Intractable likelihoods with the pseudo-marginal
MCMC

Matti Vihola

OxWaSP Computational Statistics and Statistical Computing
module, 14 Oct 2014



The standard MCMC setting

@ Aim: Approximate

w(f) = /X F (@) (x)dz,

where the probability density 7 is known up to a normalising
constant.

@ The standard approach: Run MCMC (X} )k>1 (typically
Metropolis-Hastings) with target density m, and compute
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The standard MCMC algorithm

This is the Metropolis-Hastings algorithm we usually implement

Marginal algorithm P

@ Draw sample from the proposal density, Y, ~ ¢(X,,—1, - ).

@ Accept the move (set X,, < Y;,) with probability

. W?L(Yn) Q(anXn—l) }
min < 1, ,
{ 7ru(Xn—1) Q(Xn—lvyn)

otherwise set X,, < X, _1.

7y is the unnormalised density, m,(z) = e (z)

@ For example, m,(z) = p(Yobs | z)p(x) and w(z) = p(x | y).



The standard MCMC algorithm

This is the Metropolis-Hastings algorithm we usually implement

Marginal algorithm P

@ Draw sample from the proposal density, Y, ~ ¢(X,,—1, - ).

@ Accept the move (set X,, < Y;,) with probability
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otherwise set X,, < X, _1.

7y is the unnormalised density, m,(z) = e (z)

@ For example, m,(z) = p(Yobs | z)p(x) and w(z) = p(x | y).

What if m,( - ) cannot be computed?



Marginal inference with MCMC

@ Suppose the unnormalised density is defined through an
integral (over the latent variables)

Tul(z) = / 7 (x, 2)dz.

o For example 7}, (z,2) = p(Yobs | ©, 2)p(x, 2) x p(x, z | y) and
m(x) = p(x | y).
@ The standard approach: Run MCMC (X}, Zj)>1 targeting a
joint probability density 7'(x, z) o< 7] (z, 2), and then compute
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Problems with marginal inference

@ High-dimensional latent variables ‘Z;,' = slowly mixing
MCMC.

o Generally difficult to design efficient MCMC in
high-dimensional situations.
@ The latent variables may be impossible to simulate
(e.g. infinite-dimensional. . .)



Problems with marginal inference

@ High-dimensional latent variables ‘Z;,' = slowly mixing
MCMC.

o Generally difficult to design efficient MCMC in
high-dimensional situations.

@ The latent variables may be impossible to simulate
(e.g. infinite-dimensional. . .)

Naive idea: Approximate m,( - ) in the marginal algorithm. ..



Pseudo-marginal MCMC

Suppose we can generate non-negative unbiased estimates:

T, >0, E[T;] = mu(x) Vo e X

Pseudo-marginal algorithm P

@ Draw sample from the proposal density, Y;, ~ ¢(X,,—1, - ) and
generate S, > 0 with E[S,] = 7, (Ys).

o Set (X,,,T;,) < (Ya,S,) with probability

min {17 Sn Q(Ym anl) }7

/- Q(anla Yn)

otherwise set (X, T},)  (Xpn—1,Tn—1).

If the estimates are perfect, T, = m,(x), then S,, = m,(Y,) and
Tn—l = Wu(Xn—l)
—> P coincides with the marginal algorithm P.



Example run of a pseudo-marginal
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Figure: (a) Samples (X, T%) (blue) and the true density 7 (black) (b)
Histogram over 100000 samples (X}).



The pseudo-marginal algorithm is valid MCMC

@ Straightforward to check that the pseudo-marginal chain has a
unique target distribution 7(x,t) satisfying

m(z) = /fr(:c,t)dt. Correct marginal

@ Consequently,
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(given that the chain is 7-irreducible, for which it is enough that the marginal
chain is m-irreducible.)

@ Despite of the approximations of T, ~ m,(z), the method is
exact! (in the sense of the strong law above).



Grouped independence Metropolis-Hastings (GIMH)
(Beaumont, Genetics, 2003)

@ Unbiased estimates from importance sampling

1 &7l (z, Zj) iid.

=1

@ The importance densities h,( - ) for each x must satisfy
supp(hy) O supp(m, (z, - ))!

Prove that 7. is unbiased. ..

'supp(f) = {z : f(z) > 0}.



Approximate Bayesian Computation MCMC
(Marjoram, Molitor, Plagnol & Tavaré, PNAS, 2003)

@ Interested in m(x) < P(Yobs | Z)p(z).
@ Easy to simulate samples Y from p(y | z).

@ Consider a modified approximate posterior

re() o< p(x) / 1{d(y, yons) < €}p(y | )dy,

where € > 0 is a tolerance parameter and d(y,1’) is some
distance metric between two ‘data’ y and v/'.

@ It is possible to do inference over the ABC posterior 7c(x) by
pseudo-marginal MCMC:

m

> I{d(Ye, Yobs) < e}>, Y S p(y | )

k=1

Ty = p(x) (ﬂl1



ABC ingredients

The distance metric
e Usually d(y,y") = |10(y) — 0(v/')|, where 0(y) € R are some
statistics calculated from the data y.

@ Often 0(y) are not sufficient (and d < dim(y))
— already a (coarse) approximation made here!
The tolerance
@ The smaller € > 0 is, the smaller the (further) approximation
error is.
If 0 are sufficient & further regularity conditions hold, then 7 — 7 as ¢ — 0.
@ The smaller € > 0 is, the more inefficient the MCMC is
(acceptance rate goes down).
The MCMC algorithm

@ Some guidelines available from theoretical findings. . .



Other examples of pseudo-marginal algorithms

@ Particle marginal Metropolis-Hastings (Andrieu, Doucet &
Holenstein, JRSS B read paper, 2010).

@ Statistical inference in diffusion models (Beskos,
Papaspiliopoulos, Roberts & Fearnhead, JRSS B read paper,
2006).

@ Model selection (Andrieu & Roberts, Ann. Statist., 2009).
° ...



Practical

@ Take a look at the original papers:

@ Beaumont, Genetics, 2003
@ Marjoram, Molitor, Plagnol & Tavaré, PNAS, 2003

@ Implement the GIMH and the ABC-MCMC on some problem.

@ You can, for example, look at the following toy example

1 x?
p(l’) = \/ﬁexp - 202 )’

ply | x) = \/IQ—WEXP<—(Z/2;§:)2>~

(Feel free to study a more interesting model!)

@ Test how different importance densities h, perform in the
GIMH. What seems the best?

@ Test how choosing different values for € > 0 affect the
accuracy of the ABC & your simulation efficiency.
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