
Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

Optimal Scaing and Adaptive Markov Chain Monte
Carlo

Krzysztof Latuszynski
(University of Warwick, UK)

OxWaSP - module 1

Krzysztof Latuszynski(University of Warwick, UK) Adaptive MCMC



Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

Adaptive MCMC
MCMC
Optimising the Random Walk Metropolis algorithm
First Examples

Do we have Theory?
What are we trying to do?
Some Counterexamples

Ergodicity results
Formal setting
Coupling as a convenient tool
Application: Adaptive Random Scan Gibbs Samplers
Adaptive Metropolis - yet another look

AdapFail Algorithms
Current Challenges

Krzysztof Latuszynski(University of Warwick, UK) Adaptive MCMC



Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

MCMC
Optimising the Random Walk Metropolis algorithm
First Examples

the usual MCMC setting
I let π be a target probability distribution on X , typically arising as a posterior

distribution in Bayesian inference,
I the goal is to evaluate

I :=

∫
X

f (x)π(dx).

I direct sampling from π is not possible or inefficient
for example π is known up to a normalising constant

I MCMC approach is to simulate (Xn)n≥0, an ergodic Markov chain with
transition kernel P and limiting distribution π, and take ergodic averages
as an estimate of I.

I the usual estimate

Î :=
1
n

t+n∑
k=t

f (Xk)

I SLLN for Markov chains holds under very mild conditions
I CLT for Markov chains holds under some additional assumptions and is

verifiable in many situations of interest
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Reversibility and stationarity

I How to design P so that Xn converges in distribution to π ?
I Definition. P is reversible with respect to π if

π(x)P(x, y) = π(y)P(y, x)

as measures on X × X
I Lemma. If P is reversible with respect to π then πP = π , so it is also

stationary.
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The Metropolis algorithm

I Idea. Take any transition kernel Q with transition densities q(x, y) and make
it reversible with respect to π

I Algorithm. Given Xn

sample Yn+1 ∼ Q(Xn, ·)
I with probability α(Xn,Yn+1) set Xn+1 = Yn+1 , otherwise set Xn+1 = Xn

I where
α(x, y) = min{1, π(y)q(y, x)

π(x)q(x, y)
}.

I Under mild assumptions on Q the algorithm is ergodic.
I However it’s performance depends heavily on Q
I is is difficult to design the proposal Q so that P has good convergence

properties, especially if X is high dimensional
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the scaling problem

I take Random Walk Metropolis with proposal increments
I

Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

I what happens if σ is small?
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small sigma...

in such a simple case.) Assume that the proposal distribution is given by
Q = N(0, �2). Our question of interest is, how should we choose �?

As a first try, let’s choose a small value of �, say � = 0.1, and run the
Metropolis algorithm with that �. The corresponding trace plot, graphing
the values of the Markov chain (horizontal axis) at each iteration n (vertical
axis), is:

Looking at this trace plot, we can see that the chain moves very slowly. It
starts at the state 0, and takes many hundreds of iterations before it moves
appreciably away from zero. In particular, it does not do a very good job of
exploring the target density (shown in red).

As a second try, let’s choose a large value of �, say � = 25. The trace
plot in this case is:

4
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large sigma...

In this case, when the chain finally accepts a move, it jumps quite far which
is good. However, since it proposes such large moves, it hardly ever accepts
them. (Indeed, it accepted just 5.4% of the proposed moves, compared to
97.7% when � = 0.1.) So, this chain doesn’t perform very well either.

As a third try, let’s choose a compromise value of �, say � = 2.38. The
trace plot then looks like:

5
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diffusion limit [RGG97]

I take Random Walk Metropolis with proposal increments
I

Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

I σ should be neither too small, nor too large (known as Goldilocks principle)
I but how to choose it?
I if the dimension of X goes to ∞ , e.g. X = Rd, and d →∞,
I if the proposal is set as Q = N(x, l2

d Id) for fixed l > 0,
I if we consider

Zt = d−1/2X(1)
bdtc

I then Zt converges to the Langevin diffusion

dZt = h(l)1/2dBt +
1
2

h(l)∇ logπ(Zt)dt
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diffusion limit [RGG97]

I Zt converges to the Langevin diffusion

dZt = h(l)1/2dBt +
1
2

h(l)∇ logπ(Zt)dt

I where h(l) = 2l2Φ(−Cl/2) is the speed of the diffusion and A(l) = 2Φ(Cl/2)
is the asymptotic acceptance rate.

I maximising the speed h(l) yields the optimal acceptance rate

A(l) = 0.234

which is independent of the target distribution π

I it is a remarkable result since it gives a simple criterion (and the same for all
target distributions π ) to assess how well the Random Walk Metropolis is
performing.
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the scaling problem cd

I take Random Walk Metropolis with proposal increments
I

Yn+1 ∼ qσ(Xn, ·) = Xn + σN(0, Id).

I so the theory says the optimal average acceptance rate

ᾱ :=

∫ ∫
α(x, y)qσ(x, dy)π(dx)

should be approximately α∗ = 0.234
I however it is not possible to compute σ∗ for which ᾱ = α∗.

I It is very tempting to adjust σ on the fly while simulation progress
I some reasons:

I when to stop estimating ᾱ? (to increase or decrease σ)
I we may be in a Metropolis within Gibbs setting of dimension 10000
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the Adaptive Scaling Algorithm

1. draw proposal
Yn+1 ∼ qσn(Xn, ·) = Xn + σnN(0, Id),

2. Set Xn+1 according to the usual Metropolis acceptance rate α(Xn,Yn+1).

3. Update scale by

logσn+1 = logσn + γn(α(Xn,Yn+1)− α∗)

where γn → 0.

I Recall we follow a very precise mathematical advice from diffusion limit
analysis [RGG97]

I The algorithm dates back to [GRS98]
(a slightly different version making use of regenerations)

I Exactly this version analyzed in [Vih09]
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parametric family of transition kernels Pθ
I typically we can design a family of ergodic transition kernels Pθ, θ ∈ Θ.
I Ex 1a. Θ = R+

Pθ - Random Walk Metropolis with proposal increments

qθ = θN(0, Id)

I Ex 1b. Θ = R+ × {d dimensional covariance matrices}
Pθ - Random Walk Metropolis with proposal increments

qθ = σN(0,Σ)

I Ex 2. Θ = ∆d−1 := {(α1, . . . , αd) ∈ Rd : αi ≥ 0,
∑d

i=1 αi = 1} the
(d − 1)−dimensional probability simplex,
Pθ - Random Scan Gibbs Sampler with coordinate selection probabilities

θ = (α1, . . . , αn)

I In each case values of θ will affect efficiency of Pθ
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Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

What are we trying to do?
Some Counterexamples

What Adaptive MCMC is designed for?

I In a typical Adaptive MCMC setting the parameter space Θ is large
I there is an optimal θ∗ ∈ Θ s.t. Pθ∗ converges quickly.
I there are arbitrary bad values in Θ, say if θ ∈ Θ̄−Θ then Pθ is not

ergodic.
I if θ ∈ Θ∗ := a region close to θ∗, then Pθ shall inherit good convergence

properties of Pθ∗ .
I When using adaptive MCMC we hope θn will eventually find the region

Θ∗ and stay there essentially forever. And that the adaptive algorithm A will
inherit the good convergence properties of Θ∗ in the limit.

I

I We are looking for a Theorem:
You can actually run your Adaptive MCMC algorithm A, and it will do what it is
supposed to do! (under verifiable conditions)
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Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

What are we trying to do?
Some Counterexamples

a fundamental problem

I adaptive MCMC algorithms learn about π on the fly and use this information
during the simulation

I the transition kernel Pn used for obtaining Xn|Xn−1 is allowed to depend on
{X0, . . . ,Xn−1}

I consequently the algorithms are not Markovian!
I standard MCMC theory of validating the simulation does not apply
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What are we trying to do?
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ergodicity: a toy counterexample

I Let X = {0, 1} and π be uniform.
I

P1 =

[
1/2 1/2
1/2 1/2

]
and P2 = (1− ε)

[
1 0
0 1

]
+ εP1 for some ε > 0.

I π is the stationary distribution for both, P1 and P2.
I Consider Xn , evolving for n ≥ 1 according to the following adaptive kernel:

Qn =

{
P1 if Xn−1 = 0
P2 if Xn−1 = 1

I Note that after two consecutive 1 the adaptive process Xn is trapped in 1 and
can escape only with probability ε.

I Let q̄1 := limn→∞ P(Xn = 1) and q̄0 := limn→∞ P(Xn = 0).
I Now it is clear, that for small ε we will have q̄1 � q̄0 and the procedure fails to

give the expected asymptotic distribution.
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Adaptive MCMC
Do we have Theory?

Ergodicity results
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What are we trying to do?
Some Counterexamples

Adaptive Gibbs sampler - a generic algorithm
AdapRSG

1. Set αn := Rn(αn−1,Xn−1, . . . ,X0) ∈ Y ⊂ [0, 1]d

2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn

3. Draw Y ∼ π(·|Xn−1,−i)

4. Set Xn := (Xn−1,1, . . . ,Xn−1,i−1,Y,Xn−1,i+1, . . . ,Xn−1,d)

I It is easy to get tricked into thinking that if step 1 is not doing anything ”crazy”
then the algorithm must be ergodic.

I Theorem 2.1 of [LC06] states that ergodicity of adaptive Gibbs samplers
follows from the following two conditions:

(i) αn → α a.s. for some fixed α ∈ (0, 1)d; and
(ii) The random scan Gibbs sampler with fixed selection probabilities α induces an

ergodic Markov chain with stationary distribution π.

I The above theorem is simple, neat and wrong.
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I It is easy to get tricked into thinking that if step 1 is not doing anything ”crazy”
then the algorithm must be ergodic.

I Theorem 2.1 of [LC06] states that ergodicity of adaptive Gibbs samplers
follows from the following two conditions:

(i) αn → α a.s. for some fixed α ∈ (0, 1)d; and
(ii) The random scan Gibbs sampler with fixed selection probabilities α induces an

ergodic Markov chain with stationary distribution π.

I The above theorem is simple, neat and wrong.
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What are we trying to do?
Some Counterexamples

a cautionary example that disproves [LC06]

I Let X = {(i, j) ∈ N× N : i = j or i = j + 1} ,
I with target distribution given by π(i, j) ∝ j−2

I consider a class of adaptive random scan Gibbs samplers with update rule
given by:

Rn

(
αn−1,Xn−1 = (i, j)

)
=


{

1
2 + 4

an
, 1

2 −
4
an

}
if i = j,

{
1
2 −

4
an
, 1

2 + 4
an

}
if i = j + 1,

for some choice of the sequence (an)∞n=0 satisfying 8 < an ↗∞
I if an →∞ slowly enough, then Xn is transient with positive probability, i.e.

P(X1,n →∞) > 0.
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Formal setting
Coupling as a convenient tool
Application: Adaptive Random Scan Gibbs Samplers
Adaptive Metropolis - yet another look

Ergodicity of an adaptive algorithm - framework
I X valued process of interest Xn
I Θ valued random parameter θn

representing the choice of kernel when updating Xn to Xn+1
I Define the filtration generated by {(Xn, θn)}

Gn = σ(X0, . . . ,Xn, θ0, . . . , θn),

I Thus
P(Xn+1 ∈ B | Xn = x, θn = θ,Gn−1) = Pθ(x,B)

I The distribution of θn+1 given Gn depends on the algorithm.
I Define

A(n)(x, θ,B) = P(Xn ∈ B ‖ X0 = x, θ0 = θ)

T(x, θ, n) = ‖A(n)(x, θ, ·)− π(·)‖TV

I We say the adaptive algorithm is ergodic if

lim
n→∞

T(x, θ, n) = 0 for all x ∈ X and θ ∈ Θ.
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Tools for establishing ergodicity

I (Diminishing Adaptation) Let Dn = supx∈X ‖PΓn+1(x, ·)− PΓn(x, ·)‖ and
assume limn→∞ Dn = 0 in probability

I (Simultaneous uniform ergodicity) For all ε > 0, there exists N = N(ε) s.t.
‖PN

γ (x, ·)− π(·)‖ ≤ ε for all x ∈ X and γ ∈ Y
I (Containment condition) Let Mε(x, γ) = inf{n ≥ 1 : ‖Pn

γ(x, ·)− π(·)‖ ≤ ε}
and assume {Mε(Xn, γn)}∞n=0 is bounded in probability,
i.e. given X0 = x∗ and Γ0 = γ∗, for all δ > 0,
there exists N s.t. P[Mε(Xn,Γn) ≤ N|X0 = x∗,Γ0 = γ∗] ≥ 1− δ for all n ∈ N.

I Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (simultaneous uniform ergodicity)⇒ ergodicity.

I Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (containment)⇒ ergodicity.
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Containment: a closer look

I (Containment condition) Mε(x, γ) = inf{n ≥ 1 : ‖Pn
γ(x, ·)− π(·)‖ ≤ ε}

given X0 = x∗ and Γ0 = γ∗, for all δ > 0,
there exists N s.t. P[Mε(Xn,Γn) ≤ N|X0 = x∗,Γ0 = γ∗] ≥ 1− δ for all n ∈ N.

I Containment can be verified using simultaneous geometrical ergodicity or
simultaneous polynomial ergodicity. (details in [BRR10])

I The family {Pγ : γ ∈ Y} is Simultaneously Geometrically Ergodic if
I there exist a uniform νm-small set C i.e.

for each γ Pm
γ(x, ·) ≥ δνγ(·) for all x ∈ C.

I PγV ≤ λV + bIC for all γ.
I S.G.E. implies containment
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Adaptive random scan Metropolis within Gibbs

AdapRSMwG

1. Set αn := Rn(αn−1,Xn−1, . . . ,X0) ∈ Y
2. Choose coordinate i ∈ {1, . . . , d} according to selection probabilities αn

3. Draw Y ∼ QXn−1,−i(Xn−1,i, ·)
4. With probability

min
(

1,
π(Y|Xn−1,−i) qXn−1,−i(Y,Xn−1,i)

π(Xn−1|Xn−1,−i) qXn−1,−i(Xn−1,i,Y)

)
, (1)

accept the proposal and set

Xn = (Xn−1,1, . . . ,Xn−1,i−1,Y,Xn−1,i+1, . . . ,Xn−1,d) ;

otherwise, reject the proposal and set Xn = Xn−1.
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Adaptive random scan adaptive Metropolis within
Gibbs
AdapRSadapMwG

1. Set αn := Rn(αn−1,Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ Y
2. Set γn := R′n(αn−1,Xn−1, . . . ,X0, γn−1, . . . , γ0) ∈ Γ1 × . . .× Γn
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with Pr(i = j) = αj

4. Draw Y ∼ QXn−1,−i,γn−1(Xn−1,i, ·)
5. With probability (1),

min
(

1,
π(Y|Xn−1,−i) qXn−1,−i,γn−1(Y,Xn−1,i)
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,
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Krzysztof Latuszynski(University of Warwick, UK) Adaptive MCMC



Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

Formal setting
Coupling as a convenient tool
Application: Adaptive Random Scan Gibbs Samplers
Adaptive Metropolis - yet another look

Ergodicity Adaptive Random Scan Gibbs [ŁRR13]

I Assuming that RSG(β) is uniformly ergodic and |αn − αn−1| → 0 , we can
prove ergodicity of

I AdapRSG
I AdapRSMwG
I AdapRSadapMwG

by establishing diminishing adaptation and simultaneous uniform ergodicity
I Assuming that |αn − αn−1| → 0 and regularity conditions for the target and

proposal distributions (in the spirit of Roberts Rosenthal 98, Fort et al 03)
ergodicity of

I AdapRSMwG
I AdapRSadapMwG

can be verified by establishing diminishing adaptation and containment (by
simultaneous geometrical ergodicity, using results of Bai et al 2008)
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Adaptive Metropolis - shape of the distribution
I Recall the Adaptive Scaling Metropolis Algorithm with proposals

Yn+1 ∼ qσn(Xn, ·) = Xn + σnN(0, Id),

I the proposal uses Id for covariance and does not depend on the shape of the
target...

I in a certain setting, if the covariance of the target is Σ and one uses Σ̃ for
proposal increments, the suboptimality factor is computable [RR01]

b = d
∑d

i=1 λ
−2
i

(
∑d

i=1 λ
−1
i )2

,

where {λi} are eigenvalues of Σ̃1/2Σ−1/2.
I the optimal proposal increment is

N(0, (2.38)2Σ/d).

I Again we have a very precise guidance. One should estimate Σ and use it for
proposals.
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Adaptive Metropolis - versions and stability

I The theory suggests increment

N(0, (2.38)2Σn/d)

I The AM version of [HST01] (the original one) uses

N(0,Σn + εId)

I Modification due to [RR09] is to use

Qn = (1− β)N(0, (2.38)2Σn/d) + βN(0, εId/d).

I the above modification appears more tractable: containment has been verified
for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

I the original version has been analyzed in [SV10] and [FMP10] using different
techniques.
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Technicques of Fort et al.

I The Theory is very delicate and is building on the following crucial conditions.
I A1: For any θ ∈ Θ, there exists πθ, s.t. πθ = Pθπθ.
I A2(a): For any ε > 0, there exists a non-decreasing sequence rε(n), s.t.

lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
[
‖Prε(n)

θn−rε(n)
(Xn−rε(n), ·)− πθn−rε(n)‖TV

]
≤ ε.

I A2(b): For any ε > 0,

lim
n→∞

rε(n)−1∑
j=0

E
[
D(θn−rε(n)+j, θn−rε(n))

]
= 0.

I the dependence on θ in πθ above, is crucial for other algorithms like
Interacting Tempering, however I will drop it for clarity in subsequent slides.
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Comparison to containment

I A2(a): For any ε > 0, ∃ rε(n), s.t. lim supn→∞ rε(n)/n = 0 and

lim sup
n→∞

E
[
‖Prε(n)

θn−rε(n)
(Xn−rε(n), ·)− π‖TV

]
≤ ε.

I A2(b): For any ε > 0, limn→∞
∑rε(n)−1

j=0 E
[
D(θn−rε(n)+j, θn−rε(n))

]
= 0.

I Containment C(a): recall Mε(x, θ) := infn{‖Pn
θ(x, ·)− π‖TV ≤ ε}, and assume

∀δ > 0, ε > 0, ∃ Mε,δ s.t. ∀n P(Mε(Xn, θn) ≤ Mε,δ) ≥ 1− δ.

I Diminishing Adaptation C(b): limn→∞ E [D(θn−1, θn)] = 0.
I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.
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I Containment C(a): recall Mε(x, θ) := infn{‖Pn
θ(x, ·)− π‖TV ≤ ε}, and assume

∀δ > 0, ε > 0, ∃ Mε,δ s.t. ∀n P(Mε(Xn, θn) ≤ Mε,δ) ≥ 1− δ.

I Diminishing Adaptation C(b): limn→∞ E [D(θn−1, θn)] = 0.
I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.
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I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.

I Therefore A2(a), A2(b) generalize C(a), C(b) (rather then weaken) and the
generalization is in settings where rε(n) needs to grow to∞ as n→∞.

I We shall try to investigate, what happens if rε(n) needs to grow to∞ as
n→∞.

Krzysztof Latuszynski(University of Warwick, UK) Adaptive MCMC



Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

Formal setting
Coupling as a convenient tool
Application: Adaptive Random Scan Gibbs Samplers
Adaptive Metropolis - yet another look

Comparison to containment

I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.

I Therefore A2(a), A2(b) generalize C(a), C(b) (rather then weaken) and the
generalization is in settings where rε(n) needs to grow to∞ as n→∞.

I We shall try to investigate, what happens if rε(n) needs to grow to∞ as
n→∞.

Krzysztof Latuszynski(University of Warwick, UK) Adaptive MCMC



Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

Formal setting
Coupling as a convenient tool
Application: Adaptive Random Scan Gibbs Samplers
Adaptive Metropolis - yet another look

Comparison to containment

I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.

I Therefore A2(a), A2(b) generalize C(a), C(b) (rather then weaken) and the
generalization is in settings where rε(n) needs to grow to∞ as n→∞.

I We shall try to investigate, what happens if rε(n) needs to grow to∞ as
n→∞.

Krzysztof Latuszynski(University of Warwick, UK) Adaptive MCMC



Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

Formal setting
Coupling as a convenient tool
Application: Adaptive Random Scan Gibbs Samplers
Adaptive Metropolis - yet another look

Comparison to containment

I C(a), C(b)⇒ A2(a), A2(b) by taking e.g. rε(n) = Mε/2,ε/2.

I if rε(n) = const(ε) = rε, then
A2(a), A2(b)⇒ C(a), C(b) by taking e.g. Mε,δ := rεδ.

I Therefore A2(a), A2(b) generalize C(a), C(b) (rather then weaken) and the
generalization is in settings where rε(n) needs to grow to∞ as n→∞.

I We shall try to investigate, what happens if rε(n) needs to grow to∞ as
n→∞.

Krzysztof Latuszynski(University of Warwick, UK) Adaptive MCMC



Adaptive MCMC
Do we have Theory?

Ergodicity results
AdapFail Algorithms

Current Challenges

a new class: AdapFail Algorithms

I an adaptive algorithm A ∈ AdapFail, if with positive probability, it is
asymptotically less efficient then ANY MCMC algorithm with fixed θ.

I more formally, AdapFail can be defined e.g. as follows: A ∈ AdapFail, if

∀ε∗>0, ∃0<ε<ε∗ , s.t. lim
K→∞

inf
θ∈Θ

lim
n→∞

P
(

Mε(Xn, θn) > KMε(X̃n, θ)
)
> 0 ,

where {X̃n} is a Markov chain independent of {Xn}, which follows the fixed
kernel Pθ.

I QuasiLemma: If containment doesn’t hold for A then A ∈ AdapFail.
I If A2(a), A2(b) hold but C(a), C(b) do not hold, then A ∈ AdapFail, but it

deteriorates slowly enough (due to more restrictive A2(b)), so that marginal
distributions (still) converge, and SLLN (still) holds.

I However, if A ∈ AdapFail, then we do not want to use it anyway!!
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Current Challenges - theory and methodology

I Simplify the theoretical analysis of Adaptive MCMC
I Prove THE THEOREM that you can actually do it under verifiable conditions
I Design algorithms that are easier to analyse (recall the Adaptive Metropolis

sampler)
I Devise other sound criteria that would guide adaptation (similarly as the 0.234

acceptance rule does)
I Adaptive MCMC is increasingly popular among practitioners - a research

opportunity with large impact
I Good review articles: [AT08], [RR09], [Ros08], [Ros13] (from which I took the

Goldilock principle plots)
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