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The standard MCMC setting

Aim: Approximate

π(f) =

∫

X
f(x)π(x)dx,

where the probability density π is known up to a normalising
constant.

The standard approach: Run MCMC (Xk)k≥1 (typically
Metropolis-Hastings) with target density π, and compute

1

n

n
∑

k=1

f(Xk) ≈ π(f).



The standard MCMC algorithm

This is the Metropolis-Hastings algorithm we usually implement

Marginal algorithm P

Draw sample from the proposal density, Yn ∼ q(Xn−1, · ).
Accept the move (set Xn ← Yn) with probability

min

{

1,
πu(Yn)

πu(Xn−1)

q(Yn, Xn−1)

q(Xn−1, Yn)

}

,

otherwise set Xn ← Xn−1.

πu is the unnormalised density, πu(x) = cπ(x)

For example, πu(x) = p(yobs | x)p(x) and π(x) = p(x | y).



The standard MCMC algorithm

This is the Metropolis-Hastings algorithm we usually implement

Marginal algorithm P

Draw sample from the proposal density, Yn ∼ q(Xn−1, · ).
Accept the move (set Xn ← Yn) with probability

min

{

1,
πu(Yn)

πu(Xn−1)

q(Yn, Xn−1)

q(Xn−1, Yn)

}

,

otherwise set Xn ← Xn−1.

πu is the unnormalised density, πu(x) = cπ(x)

For example, πu(x) = p(yobs | x)p(x) and π(x) = p(x | y).

What if πu( · ) cannot be computed?



Marginal inference with MCMC

Suppose the unnormalised density is defined through an
integral (over the latent variables)

πu(x) =

∫

π′
u(x, z)dz.

For example π′

u(x, z) = p(yobs | x, z)p(x, z) ∝ p(x, z | y) and
π(x) = p(x | y).

The standard approach: Run MCMC (Xk, Zk)k≥1 targeting a
joint probability density π′(x, z) ∝ π′

u(x, z), and then compute

1

n

n
∑

k=1

f(Xk) ≈ π(f).



Problems with marginal inference

High-dimensional latent variables ‘Zk’ =⇒ slowly mixing
MCMC.

Generally difficult to design efficient MCMC in
high-dimensional situations.

The latent variables may be impossible to simulate
(e.g. infinite-dimensional. . . )



Problems with marginal inference

High-dimensional latent variables ‘Zk’ =⇒ slowly mixing
MCMC.

Generally difficult to design efficient MCMC in
high-dimensional situations.

The latent variables may be impossible to simulate
(e.g. infinite-dimensional. . . )

Naive idea: Approximate πu( · ) in the marginal algorithm. . .



Pseudo-marginal MCMC

Suppose we can generate non-negative unbiased estimates:

Tx ≥ 0, E[Tx] = πu(x) ∀x ∈ X

Pseudo-marginal algorithm P̃

Draw sample from the proposal density, Yn ∼ q(Xn−1, · ) and
generate Sn ≥ 0 with E[Sn] = πu(Yn).

Set (Xn, Tn)← (Yn, Sn) with probability

min

{

1,
Sn

Tn−1

q(Yn, Xn−1)

q(Xn−1, Yn)

}

,

otherwise set (Xn, Tn)← (Xn−1, Tn−1).

If the estimates are perfect, Tx ≡ πu(x), then Sn = πu(Yn) and
Tn−1 = πu(Xn−1)
=⇒ P̃ coincides with the marginal algorithm P .



Example run of a pseudo-marginal
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Figure: (a) Samples (Xk, Tk) (blue) and the true density π (black) (b)
Histogram over 100000 samples (Xk).



The pseudo-marginal algorithm is valid MCMC

Straightforward to check that the pseudo-marginal chain has a
unique target distribution π̃(x, t) satisfying

π(x) =

∫

π̃(x, t)dt. Correct marginal

Consequently,

1

n

n
∑

k=1

f(Xk)
n→∞−−−→ π(f) (a.s.)

(given that the chain is π̃-irreducible, for which it is enough that the marginal

chain is π-irreducible.)

Despite of the approximations of Tx ≈ πu(x), the method is
exact! (in the sense of the strong law above).



Grouped independence Metropolis-Hastings (GIMH)
(Beaumont, Genetics, 2003)

Unbiased estimates from importance sampling

Tx =
1

m

m
∑

j=1

π′
u(x, Zj)

hx(Zj)
where Zj

i.i.d.∼ hx( · ).

The importance densities hx( · ) for each x must satisfy
supp(hx) ⊃ supp(π′

u(x, · ))1

Prove that Tx is unbiased. . .

1supp(f) = {x : f(x) > 0}.



Approximate Bayesian Computation MCMC
(Marjoram, Molitor, Plagnol & Tavaré, PNAS, 2003)

Interested in π(x) ∝ p(yobs | x)p(x).
Easy to simulate samples Y from p(y | x).
Consider a modified approximate posterior

πǫ(x) ∝ p(x)

∫

I{d(y, yobs) ≤ ǫ}p(y | x)dy,

where ǫ > 0 is a tolerance parameter and d(y, y′) is some
distance metric between two ‘data’ y and y′.

It is possible to do inference over the ABC posterior πǫ(x) by
pseudo-marginal MCMC:

Tx = p(x)

(

1

m

m
∑

k=1

I{d(Yk, yobs) ≤ ǫ}
)

, Yk
i.i.d.∼ p(y | x)



ABC ingredients

The distance metric

Usually d(y, y′) = ‖θ(y)− θ(y′)‖, where θ(y) ∈ R
d are some

statistics calculated from the data y.

Often θ(y) are not sufficient (and d≪ dim(y))
=⇒ already a (coarse) approximation made here!

The tolerance

The smaller ǫ > 0 is, the smaller the (further) approximation
error is.
If θ are sufficient & further regularity conditions hold, then πǫ → π as ǫ → 0.

The smaller ǫ > 0 is, the more inefficient the MCMC is
(acceptance rate goes down).

The MCMC algorithm

Some guidelines available from theoretical findings. . .



Other examples of pseudo-marginal algorithms

Particle marginal Metropolis-Hastings (Andrieu, Doucet &
Holenstein, JRSS B read paper, 2010).

Statistical inference in diffusion models (Beskos,
Papaspiliopoulos, Roberts & Fearnhead, JRSS B read paper,
2006).

Model selection (Andrieu & Roberts, Ann. Statist., 2009).

. . .



Practical

Take a look at the original papers:

Beaumont, Genetics, 2003
Marjoram, Molitor, Plagnol & Tavaré, PNAS, 2003

Implement the GIMH and the ABC-MCMC on some problem.

You can, for example, look at the following toy example

p(x) =
1√
2π

exp

(

− x2

2σ2
x

)

,

p(y | x) = 1√
2π

exp

(

− (y − x)2

2σ2
y

)

.

(Feel free to study a more interesting model!)

Test how different importance densities hx perform in the
GIMH. What seems the best?

Test how choosing different values for ǫ > 0 affect the
accuracy of the ABC & your simulation efficiency.
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