and vice versa.

2



Bifurcating Trees and Binary Data

From now on we restrict our attention to trees whose vertices are binary random variables, tak-
ing states 0 and 1. We denote the random variables corresponding to the leaves of the tree by
X1, . . . , Xn, and those corresponding to internal vertices (‘hidden’ variables) by H1, . . . , Hm−n. In
cases where we do not wish to distinguish between leaves and internal vertices, we use the notation
Y1, . . . , Ym instead. We assume that no vertex has order 2; it is not difficult to see that such vertices
create identifiability issues.

Definition 2
A bifurcating tree is a tree in which all internal vertices have order three. Such trees are sometimes
referred to as binary trees, but this causes confusion with trees whose vertices correspond to binary
random variables, so we avoid this terminology.

We use the notion of a bifurcating tree to find an upperbound on the dimension of the space of
distributions over a tree.

Lemma 2
A bifurcating tree with n leaves has exactly n− 2 internal vertices and 2n− 3 edges.

Proof. See section 8.

Lemma 3
An m-variate binary distribution P over a tree (not just the leaves) and satisfying the GMP can
be characterised by 2m− 1 parameters.

Proof
Let Y be a random variable sampled from P , and suppose it satisfies the tree structure for some
tree T of order m. Let Y1, . . . , Ym be the variables of the tree; pick the vertex corressponding to
Y1 as the root, and order the Yis so that for each i, the parent of i, pa(i) comes before i in the
sequence. Then the joint distribution is

p(Y1 = y1, . . . , Ym = ym) = p(Y1 = y1)p(Y2 = y2|Y1 = y1) · · · p(Ym = ym|Y1 = y1, . . . , Ym−1 = ym−1).

But since each Yj is followed by all its descendents, it is separated from all its predecessors in the
list by its parent, and thus

p(Y1 = y1, . . . , Ym = ym) = p(Y1 = y1)
m∏
i=2

p(Yi = yi|Ypa(i) = ypa(i)). (1)

But then p(Y1 = y1) is characterised by the single parameter p(Y1 = 1), and for each i, p(Yi =
yi|Ypa(i) = ypa(i)) is characterised by the two parameters p(Yi = 1|Ypa(i) = 1) and p(Yi = 1|Ypa(i) =
0). Thus we have at most 1 + 2(m− 1) = 2m− 1 parameters.

It is clear that these parameters are free to be chosen as any value between 0 and 1, so the space of
binary distributions over the whole tree has dimension 2m− 1. This means that a bifurcating tree

3



with n leaves (and therefore m = n+ n− 2 = 2n− 2 vertices in total) is characterised by at most
4n−5 parameters. Note that the ‘at most’ here is important, since it is possible that two different
distributions over then entire structure of the tree could give the same marginal distribution on the
leaves. By way of comparison, the full set of binary distributions over n variables has dimension
2n − 1. For even moderate values of n, it becomes clear that we are working over a much smaller
space of distributions.

It is easy to extend the bound to non-bifurcating trees, because we can create a general tree (with
no vertices of order 2) by collapsing edges from a bifurcating tree. Thus a model over any tree
with n leaves is described by at most 4n− 5 parameters.

It, of course, possible to extract the marginal distibution of the leaves by summing over the possible
outcomes of the internal vertices; however, this involves 2n−2 terms for a tree with n leaves, and is
computationally infeasible.

A Biological Interpretation

The concept of a phylogenetic tree has its origins in evolutionary biology, as the name suggests.
In this context, it is a ‘tree of life’, where leaves represent extant species, and internal nodes are
ancestor species at which an evolutionary split occured. Applying the indepedence structure of
the tree from the GMP implies that the genome of two species is independent, conditional on
the genome of their most recent common ancestor (or indeed any other species on the path in
between).

In genetics, the data of interest concerns sequences of the four possible base pairs, usually labelled
A, C, G and T in reference to the chemicals involved. In a highly idealised model, we could assume
that there are n extant species, where the ith species is defined by a random sequence of these
base pairs (Xi1, . . . , XiN) with common length N . Then letting Xj = (X1j, . . . , Xnj) be the vector
made up of the jth base pair for each species, we suppose that X1, . . . ,XN are independent and
identically distributed (i.i.d.) random variables, where the common joint distribution obeys the
independence structure of the tree under the GMP.

Of particular interest to evolutionary biologists is the evolutionary ‘distance’ between two species.
As we will see in section 5, this can be related neatly to the correlation between random variables.

In practice of course, base pairs do not change independently—whole sequences of DNA are rou-
tinely moved, inverted or removed in the process of evolution, and processes such as horizontal
gene transfer will violate the tree structure. However, this model has been observed to work well
in practice; see, for example, Hodge and Cope [8].

3 A Method of Direct Fitting

Working in a frequentist context, it is natural to ask which of the possible distributions in the
model maximises the likelihood for the data. We will assume from here on that the topology of
the tree is known, and that it is known which leaves are which, with respect to the tree structure.
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A very hard problem is to choose the best topology and leaf labelling in the first place; see, for
example, Strimmer and von Haeseler [16] for some ideas.

A direct approach would try to characterise the set of distributions on n-variables which can be
induced by a tree structure. From an algebraic perspective, we are interested in finding phylogenetic
invariants, polynomials in the joint probabilities which are constrained to be zero by the model
structure. As a trivial example, we know that

1∑
i1=0

· · ·
1∑

in=0

p(X1 = i1, . . . , Xn = in)− 1 = 0 (2)

for any distribution. Allman and Rhodes [2] show that the set of phylogenetic invariants is fully
characterised by edge-flattenings of the tree structure. Essentially we are interested in the tensor

pi1···in = p(X1 = i1, . . . , Xn = in)

where i1, . . . , in ∈ {0, 1}. The complete set of equations such as (2) is called the phylogenetic
variety ; together with some semi-algebraic (inequality) constraints, the variety determines the
model completely.

Definition 3
Let e = {h1, h2} ∈ E be an internal edge of the tree T , meaning that both h1 and h2 are internal
vertices. Let a1 and a2 be the two subsets of leaves in T which are separated by e. Then the
edge-flattening of T with respect to e is created by considering the joint distribution of a1, h1 and
a2 as a simplified tree structure (note that we can choose h2 instead of h1, this is arbitrary).

The matrix Pe associated with the edge-flattening is given by writing the entries of the tensor
pi1···in in such a way that each row represents a particular state of a1, and each column a particular
state of a2.

Example 1
Consider the quartet tree shown below.
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//
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The only internal edge is e = {h1, h2}, and the associated flattening is given by

(x1, x2) h1 (x3, x4)
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The flattening matrix is given by

Pe =
[
p(a1)(a2)

]
=


p0000 p0001 p0010 p0011

p0100 p0101 p0110 p0111

p1000 p1001 p1010 p1011

p1100 p1101 p1110 p1111

 .

Note that the entire first row, for example, corresponds to (X1, X2) = (0, 0). A further example
for the tree with 5 leaves is found in section 7.

Now, we can characterise the new distribution on this simplified tree by writing

p(a1, a2, h1) = p(h1)p(a1|h1)p(a2|h1)

p(a1, a2) =
1∑
i=0

p(h1 = i)p(a1|h1 = i)p(a2|h1 = i),

and in fact

Pe = MT
1

(
p(h1 = 0) 0

0 p(h1 = 1)

)
M2

where

M1 =

(
p(x1 = 0, x2 = 0|h1 = 0) · · · p(x1 = 1, x2 = 1|h1 = 0)
p(x1 = 0, x2 = 0|h1 = 1) · · · p(x1 = 1, x2 = 1|h1 = 1)

)
and M2 is defined similarly for X3 and X4. And in the general case of an edge-flattening where ai
contains ki leaves, Mi will be a 2× 2ki matrix. Thus the rank of Pe is at most 2. This is the key
observation, since elementary linear algebra tells us that every 3 × 3 minor of Pe must therefore
be zero. This defines our phylogenetic variety. The following result is Theorem 4 of Allman and
Rhodes [2].

Theorem 4
For a bifurcating tree T = (V,E) whose vertices take two states and follow the GMP, the phylo-
genetic ideal is generated by the 3× 3 minors of all edge-flattenings of the tensor pi1···in .

We have showed the necessity of these minors being zero; the theorem shows their sufficiency in
determining the model, up to inequality constraints. This motivates the question of whether the
variety can be used to fit the tree model to data.

The Quartet Tree

A plausible procedure for fitting valid joint probabilities in the case of the quartet tree is as follows.
Suppose we pick any twelve positive numbers to fill the first two rows and columns of Pe:

Pe =


p0000 p0001 p0010 p0011

p0100 p0101 p0110 p0111

p1000 p1001

p1100 p1101

 .
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Let M(abc)(def) be the minor generated by the rows a, b, c and columns d, e, f . Then (ignoring
singularities for the moment), we can fix (Pe)3,3 = p1010 = q so that the minor M(123)(123) is zero:

M(123)(123) =

∣∣∣∣∣∣
p0000 p0001 p0010

p0100 p0101 p0110

p1000 p1001 q

∣∣∣∣∣∣ = 0.

This amounts to simply solving a linear equation in one variable. Similarly, we can fix (Pe)3,4 so
that M(123)(124) = 0, and (Pe)4,3 and (Pe)4,4 so that M(124)(123) = 0 and M(124)(124) = 0 respectively.
At this point we have filled each of the entries of Pe, but we have only set 4 of the 16 possible
3×3 minors to be zero. The following results shows that we are in fact done. We use P(i1···ik)(j1···jl)
to denote the submatrix of P formed by taking entries in the rows i1, . . . , ik and the columns
j1, . . . , jl. (Thus M(abc)(def) = |P(abc)(def)|)

Lemma 5
Let P be an m×n matrix with m,n > 2, and pick any values Pij for the top two rows and columns
(i ≤ 2 or j ≤ 2) of P such that none of the 2×2 minors specified by the top two rows and columns

M(12)(j1j2), M(i1i2)(12) i1, i2 = 1, . . . ,m, j1, j2 = 1, . . . , n

are zero. Then we can choose the remaining entries of P to ensure that every 3× 3 minor of P is
zero.

Proof
We can easily pick values as above to ensure that M(12i)(12j) = 0 for each i, j. To see this

M(12i)(12j) =

∣∣∣∣∣∣
P11 P12 P1j

P21 P22 P2j

Pi1 Pi2 q

∣∣∣∣∣∣
so

q =
(
Pi1 Pi2

)(P11 P12

P21 P22

)−1(
P1j

P2j

)
where the inverse exists by the assumption concerning 2× 2 minors. Now note that M(12i)(12j) = 0
implies that there is a non-trivial linear multiple of the columns P(12i)(1), P(12i)(2), P(12i)(j) of the
minor which vanishes;

λP(12i)(1) + µP(12i)(2) + νP(12i)(j) = 0

for some constants λ, µ, ν not all zero. But the condition on the minors M(12)(12),M(12)(1j),M(12)(2j)

means that all three constants must be non-zero, and hence we can re-write P(12i)(j) as a linear
multiple of the other two columns.

But then we can write P(12i)(j) as a linear multiple of P(12i)(1), P(12i)(2) for all j including, trivially,
j = 1, 2. Thus any 3× 3 submatrix P(12i)(jkl) has the three columns as linear multiples of only two
vectors, and hence the minor M(12i)(jkl) is zero.
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Then for a general submatrix P(i1i2i3)(j1j2j3), each column is a linear multiple of P(i1i2i3)(1) and
P(i1i2i3)(2), so the same result applies.

Thus in the quartet model, we could choose 12 values of the joint distribution tensor to put in the
top two rows and columns, and then fill in the rest to satisfy the phylogenetic ideal. In order to
then ensure that the joint probabilities summed to 1, we could divide by the sum of the entries to
normalise, preserving the property of the 3× 3 minors.

Note that this procedure does not guarantee that the resulting values will be the joint probabilities
of a model satisfying the general Markov property on a tree; indeed, they could be negative. In
practice, however, it appears to work well.

4 The EM Algorithm

The EM algorithm, or Expectation Maximisation algorithm, is a method of finding the maximum
likelihood estimator of a set of parameters where data is unobserved or missing; often the likelihood
of the observed data is difficult to maximise. In some cases this missing data may have a physical
or intuitive significance in terms of the problem, in others it may simply be chosen for convenience.

Application of the EM algorithm to fitting graphical models is discussed in detail in Lauritzen
[10]. The EM algorithm, as formalised by Dempster et al. [5], is aimed at precisely the kind of
problem we find here: the likelihood over the leaves is very difficult to characterise, and therefore
maximising is very difficult; however the likelihood of the whole tree is very simple, as shown in
(1).

In our case, we have observed data over the leaves of our tree, and wish to find the tree structure
which maximises the likelihood. However, the likelihood for the leaves can only be obtained by
summing over the 2n−2 possible values of the binary random variables assumed to exist at the
internal vertices, which quickly becomes computationally difficult.

Conversely however, the complete likelihood of the entire tree has the simple form given in (1),
and the joint distirubtion could be estimated very easily. Thus we will impute the ‘missing’ data
at the internal vertices, in the form of counts.

Method

1. Pick some starting values of the unknown parameters of interest, θ0; n = 0.

2. E-step: given the observed data X and current parameter estimate θn, impute
the missing data Y by Eθn [Y |X].

3. M-step: maximise the ‘complete’ likelihood of the observed and missing data
with respect to θ, and call the MLE θn+1.

4. n ← n + 1; go to step 2 and repeat until some specified convergence has been
reached.
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In our case, the observed data are counts of the values at the leaves of the tree, and the missing
data is the expected division of these counts into the ‘complete counts’ over the entire tree.

The EM algorithm has some good convergence properties; in particular the likelihood is guaranteed
not to decrease after an iteration, which in complete likelihoods without local maxima is usually
enough for convergence to the MLE. It is well known that the EM algorithm can converge very
slowly, and indeed the number of iterations required was observed to increase significantly in n.
Further, the E-step in our example is not at all trivial, and requires us to use a message-passing
algorithm to find the conditional probabilities for each of the 2n possible outcomes observed at the
leaves; consequently the computational difficulty of each iteration increases exponentially with the
number of nodes.

5 Inequality Constraints

Whilst we have shown that all models in the space must satisfy the equality constraints imposed
by the edge-flattenings, and Allman and Rhodes have shown that no other algebraic constraints
are required, these conditions are not sufficient to guarantee that we are in a valid tree model. The
following theorem due to unpublished work by Zwiernik et al. [17] completes the characterisation
of the model.

Theorem 6
Let T be a tree under the binary general Markov model. Let P be the joint distribution on the
leaves X1, . . . , Xn, and ρij be the correlation between outcomes at leaves i and j under P . If the
joint distribution of P satisfies the edge-flattening equality constraints of Theorem 4, then P is a
member of the binary general Markov model if and only if:

(i) for all (not necessarily distinct) leaves i, j, k, l ∈ {1, . . . , n},

|ρijρkl| ≥ min {|ρikρjl|, |ρilρjk|} ;

(ii) for all distinct i, j, k ∈ {1, . . . , n},

ρijρjkρki > 0.

Zwiernik et al. [17] also mention an important parallel between this result and a tree metric. First
we need a lemma.

Lemma 7
Let T be a tree under the binary general Markov model, and let ρij denote the correlation between
the random variables at vertices i and j. Suppose further that k lies on the unique path between
i and j. Then

ρij = ρikρkj.
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Proof. Can be found in slides of Zwiernik et al. [17].

Now, let the distance dij between two vertices i and j be defined by dij = − log |ρij|; it is easy
to verify that this is a metric using the lemma. Thus we can think of the ‘distance’ between two
vertices simply as a measure of how uncorrelated they are.

6 Results

All programming was implemented in R, making use of the bindata package to simulate data.

The direct approach was implemented for the quartet model as outlined above. The nlm function
in R was then used to maximise the likelihood over the 12 ‘free’ parameters; the likelihood was given
a near infinite negative value if any joint probabilities were fitted as negative by the procedure.
Starting values were chosen by perturbing the uniform distribution on the leaves—the perturbation
made zero 2× 2 minors unlikely.

nlm is something of a ‘black box’ function, and it frequently fails to find the global maximum
(presumably by getting stuck in a local maximum). More work is needed to produce an algorithm
which does not fail so easily. This should not be too difficult; using a variety of starting points
and comparing answers should work well. Choosing a different starting value for the same data
always resulted in it finding the correct answer.

In most cases the solution arrived at was identical to that given by the EM algorithm, but in a
significant minority some local maximum was reached instead. In a few cases with small sample
sizes, the direct method was observed to give a higher likelihood than the EM; checking by the
conditions of Theorem 6 revealed these solutions to be outside the model.

We ran a trial comparison of 50 sets of data, simulated from a randomly chosen1 general Markov
model on the tree. The EM algorithm was run until the log-likelihood changed by less than 0.001;
in general this resulted in the EM reaching a maximum approximately 0.02 less than that found
by nlm. In 13 cases nlm failed to find the best answer, so these were discarded. However, in the
remaining 37 cases where both algorithms converged to the same solution, the direct approach
with nlm was generally faster. Figure 1 shows actual run times for each of these trials, and EM
does significantly worse overall.

We also ran an experiment to demonstrate the problems with the EM algorithm. Figure 2 shows a
log-log plot of actual time taken by a computer to run EM for various values of n. The algorithm
was run until the log-likelihood changed by less than 0.01. Whilst the actual times taken for n = 10
were impractically large—around 7 minutes—more worrying is that the slope of increase appeared
to be around 6.8, indicating a polynomial relationship of approximately order 7. Interestingly
the relationship did not appear to be exponential, which is surprising given that we have to run
the message passing for each of 2n possible datasets—perhaps a study with larger values of n
would reveal that the relationship was, in fact, non-polynomial. It may be that the criterion for
convergence was flawed, since EM moves very slowly with each iteration for large n, even when

1Here we use random in the sense that the distances from section 5 were generated with a gamma distribution.
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Figure 1: log run time (in seconds) for both methods over 37 different trials. The abundance of
red lines indicates that EM was usually the slower method. Dashed lines are mean run times.
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some distance from the final answer. In any case, EM appears to be impractically slow.

7 Extensions

The 5-Taxon Tree

Our programming so far only extends to the quartet tree, which is highly restrictive. An important
objective should be to fit models directly for any size tree. The 5 leaved tree is shown below.
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Here there are two edges to flatten {h1, h2} and {h1, h3}, and hence we have two edge-flattening
matrices; these are given below.


p00000 p00100 p01000 p01100 p10000 p10100 p11000 p11100

p00001 p00101 p01001 p01101 p10001 p10101 p11001 p11101

p00010 p00110 p01010 p01110 p10010 p10110 p11010 p11110

p00011 p00111 p01011 p01111 p10011 p10111 p11011 p11111




p00000 p01000 p10000 p11000

p00001 p01001 p10001 p11001

p00010 p01010 p10010 p11010

p00011 p01011 p10011 p11011

p00100 p01100 p10100 p11100

p00101 p01101 p10101 p11101

p00110 p01110 p10110 p11110

p00111 p01111 p10111 p11111


The following is an idea of how we might extend the method used for the quartet tree.

We specify the dark entries above, and choose the greyed out entries to ensure that the 3×3 minor
conditions hold. First choose p01010, p01011, p01110, p01111, p10010, p10011 using the first matrix, in the
same manner as was used for the quartet tree; then add these entries to the appropriate place in
the second matrix. But now the top two rows and left-most two columns of the second matrix
have been completed, and so we can use it to find all the remaining values to force the minors to
be zero.

It is not too difficult to see, from the ‘stacking’ relationship between the columns of the two matrices
that this means that all 3 × 3 minors of both matrices are now zero. The nice feature of this is
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that we seem to have specified the ‘correct’ number of parameters: recall that by Lemma 3, an
upper bound on the dimension of this model is 15. The method above allows 16 ‘free’ parameters,
but we normalise at the end to ensure the sum is 1; hence in some sense we are maximising in a
15 dimensional space.

Each time we add a taxon (leaf) to the tree, we get another edge-flattening, and hence another
matrix whose 3× 3 minors must be zero. The method above of ‘shuffling’ between the matrices to
find solutions does not obviously generalise to larger trees, and hence it is not clear how to automate
it. A computationally simple solution to this problem would be a key objective of further research.

Topology and Model Selection

A question we have so far largely ignored in this paper is how to choose the best tree topology
to use. Ideally, one would want to maximise the likelihood over the set of all possible trees,
both by changing the topology of the tree, and by changing the labelling of the leaves. One
suggestion made by Allman and Rhodes [2] is to first maximise the likelihood näıvely over the
space of all distributions. The joint probabilities yielded by this process could then be plugged
into the phylogenetic invariants for a particular topology, and assuming that the model is correct,
the solutions should be close to zero.

It is not currently understood how these empirical phylogenetic invariants behave under the ‘null’
distribution, and results in this area would be extremely useful, possibly allowing traditional hy-
pothesis testing. Similarly, it would be useful to understand their behaviour under misspecification,
so we could measure the ‘power’ of such a test.

Concluding Remarks

The main contribution of this paper has been an explicit attempt to fit this set of models to data
directly, using the Allman and Rhodes result. Further work should focus on making this technique
reliable, particularly in using a better algorithm for maximising the likelihood. Extending the
method to trees with an arbitrary number of taxa would be a prerequisite for this method to
become useful in practice.

8 Proofs

Proof of Lemma 1
Suppose not for contradiction. Then there are two distinct paths π = (π0, π1, . . . , πm) and π′ =
(π′0, π

′
1, . . . , π

′
n), with π0 = π′0 = i and πm = π′n = j, which connect i and j. Let p = inf{k ≥ 1 :

πk+1 6= π′k+1}, the last vertex before the paths first diverge, which must exist since the paths are
non-equal. Similarly, let q = inf{k ≥ p + 1 : πk = π′l for some l ≥ p + 1}, the next point after πp
at which the paths meet, which again must exist since the paths certainly meet again at j. But
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then the path given by

πp → πp+1 → · · · → πq = π′l → π′l−1 → · · · → π′p

is a cycle; this is a contradiction.

Proof of Lemma 2
We proceed by induction: for n = 2 this is trivial. Suppose the result if true for n = k − 1 and
let T = (V,E) be a tree with k leaves. Pick a leaf x ∈ V ; then x has only one incident edge
e1 = {x, y}, and y must be an internal node (else x and y are the only vertices in the tree).
Denote the other edges incident to y by e2, e3. Then by removing x, y, and the three mentioned
edges, and joining y’s two remaining neighbours by a new edge e∗, we have created a new tree
T ′ = (V \ {x, y}, (E ∪ {e∗}) \ {e1, e2, e3}) with k − 1 leaves. Thus T ′ has k − 3 internal vertices
and 2k − 5 edges by the induction hypothesis, and so T has k − 2 internal vertices and 2k − 3
edges.
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