CDT R Review Sheet

Work through the sheet in any order you like. Skip the starred (*) bits in the first instance, unless you’re fairly confident.

1. Vectors
 (a) Generate 100 standard normal random variables, and keep only the ones which are greater than 1. Don’t use a loop!
 (b) Write a function which takes two arguments \(n \) and \(\text{min} \), and returns \(n \) independent random variables from a standard normal distribution truncated below by \(\text{min} \). Let \(\text{min} \) default to 0.
 (c) Generate 10,000 truncated normals with \(\text{min} \) set at \(-1\), and plot as a histogram. Adjust the number of bins sensibly.

2. Data
 Load the hills data set.

   ```r
   > library(MASS)
   > data(hills)
   ```

 (a) What sort of object is hills? A list? A matrix? Use the \texttt{is()} and \texttt{class()} functions if you’re not sure.
 (b) How many columns does hills have?
 (c) One of the races is called Two Breweries; change this to Three Breweries.
 (d) Using the function \texttt{with()}, find the mean time for races with a climb greater than 1000 feet.

 Now, load the Orthodont data set from the \texttt{nlme} package (you may have to install \texttt{nlme} first).

   ```r
   > library(nlme)
   > data(Orthodont)
   ```

 (e) What sort of object is Orthodont? Is it a data frame? What makes it different to hills?
 (f) What is the name of the function used to print Orthodont? Try using \texttt{methods(print)}.
 (g) You should find that the function is ‘non-visible’, meaning it is not exported from the package. You can view it using

   ```r
   > nlme:::print.groupedData
   ```

3. Recursion
 The \(n \)th Fibonacci number is defined by the recursion \(F_n = F_{n-1} + F_{n-2} \), with \(F_0 = F_1 = 1 \).
(a) Write a recursive function with argument \(n \) which returns the \(n \)th Fibonacci number. [Hint: you might want to look at the documentation \(?Recall\).]

(b) Evaluate the 20th Fibonacci number with it.

(c) How many times does the function have to evaluate itself to calculate this? Can you think of a faster way to do this with a loop?
Calculate \(F_{1000} \) with your new function.

4. Methods

We’re going to create a class for bivariate data, and a series of methods to print, summarise and plot that data.

(a) Create a list with entries \(x \) (consisting of 20 independent standard normal random variables) and \(y \) (consisting of 20 independent Poisson\((5) \) random variables), and give it the class \(\text{biv} \).

(b) Write a print method for \(\text{biv} \) (i.e. a function called \(\text{print.biv()} \)) which shows (at most) the first 6 entries of your data in the following format this:

\[
\text{Bivariate data, 20 entries}
\]

\[
x : -0.001616495 -0.07254921 -1.096251 -0.4702838 1.423081 -1.019105 \ldots
\]

\[
y : 7 5 2 4 29 3 \ldots
\]

(c) * A print method should return the object itself \(\text{invisibly} \): make sure your function does [Hint: type \(?\text{invisible}\)].

(d) Construct a plot method for objects of class \(\text{biv} \), which does a scatter plot and a pair of boxplots side-by-side.

(e) ** Do the above with S4 classes and methods.

5. Functions

(a) Write a function which, given two vectors \(x \) and \(z \) of the same length, returns the matrix

\[
X = \begin{pmatrix}
1 & x_1 & z_1 & x_1z_1 \\
1 & x_2 & z_2 & x_2z_2 \\
\vdots & \vdots & \vdots & \vdots \\
1 & x_n & z_n & x_nz_n
\end{pmatrix}.
\]

(b) What happens if you give arguments of different lengths? Cause your function to behave (or fail) in the way you think best.

(c) * Write a function which takes an arbitrary number of arguments, each being a covariate vector of the same length, and returns the model matrix consisting of all the main effects and interactions. In other words, if the vectors were \(x, y, z, w \) we’d get

\[
X = \begin{pmatrix}
1 & x_1 & y_1 & z_1 & w_1 & x_1y_1 & x_1z_1 & \cdots & x_1w_1 \\
1 & x_2 & y_2 & z_2 & w_2 & x_2y_2 & x_2z_2 & \cdots & x_2w_2 \\
\vdots & \cdots & \vdots \\
1 & x_n & y_n & z_n & w_n & x_ny_n & x_nz_n & \cdots & x_nw_n
\end{pmatrix}.
\]

[You’re not allowed to use \(\text{model.matrix()} \) or similar!]
(d) Check your answer with `model.matrix()`.

6. *plyr*

Look at the paper by Wickham (2011) on the plyr library: www.jstatsoft.org/v40/i01/paper

```r
> library(plyr)

Load the housing data from the MASS package:

```r
data(housing)
> head(housing) # look at first few entries
```

Use ?housing to see what the fields mean.

(a) Use `dlply` to transform housing data into three data frames, one for each level of `Infl`.
(b) Use `plyr` to turn the data frame into a contingency table.
(c) Estimate the probability of having 'High' contact given different types of accommodation.

7. *Design Matrices*

Using `ddply`, create a data frame for the housing data in which each row represents one observation.

Fit a binomial regression model for how contact (`Cont`) is determined by the other three variables. Choose the model you think most appropriate.

Produce a design matrix for your chosen `glm()`. [Hint: Use `model.matrix()` to see what the answer should be if you’re not sure, then try to construct the matrix ‘by hand’.]

8. *Mixtures*

Suppose we have i.i.d. observations $X^{(i)} = (X_{i1}, \ldots, X_{ik})$, where each $X_{ij}$ is binary (i.e. takes values in \{0, 1\}). A discrete mixture model assumes that each component of the vector $X^{(i)}$ is independent, conditional upon an unknown class label $U_i \in \{1, \ldots, l\}$.

(a) Write down the likelihood for one observation $X^{(1)}$, and then for $n$ observations.
   What are the parameters to be estimated?
(b) Write an R function to evaluate the likelihood.
(c) Write an R function to generate data from the model.
(d) Use `nlm()` to find the maximum likelihood estimator for your simulated data, and compare it to the parameters you chose.