
Common Numerical Issues in Statistical
Computing.

Robin J. Evans
www.stats.ox.ac.uk/∼evans

Michaelmas 2018

1 / 8

Algorithmic Considerations

Some methods of computing things are easier than others.

Multiplying n ×m matrix by m × k matrix is O(nmk) calculations.

Let A,B be n × n matrices and c be an n × 1 vector.

ABc = (AB)c = A(Bc)

But (AB)c takes O(n3 + n2) = O(n3), and A(Bc) takes
O(n2 + n2) = O(n2).

2 / 8

Not all Code is Created Equal

A = matrix(rnorm(1e4), 100, 100); B = matrix(rnorm(1e4), 100, 100)

c = rnorm(100)

library(microbenchmark)

microbenchmark(A %*% B %*% c, A %*% (B %*% c), times=100)

Unit: microseconds

expr min lq mean median

A %*% B %*% c 572.332 607.5285 667.82953 613.5465

A %*% (B %*% c) 18.601 18.8715 22.45823 19.1735

uq max neval

665.2865 1656.336 100

20.2855 72.836 100

R evaluates left to right in this case.

3 / 8

Numerical Stability Considerations
Floating point numbers have a limited accuracy (usually around 10−16 for
an O(1) number).

0.3 - 0.2 - 0.1

[1] -2.775558e-17

summary(A %*% B %*% c - A %*% (B %*% c))

V1

Min. :-1.741e-13

1st Qu.:-3.231e-14

Median : 0.000e+00

Mean :-1.050e-15

3rd Qu.: 5.684e-14

Max. : 1.776e-13

Problems of numerical accuracy can be solved with long doubles in
languages like C.

4 / 8

Arithmetic Precision
R may hide some of these rounding issues, so don’t forget that they exist!

1+1e-15

[1] 1

print(1+1e-15, digits=22)

[1] 1.000000000000001110223

R also has an integer type (but it’s a bit tricky)

1 == 1L

[1] TRUE

identical(1, 1L)

[1] FALSE

5 / 8

Arithmetic Precision

Equality testing may be problematic with floating point numbers:

x = 1+1e-15

x == 1

[1] FALSE

all.equal(x, 1)

[1] TRUE

all.equal() ignores small differences in numbers, and also their type.

all.equal(1L, 1)

[1] TRUE

6 / 8

Numerical Stability Considerations

Floats also have an upper and lower limits on the numbers they can hold

c(2^-1074, 2^-1075)

[1] 4.940656e-324 0.000000e+00

c(2^1023, 2^1024)

[1] 8.988466e+307 Inf

You may need to think carefully about the way in which you compute
things

c(2^(2000-1993), 2^2000/2^1993)

[1] 128 NaN

7 / 8

Numerical Stability Considerations
Additive computations are generally much more stable than multiplicative
ones. Suppose you want to calculate the geometric mean of some
numbers

set.seed(324)

geomean = function(x) prod(x)^(1/length(x))

x = rlnorm(1e3, meanlog=-1) # log-normals

geomean(x)

[1] 0

range(x)

[1] 0.01134218 9.73558109

If we do everything on a log-scale, there’s no problem

geomean2 = function(x) exp(mean(log(x)))

geomean2(x) # approximately exp(-1)

[1] 0.3597272

8 / 8

	General Points

