Optimal Scaling and Adaptive Markov Chain Monte Carlo

Krzysztof Latuszynski
(University of Warwick, UK)

OxWaSP 2014
Adaptive MCMC

MCMC
Optimising the Random Walk Metropolis algorithm
First Examples

Do we have Theory?
What are we trying to do?
Some Counterexamples

Ergodicity results
Formal setting
Coupling as a convenient tool
Application: Adaptive Random Scan Gibbs Samplers
Adaptive Metropolis - yet another look

AdapFail Algorithms
Current Challenges
Adaptive MCMC
Do we have Theory?
Ergodicity results
AdapFail Algorithms

the usual MCMC setting

- let π be a **target probability** distribution on \mathcal{X}, typically arising as a posterior distribution in Bayesian inference,
- the goal is to evaluate
 \[I := \int_{\mathcal{X}} f(x) \pi(dx). \]
- direct sampling from π is not possible or inefficient for example π is known up to a normalising constant
- MCMC approach is to simulate $(X_n)_{n \geq 0}$, an **ergodic Markov chain** with **transition kernel** P and limiting distribution π, and take ergodic averages as an estimate of I.
- the usual estimate
 \[\hat{I} := \frac{1}{n} \sum_{k=t}^{t+n} f(X_k) \]
- **SLLN** for Markov chains holds under very mild conditions
- **CLT** for Markov chains holds under some additional assumptions and is verifiable in many situations of interest
the usual MCMC setting

- let \(\pi \) be a target probability distribution on \(\mathcal{X} \), typically arising as a posterior distribution in Bayesian inference,
- the goal is to evaluate

\[
I := \int_{\mathcal{X}} f(x) \pi(dx).
\]

- direct sampling from \(\pi \) is not possible or inefficient for example \(\pi \) is known up to a normalising constant
- MCMC approach is to simulate \((X_n)_{n \geq 0}\), an ergodic Markov chain with transition kernel \(P\) and limiting distribution \(\pi\), and take ergodic averages as an estimate of \(I\).
- the usual estimate

\[
\hat{I} := \frac{1}{n} \sum_{k=t}^{t+n} f(X_k)
\]

- SLLN for Markov chains holds under very mild conditions
- CLT for Markov chains holds under some additional assumptions and is verifiable in many situations of interest
the usual MCMC setting

- let \(\pi \) be a target probability distribution on \(\mathcal{X} \), typically arising as a posterior distribution in Bayesian inference,
- the goal is to evaluate
 \[
 I := \int_{\mathcal{X}} f(x) \pi(dx).
 \]
- direct sampling from \(\pi \) is not possible or inefficient for example \(\pi \) is known up to a normalising constant
- MCMC approach is to simulate \((X_n)_{n \geq 0} \), an ergodic Markov chain with transition kernel \(P \) and limiting distribution \(\pi \), and take ergodic averages as an estimate of \(I \).
- the usual estimate
 \[
 \hat{I} := \frac{1}{n} \sum_{k=t}^{t+n} f(X_k)
 \]
- SLLN for Markov chains holds under very mild conditions
- CLT for Markov chains holds under some additional assumptions and is verifiable in many situations of interest.
the usual MCMC setting

- let π be a target probability distribution on \mathcal{X}, typically arising as a posterior distribution in Bayesian inference,
- the goal is to evaluate

$$I := \int_{\mathcal{X}} f(x) \pi(dx).$$

- direct sampling from π is not possible or inefficient for example π is known up to a normalising constant
- MCMC approach is to simulate $(X_n)_{n \geq 0}$, an ergodic Markov chain with transition kernel P and limiting distribution π, and take ergodic averages as an estimate of I.
- the usual estimate

$$\hat{I} := \frac{1}{n} \sum_{k=t}^{t+n} f(X_k)$$

- SLLN for Markov chains holds under very mild conditions
- CLT for Markov chains holds under some additional assumptions and is verifiable in many situations of interest
the usual MCMC setting

▶ let π be a **target probability** distribution on \mathcal{X}, typically arising as a posterior distribution in Bayesian inference,
▶ the goal is to evaluate

$$I := \int_{\mathcal{X}} f(x) \pi(dx).$$

▶ direct sampling from π is not possible or inefficient for example π is known up to a normalising constant
▶ MCMC approach is to simulate $(X_n)_{n \geq 0}$, an **ergodic Markov chain** with **transition kernel** P and **limiting distribution** π, and take ergodic averages as an estimate of I.
▶ the usual estimate

$$\hat{I} := \frac{1}{n} \sum_{k=t}^{t+n} f(X_k)$$

▶ **SLLN** for Markov chains holds under very mild conditions
▶ **CLT** for Markov chains holds under some additional assumptions and is verifiable in many situations of interest
the usual MCMC setting

- Let π be a target probability distribution on \mathcal{X}, typically arising as a posterior distribution in Bayesian inference.
- The goal is to evaluate
 \[I := \int_{\mathcal{X}} f(x) \pi(dx). \]
- Direct sampling from π is not possible or inefficient for example π is known up to a normalising constant.
- MCMC approach is to simulate $(X_n)_{n \geq 0}$, an ergodic Markov chain with transition kernel P and limiting distribution π, and take ergodic averages as an estimate of I.
- The usual estimate
 \[\hat{I} := \frac{1}{n} \sum_{k=t}^{t+n} f(X_k) \]
- SLLN for Markov chains holds under very mild conditions.
- CLT for Markov chains holds under some additional assumptions and is verifiable in many situations of interest.
Reversibility and stationarity

► How to design \(P \) so that \(X_n \) converges in distribution to \(\pi \) ?

► Definition. \(P \) is reversible with respect to \(\pi \) if

\[
\pi(x)P(x, y) = \pi(y)P(y, x)
\]

as measures on \(\mathcal{X} \times \mathcal{X} \)

► Lemma. If \(P \) is reversible with respect to \(\pi \) then \(\pi P = \pi \), so it is also stationary.
Reversibility and stationarity

- How to design P so that X_n converges in distribution to π?
- **Definition.** P is reversible with respect to π if

$$\pi(x)P(x, y) = \pi(y)P(y, x)$$

as measures on $\mathcal{X} \times \mathcal{X}$

- **Lemma.** If P is reversible with respect to π then $\pi P = \pi$, so it is also stationary.
Reversibility and stationarity

- How to design P so that X_n converges in distribution to π?

- **Definition.** P is reversible with respect to π if
 \[\pi(x)P(x, y) = \pi(y)P(y, x) \]
 as measures on $\mathcal{X} \times \mathcal{X}$

- **Lemma.** If P is reversible with respect to π then $\pi P = \pi$, so it is also stationary.
The Metropolis algorithm

- **Idea.** Take any transition kernel Q with transition densities $q(x, y)$ and make it reversible with respect to π.
- **Algorithm.** Given X_n sample $Y_{n+1} \sim Q(X_n, \cdot)$ with probability $\alpha(X_n, Y_{n+1})$ set $X_{n+1} = Y_{n+1}$, otherwise set $X_{n+1} = X_n$.
- Where
 $$\alpha(x, y) = \min\{1, \frac{\pi(y)q(y, x)}{\pi(x)q(x, y)}\}.$$
- Under mild assumptions on Q the algorithm is ergodic.
- However it’s performance depends heavily on Q.
- It is **difficult** to design the proposal Q so that P has **good convergence properties**, especially if \mathcal{X} is high dimensional.
The Metropolis algorithm

- **Idea.** Take any transition kernel \(Q \) with transition densities \(q(x, y) \) and make it reversible with respect to \(\pi \).
- **Algorithm.** Given \(X_n \) sample \(Y_{n+1} \sim Q(X_n, \cdot) \).
 - with probability \(\alpha(X_n, Y_{n+1}) \) set \(X_{n+1} = Y_{n+1} \), otherwise set \(X_{n+1} = X_n \).
 - where
 \[
 \alpha(x, y) = \min\{1, \frac{\pi(y)q(y, x)}{\pi(x)q(x, y)}\}.
 \]
- Under mild assumptions on \(Q \) the algorithm is ergodic.
- However it's performance depends heavily on \(Q \).
- It is difficult to design the proposal \(Q \) so that \(P \) has good convergence properties, especially if \(\mathcal{X} \) is high dimensional.
The Metropolis algorithm

- **Idea.** Take any transition kernel \(Q \) with transition densities \(q(x,y) \) and make it reversible with respect to \(\pi \).

- **Algorithm.** Given \(X_n \) sample \(Y_{n+1} \sim Q(X_n, \cdot) \)

- with probability \(\alpha(X_n, Y_{n+1}) \) set \(X_{n+1} = Y_{n+1} \), otherwise set \(X_{n+1} = X_n \)

- where

\[
\alpha(x, y) = \min\{1, \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}\}.
\]

- Under mild assumptions on \(Q \) the algorithm is ergodic.

- However it’s performance depends heavily on \(Q \).

- is is difficult to design the proposal \(Q \) so that \(P \) has good convergence properties, especially if \(\mathcal{X} \) is high dimensional.
The Metropolis algorithm

- **Idea.** Take any transition kernel \(Q \) with transition densities \(q(x, y) \) and make it reversible with respect to \(\pi \).

- **Algorithm.** Given \(X_n \) sample \(Y_{n+1} \sim Q(X_n, \cdot) \) with probability \(\alpha(X_n, Y_{n+1}) \) set \(X_{n+1} = Y_{n+1} \), otherwise set \(X_{n+1} = X_n \).

- Where

\[
\alpha(x, y) = \min\{1, \frac{\pi(y)q(y, x)}{\pi(x)q(x, y)}\}.
\]

- Under mild assumptions on \(Q \) the algorithm is ergodic.

- However it’s performance depends heavily on \(Q \).

- It is **difficult** to design the proposal \(Q \) so that \(P \) has **good convergence properties**, especially if \(\mathcal{X} \) is high dimensional.
The Metropolis algorithm

- **Idea.** Take any transition kernel Q with transition densities $q(x,y)$ and make it reversible with respect to π.

- **Algorithm.** Given X_n sample $Y_{n+1} \sim Q(X_n, \cdot)$

- with probability $\alpha(X_n, Y_{n+1})$ set $X_{n+1} = Y_{n+1}$, otherwise set $X_{n+1} = X_n$

- where

 $$\alpha(x, y) = \min\{1, \frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}\}.$$

- Under mild assumptions on Q the algorithm is ergodic.

- However it’s performance depends heavily on Q

- is is difficult to design the proposal Q so that P has good convergence properties, especially if \mathcal{X} is high dimensional.
The Metropolis algorithm

- **Idea.** Take any transition kernel \(Q \) with transition densities \(q(x, y) \) and make it reversible with respect to \(\pi \).
- **Algorithm.** Given \(X_n \) sample \(Y_{n+1} \sim Q(X_n, \cdot) \)
- with probability \(\alpha(X_n, Y_{n+1}) \) set \(X_{n+1} = Y_{n+1} \), otherwise set \(X_{n+1} = X_n \)
- where
 \[
 \alpha(x, y) = \min\{1, \frac{\pi(y)q(y, x)}{\pi(x)q(x, y)}\}.
 \]
- Under mild assumptions on \(Q \) the algorithm is ergodic.
- However it’s performance depends heavily on \(Q \).
- Is is **difficult** to design the proposal \(Q \) so that \(P \) has **good convergence properties**, especially if \(\mathcal{X} \) is high dimensional.
the scaling problem

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- what happens if \(\sigma \) is small?
the scaling problem

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- what happens if \(\sigma \) is small?
the scaling problem

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- what happens if \(\sigma \) is small?
small sigma...

In such a simple case, assume that the proposal distribution is given by $Q = N(0, \sigma^2)$. Our question of interest is, how should we choose σ? As a first try, let's choose a small value of σ, say $\sigma = 0.1$, and run the Metropolis algorithm with that. The corresponding trace plot, graphing the values of the Markov chain (horizontal axis) at each iteration (vertical axis), is:

Looking at this trace plot, we can see that the chain moves very slowly. It starts at the state 0, and takes many hundreds of iterations before it moves appreciably away from zero. In particular, it does not do a very good job of exploring the target density (shown in red).

As a second try, let's choose a large value of σ, say $\sigma = 25$. The trace plot in this case is:
the scaling problem

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- what happens if \(\sigma \) is small?
- what happens if \(\sigma \) is large?
the scaling problem

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- what happens if \(\sigma \) is small?
- what happens if \(\sigma \) is large?
In this case, when the chain finally accepts a move, it jumps quite far which is good. However, since it proposes such large moves, it hardly ever accepts them. (Indeed, it accepted just 5.4% of the proposed moves, compared to 97.7% when $\sigma = 0$.) So, this chain doesn't perform very well either.

As a third try, let's choose a compromise value of $\sigma = 2$. The trace plot then looks like:

Krzysztof Latuszynski (University of Warwick, UK)
the scaling problem

- take Random Walk Metropolis with proposal increments
 \[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, \text{Id}). \]
- what happens if \(\sigma \) is small?
- what happens if \(\sigma \) is large?
- so \(\sigma \) should be neither too small, nor too large (known as Goldilocks principle)
the scaling problem

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_{\sigma}(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- what happens if \(\sigma \) is small?
- what happens if \(\sigma \) is large?
- so \(\sigma \) should be neither too small, nor too large (known as Goldilocks principle)
In this case, when the chain finally accepts a move, it jumps quite far which is good. However, since it proposes such large moves, it hardly ever accepts them. (Indeed, it accepted just 5.4% of the proposed moves, compared to 97.7% when $\epsilon = 0$.)

So, this chain doesn't perform very well either.

As a third try, let's choose a compromise value of $\epsilon = 2$. The trace plot then looks like:

![Trace plot](image-url)
diffusion limit \([RGG97]\)

- take Random Walk Metropolis with proposal increments

\[
Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id).
\]

- \(\sigma\) should be neither too small, nor too large (known as Goldilocks principle)

- but how to choose it?

- if the dimension of \(\mathcal{X}\) goes to \(\infty\), e.g. \(\mathcal{X} = \mathbb{R}^d\), and \(d \to \infty\),

- if the proposal is set as \(Q = N(x, l^2 I_d)\) for fixed \(l > 0\),

- if we consider

\[
Z_t = d^{-1/2} X^{(1)}_{[dt]}
\]

- then \(Z_t\) converges to the Langevin diffusion

\[
dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt
\]
diffusion limit [RGG97]

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_{\sigma}(X_n, \cdot) = X_n + \sigma N(0, I d). \]

- \(\sigma \) should be neither too small, nor too large (known as Goldilocks principle)
- but how to choose it?
- if the dimension of \(\mathcal{X} \) goes to \(\infty \), e.g. \(\mathcal{X} = \mathbb{R}^d \), and \(d \to \infty \),
- if the proposal is set as \(Q = N(x, \frac{l^2}{d} I_d) \) for fixed \(l > 0 \),
- if we consider

\[Z_t = d^{-1/2} X_{[dt]}^{(1)} \]

- then \(Z_t \) converges to the Langevin diffusion

\[dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt \]
diffusion limit [RGG97]

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- \(\sigma \) should be neither too small, nor too large (known as Goldilocks principle)
- but how to choose it?
- if the dimension of \(\mathcal{X} \) goes to \(\infty \), e.g. \(\mathcal{X} = \mathbb{R}^d \), and \(d \to \infty \),
- if the proposal is set as \(Q = N(x, \frac{l^2}{d} I_d) \) for fixed \(l > 0 \),
- if we consider

\[Z_t = d^{-1/2} X^{(1)}_{[dt]} \]

- then \(Z_t \) converges to the Langevin diffusion

\[dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt \]
Adaptive MCMC
Do we have Theory?
Ergodicity results
AdapFail Algorithms
MCMC
Optimising the Random Walk Metropolis algorithm
First Examples

diffusion limit [RGG97]

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- \(\sigma \) should be neither too small, nor too large (known as Goldilocks principle)
- but how to choose it?
- if the dimension of \(\mathcal{X} \) goes to \(\infty \), e.g. \(\mathcal{X} = \mathbb{R}^d \), and \(d \to \infty \),
- if the proposal is set as \(Q = N(x, \frac{l^2}{d} I_d) \) for fixed \(l > 0 \),
- if we consider

\[Z_t = d^{-1/2} X_{[dt]} \]

- then \(Z_t \) converges to the Langevin diffusion

\[dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt \]
diffusion limit [RGG97]

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- \(\sigma \) should be neither too small, nor too large (known as Goldilocks principle)
- but how to choose it?
- if the dimension of \(\mathcal{X} \) goes to \(\infty \), e.g. \(\mathcal{X} = \mathbb{R}^d \), and \(d \to \infty \),
- if the proposal is set as \(Q = N(x, \frac{l^2}{d} I_d) \) for fixed \(l > 0 \),
- if we consider

\[Z_t = d^{-1/2} X_{\lfloor dt \rfloor}^{(1)} \]

- then \(Z_t \) converges to the Langevin diffusion

\[dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt \]
diffusion limit [RGG97]

- take Random Walk Metropolis with proposal increments
 \[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- \(\sigma \) should be neither too small, nor too large (known as Goldilocks principle)
- but how to choose it?
- if the dimension of \(\mathcal{X} \) goes to \(\infty \), e.g. \(\mathcal{X} = \mathbb{R}^d \), and \(d \to \infty \),
- if the proposal is set as \(Q = N(x, \frac{l^2}{d} I_d) \) for fixed \(l > 0 \),
- if we consider
 \[Z_t = d^{-1/2} X^{(1)}_{\lfloor dt \rfloor} \]
- then \(Z_t \) converges to the Langevin diffusion
 \[dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt \]
diffusion limit [RGG97]

- Z_t converges to the Langevin diffusion

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt$$

- where $h(l) = 2l^2 \Phi(-Cl/2)$ is the speed of the diffusion and $A(l) = 2 \Phi(Cl/2)$ is the asymptotic acceptance rate.

- maximising the speed $h(l)$ yields the optimal acceptance rate $A(l) = 0.234$

which is independent of the target distribution π

- it is a remarkable result since it gives a simple criterion (and the same for all target distributions π) to assess how well the Random Walk Metropolis is performing.
diffusion limit [RGG97]

- Z_t converges to the Langevin diffusion

$$dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt$$

- where $h(l) = 2l^2 \Phi(-Cl/2)$ is the speed of the diffusion and $A(l) = 2\Phi(Cl/2)$ is the asymptotic acceptance rate.

- maximising the speed $h(l)$ yields the optimal acceptance rate

$$A(l) = 0.234$$

which is independent of the target distribution π.

- it is a remarkable result since it gives a simple criterion (and the same for all target distributions π) to assess how well the Random Walk Metropolis is performing.
diffusion limit [RGG97]

- Z_t converges to the Langevin diffusion

\[
dZ_t = h(l)^{1/2} dB_t + \frac{1}{2} h(l) \nabla \log \pi(Z_t) dt
\]

- where $h(l) = 2l^2 \Phi(-Cl/2)$ is the speed of the diffusion and $A(l) = 2\Phi(Cl/2)$ is the asymptotic acceptance rate.

- maximising the speed $h(l)$ yields the optimal acceptance rate

$$A(l) = 0.234$$

which is independent of the target distribution π

- it is a remarkable result since it gives a simple criterion (and the same for all target distributions π) to assess how well the Random Walk Metropolis is performing.
diffusion limit [RGG97]

- Z_t converges to the Langevin diffusion

$$dZ_t = h(l)^{1/2}dB_t + \frac{1}{2}h(l)\nabla \log \pi(Z_t)dt$$

- where $h(l) = 2l^2\Phi(-Cl/2)$ is the speed of the diffusion and $A(l) = 2\Phi(Cl/2)$ is the asymptotic acceptance rate.
- maximising the speed $h(l)$ yields the optimal acceptance rate

$$A(l) = 0.234$$

which is independent of the target distribution π

- it is a remarkable result since it gives a simple criterion (and the same for all target distributions π) to assess how well the Random Walk Metropolis is performing.
the scaling problem cd

- take Random Walk Metropolis with proposal increments

 \[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma \mathcal{N}(0, \text{Id}) \]

- so the theory says the optimal average acceptance rate

 \[\bar{\alpha} := \int \int \alpha(x, y)q_\sigma(x, dy)\pi(dx) \]

 should be approximately \(\alpha^* = 0.234 \)

- however it is not possible to compute \(\sigma^* \) for which \(\bar{\alpha} = \alpha^* \).

- It is very tempting to adjust \(\sigma \) on the fly while simulation progress

- some reasons:
 - when to stop estimating \(\bar{\alpha} \)? (to increase or decrease \(\sigma \))
 - we may be in a Metropolis within Gibbs setting of dimension 10000
the scaling problem cd

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- so the theory says the optimal average acceptance rate

\[\bar{\alpha} := \int \int \alpha(x, y) q_\sigma(x, dy) \pi(dx) \]

should be approximately \(\alpha^* = 0.234 \)

- however it is not possible to compute \(\sigma^* \) for which \(\bar{\alpha} = \alpha^* \).

- It is very tempting to adjust \(\sigma \) on the fly while simulation progress

- some reasons:
 - when to stop estimating \(\bar{\alpha} \)? (to increase or decrease \(\sigma \))
 - we may be in a Metropolis within Gibbs setting of dimension 10000
the scaling problem cd

- take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id). \]

- so the theory says the optimal average acceptance rate

\[\bar{\alpha} := \int \int \alpha(x, y) q_\sigma(x, dy) \pi(dx) \]

should be approximately \(\alpha^* = 0.234 \)

- however it is not possible to compute \(\sigma^* \) for which \(\bar{\alpha} = \alpha^* \).

- It is very tempting to adjust \(\sigma \) on the fly while simulation progress

- some reasons:
 - when to stop estimating \(\bar{\alpha} \)? (to increase or decrease \(\sigma \))
 - we may be in a Metropolis within Gibbs setting of dimension 10000
the scaling problem cd

- take Random Walk Metropolis with proposal increments:
 \[
 Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id).
 \]
- so the theory says the optimal average acceptance rate
 \[
 \bar{\alpha} := \int \int \alpha(x, y) q_\sigma(x, dy) \pi(dx)
 \]
 should be approximately \(\alpha^* = 0.234 \)
- however it is not possible to compute \(\sigma^* \) for which \(\bar{\alpha} = \alpha^* \).
- It is very tempting to adjust \(\sigma \) on the fly while simulation progress
- some reasons:
 - when to stop estimating \(\bar{\alpha} \)? (to increase or decrease \(\sigma \))
 - we may be in a Metropolis within Gibbs setting of dimension 10000
the scaling problem cd

- take Random Walk Metropolis with proposal increments

$$Y_{n+1} \sim q_\sigma(X_n, \cdot) = X_n + \sigma N(0, Id).$$

- so the theory says the optimal average acceptance rate

$$\bar{\alpha} := \int \int \alpha(x, y)q_\sigma(x, dy)\pi(dx)$$

should be approximately $\alpha^* = 0.234$

- however it is not possible to compute σ^* for which $\bar{\alpha} = \alpha^*$.

- It is very tempting to adjust σ on the fly while simulation progress

some reasons:

- when to stop estimating $\bar{\alpha}$? (to increase or decrease σ)
- we may be in a Metropolis within Gibbs setting of dimension 10000
take Random Walk Metropolis with proposal increments

\[Y_{n+1} \sim q_{\sigma}(X_n, \cdot) = X_n + \sigma N(0, Id). \]

so the theory says the **optimal average acceptance rate**

\[\bar{\alpha} := \int \int \alpha(x, y) q_{\sigma}(x, dy) \pi(dx) \]

should be approximately \(\alpha^* = 0.234 \)

however it is not possible to compute \(\sigma^* \) for which \(\bar{\alpha} = \alpha^* \).

It is very tempting to **adjust \(\sigma \) on the fly** while simulation progress

some reasons:

- when to stop estimating \(\bar{\alpha} \)? (to increase or decrease \(\sigma \))
- we may be in a Metropolis within Gibbs setting of dimension 10000
the Adaptive Scaling Algorithm

1. draw proposal

\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, Id), \]

2. Set \(X_{n+1} \) according to the usual Metropolis acceptance rate \(\alpha(X_n, Y_{n+1}) \).

3. Update scale by

\[\log \sigma_{n+1} = \log \sigma_n + \gamma_n (\alpha(X_n, Y_{n+1}) - \alpha^*) \]

where \(\gamma_n \to 0 \).

- Recall we follow a very precise mathematical advice from diffusion limit analysis [RGG97]
- The algorithm dates back to [GRS98] (a slightly different version making use of regenerations)
- Exactly this version analyzed in [Vih09]
the Adaptive Scaling Algorithm

1. draw proposal

\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, Id), \]

2. Set \(X_{n+1} \) according to the usual Metropolis acceptance rate \(\alpha(X_n, Y_{n+1}) \).

3. Update scale by

\[\log \sigma_{n+1} = \log \sigma_n + \gamma_n (\alpha(X_n, Y_{n+1}) - \alpha^\ast), \]

where \(\gamma_n \to 0 \).

- Recall we follow a very precise mathematical advice from diffusion limit analysis [RGG97]
- The algorithm dates back to [GRS98] (a slightly different version making use of regenerations)
- Exactly this version analyzed in [Vih09]
the Adaptive Scaling Algorithm

1. draw proposal
\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, Id), \]

2. Set \(X_{n+1} \) according to the usual Metropolis acceptance rate \(\alpha(X_n, Y_{n+1}) \).

3. Update scale by
\[\log \sigma_{n+1} = \log \sigma_n + \gamma_n (\alpha(X_n, Y_{n+1}) - \alpha^*) \]
where \(\gamma_n \to 0 \).

- Recall we follow a very precise mathematical advice from diffusion limit analysis [RGG97]
- The algorithm dates back to [GRS98] (a slightly different version making use of regenerations)
- Exactly this version analyzed in [Vih09]
the Adaptive Scaling Algorithm

1. draw proposal

\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, Id), \]

2. Set \(X_{n+1} \) according to the usual Metropolis acceptance rate \(\alpha(X_n, Y_{n+1}) \).

3. Update scale by

\[\log \sigma_{n+1} = \log \sigma_n + \gamma_n (\alpha(X_n, Y_{n+1}) - \alpha^*) \]

where \(\gamma_n \to 0 \).

- Recall we follow a very precise mathematical advice from diffusion limit analysis [RGG97]
- The algorithm dates back to [GRS98] (a slightly different version making use of regenerations)
- Exactly this version analyzed in [Vih09]
the Adaptive Scaling Algorithm

1. draw proposal
 \[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, Id), \]

2. Set \(X_{n+1} \) according to the usual Metropolis acceptance rate \(\alpha(X_n, Y_{n+1}) \).

3. Update scale by
 \[\log \sigma_{n+1} = \log \sigma_n + \gamma_n (\alpha(X_n, Y_{n+1}) - \alpha^*) \]
 where \(\gamma_n \to 0 \).

- Recall we follow a very precise mathematical advice from diffusion limit analysis [RGG97]
- The algorithm dates back to [GRS98] (a slightly different version making use of regenerations)
- Exactly this version analyzed in [Vih09]
the Adaptive Scaling Algorithm

1. draw proposal

\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, Id), \]

2. Set \(X_{n+1} \) according to the usual Metropolis acceptance rate \(\alpha(X_n, Y_{n+1}) \).

3. Update scale by

\[\log \sigma_{n+1} = \log \sigma_n + \gamma_n (\alpha(X_n, Y_{n+1}) - \alpha^*) \]

where \(\gamma_n \to 0 \).

- Recall we follow a very precise mathematical advice from diffusion limit analysis [RGG97]
- The algorithm dates back to [GRS98] (a slightly different version making use of regenerations)
- Exactly this version analyzed in [Vih09]
parametric family of transition kernels P_θ

- typically we can design a family of ergodic transition kernels P_θ, $\theta \in \Theta$.

- Ex 1a. $\Theta = \mathbb{R}_+$
 P_θ - Random Walk Metropolis with proposal increments
 $$q_\theta = \theta N(0, Id)$$

- Ex 1b. $\Theta = \mathbb{R}_+ \times \{d \text{ dimensional covariance matrices}\}$
 P_θ - Random Walk Metropolis with proposal increments
 $$q_\theta = \sigma N(0, \Sigma)$$

- Ex 2. $\Theta = \Delta_{d-1} := \{(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d : \alpha_i \geq 0, \sum_{i=1}^d \alpha_i = 1\}$ the $(d - 1)$-dimensional probability simplex,
 P_θ - Random Scan Gibbs Sampler with coordinate selection probabilities
 $$\theta = (\alpha_1, \ldots, \alpha_n)$$

- In each case values of θ will affect efficiency of P_θ
parametric family of transition kernels \(P_\theta \)

- Typically we can design a family of ergodic transition kernels \(P_\theta, \theta \in \Theta \).
- Ex 1a. \(\Theta = R_+ \)
 \(P_\theta \) - Random Walk Metropolis with proposal increments
 \[
 q_\theta = \theta N(0, Id)
 \]
- Ex 1b. \(\Theta = R_+ \times \{d \text{ dimensional covariance matrices}\} \)
 \(P_\theta \) - Random Walk Metropolis with proposal increments
 \[
 q_\theta = \sigma N(0, \Sigma)
 \]
- Ex 2. \(\Theta = \Delta_{d-1} := \{(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d : \alpha_i \geq 0, \sum_{i=1}^d \alpha_i = 1\} \) the \((d - 1)\)–dimensional probability simplex,
 \(P_\theta \) - Random Scan Gibbs Sampler with coordinate selection probabilities
 \[
 \theta = (\alpha_1, \ldots, \alpha_n)
 \]
- In each case values of \(\theta \) will affect efficiency of \(P_\theta \)
parametric family of transition kernels P_θ

- typically we can design a family of ergodic transition kernels P_θ, $\theta \in \Theta$.
- Ex 1a. $\Theta = R_+$
 P_θ - Random Walk Metropolis with proposal increments
 $$q_\theta = \theta N(0, \text{Id})$$
- Ex 1b. $\Theta = R_+ \times \{d \text{ dimensional covariance matrices}\}$
 P_θ - Random Walk Metropolis with proposal increments
 $$q_\theta = \sigma N(0, \Sigma)$$
- Ex 2. $\Theta = \Delta_{d-1} := \{ (\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d : \alpha_i \geq 0, \sum_{i=1}^{d} \alpha_i = 1 \}$ the $(d - 1)$–dimensional probability simplex,
 P_θ - Random Scan Gibbs Sampler with coordinate selection probabilities
 $$\theta = (\alpha_1, \ldots, \alpha_n)$$
- In each case values of θ will affect efficiency of P_θ
parametric family of transition kernels P_θ

- typically we can design a family of ergodic transition kernels P_θ, $\theta \in \Theta$.

- Ex 1a. $\Theta = \mathbb{R}_+$
 P_θ - Random Walk Metropolis with proposal increments

 $$q_\theta = \theta N(0, Id)$$

- Ex 1b. $\Theta = \mathbb{R}_+ \times \{d \text{ dimensional covariance matrices}\}$
 P_θ - Random Walk Metropolis with proposal increments

 $$q_\theta = \sigma N(0, \Sigma)$$

- Ex 2. $\Theta = \Delta_{d-1} := \{(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d : \alpha_i \geq 0, \sum_{i=1}^{d} \alpha_i = 1\}$ the $(d - 1)$–dimensional probability simplex,
 P_θ - Random Scan Gibbs Sampler with coordinate selection probabilities

 $$\theta = (\alpha_1, \ldots, \alpha_n)$$

- In each case values of θ will affect efficiency of P_θ.
parametric family of transition kernels P_θ

- typically we can design a family of ergodic transition kernels P_θ, $\theta \in \Theta$.
- Ex 1a. $\Theta = \mathbb{R}_+$
 P_θ - Random Walk Metropolis with proposal increments
 $$q_\theta = \theta N(0, I_d)$$
- Ex 1b. $\Theta = \mathbb{R}_+ \times \{d \text{ dimensional covariance matrices}\}$
 P_θ - Random Walk Metropolis with proposal increments
 $$q_\theta = \sigma N(0, \Sigma)$$
- Ex 2. $\Theta = \Delta_{d-1} := \{(\alpha_1, \ldots, \alpha_d) \in \mathbb{R}^d : \alpha_i \geq 0, \sum_{i=1}^{d} \alpha_i = 1\}$ the $(d-1)$-dimensional probability simplex,
 P_θ - Random Scan Gibbs Sampler with coordinate selection probabilities
 $$\theta = (\alpha_1, \ldots, \alpha_n)$$
- In each case values of θ will affect efficiency of P_θ
What Adaptive MCMC is designed for?

- In a **typical Adaptive MCMC setting** the parameter space Θ is **large**
- there is an **optimal** $\theta^* \in \Theta$ s.t. P_{θ^*} converges quickly.
- there are **arbitrary bad values** in Θ, say if $\theta \in \bar{\Theta} - \Theta$ then P_{θ} is not ergodic.
- if $\theta \in \Theta_* :=$ a region close to θ^*, then P_{θ} shall inherit good convergence properties of P_{θ^*}.
- When using adaptive MCMC we **hope** θ_n will eventually find the region Θ_* and stay there essentially forever. And that the adaptive algorithm A will inherit the good convergence properties of Θ_* in the limit.

- We are looking for a **Theorem:**

 You can actually run your Adaptive MCMC algorithm A, and it will do what it is supposed to do! (under verifiable conditions)
What Adaptive MCMC is designed for?

- In a typical Adaptive MCMC setting the parameter space Θ is large.
- There is an optimal $\theta^* \in \Theta$ such that P_{θ^*} converges quickly.
- There are arbitrary bad values in Θ, say if $\theta \in \Theta - \Theta$ then P_θ is not ergodic.
- If $\theta \in \Theta_* := \text{a region close to } \theta^*$, then P_θ shall inherit good convergence properties of P_{θ^*}.
- When using adaptive MCMC we hope θ_n will eventually find the region Θ_* and stay there essentially forever. And that the adaptive algorithm A will inherit the good convergence properties of Θ_* in the limit.

We are looking for a Theorem:
You can actually run your Adaptive MCMC algorithm A, and it will do what it is supposed to do! (under verifiable conditions)
What Adaptive MCMC is designed for?

- In a **typical Adaptive MCMC setting** the parameter space Θ is **large**
- there is an **optimal** $\theta_* \in \Theta$ s.t. P_{θ_*} converges quickly.
- there are **arbitrary bad values** in Θ, say if $\theta \in \bar{\Theta} - \Theta$ then P_{θ} is not ergodic.
- if $\theta \in \Theta_* := \text{a region close to } \theta_*$, then P_{θ} shall inherit good convergence properties of P_{θ_*}.
- When using adaptive MCMC we hope θ_n will eventually find the region Θ_* and stay there essentially forever. And that the adaptive algorithm \mathcal{A} will inherit the good convergence properties of Θ_* in the limit.

- We are looking for a Theorem:
 You can actually run your Adaptive MCMC algorithm \mathcal{A}, and it will do what it is supposed to do! (under verifiable conditions)
What Adaptive MCMC is designed for?

- In a typical Adaptive MCMC setting the parameter space Θ is large.
- There is an optimal $\theta^* \in \Theta$ s.t. P_{θ^*} converges quickly.
- There are arbitrary bad values in Θ, say if $\theta \in \bar{\Theta} - \Theta$ then P_{θ} is not ergodic.
- If $\theta \in \Theta^*: =\text{a region close to } \theta^*$, then P_{θ} shall inherit good convergence properties of P_{θ^*}.
- When using adaptive MCMC we hope θ_n will eventually find the region Θ^* and stay there essentially forever. And that the adaptive algorithm \mathcal{A} will inherit the good convergence properties of Θ^* in the limit.

We are looking for a Theorem: You can actually run your Adaptive MCMC algorithm \mathcal{A}, and it will do what it is supposed to do! (under verifiable conditions)
What Adaptive MCMC is designed for?

- In a typical Adaptive MCMC setting the parameter space Θ is large.
- There is an optimal $\theta^* \in \Theta$ s.t. P_{θ^*} converges quickly.
- There are arbitrary bad values in Θ, say if $\theta \in \bar{\Theta} - \Theta$ then P_θ is not ergodic.
- If $\theta \in \Theta^* :=$ a region close to θ^*, then P_θ shall inherit good convergence properties of P_{θ^*}.
- When using adaptive MCMC we hope θ_n will eventually find the region Θ^* and stay there essentially forever. And that the adaptive algorithm A will inherit the good convergence properties of Θ^* in the limit.

We are looking for a Theorem:

You can actually run your Adaptive MCMC algorithm A, and it will do what it is supposed to do! (under verifiable conditions)
What Adaptive MCMC is designed for?

- In a typical Adaptive MCMC setting the parameter space Θ is large.
- There is an optimal $\theta^* \in \Theta$ s.t. P_{θ^*} converges quickly.
- There are arbitrary bad values in Θ, say if $\theta \in \bar{\Theta} - \Theta$ then P_{θ} is not ergodic.
- If $\theta \in \Theta^* := \text{a region close to } \theta^*$, then P_{θ} shall inherit good convergence properties of P_{θ^*}.
- When using adaptive MCMC we hope θ_n will eventually find the region Θ^* and stay there essentially forever. And that the adaptive algorithm A will inherit the good convergence properties of Θ^* in the limit.

- We are looking for a Theorem:
 You can actually run your Adaptive MCMC algorithm A, and it will do what it is supposed to do! (under verifiable conditions)
a fundamental problem

- adaptive MCMC algorithms learn about π on the fly and use this information during the simulation
- the transition kernel P_n used for obtaining $X_n | X_{n-1}$ is allowed to depend on $\{X_0, \ldots, X_{n-1}\}$
- consequently the algorithms are not Markovian!
- standard MCMC theory of validating the simulation does not apply
a fundamental problem

- adaptive MCMC algorithms learn about π on the fly and use this information during the simulation
- the transition kernel P_n used for obtaining $X_n | X_{n-1}$ is allowed to depend on $\{X_0, \ldots, X_{n-1}\}$
- consequently the algorithms are not Markovian!
- standard MCMC theory of validating the simulation does not apply
a fundamental problem

- adaptive MCMC algorithms learn about π on the fly and use this information during the simulation
- the transition kernel P_n used for obtaining $X_n|X_{n-1}$ is allowed to depend on \{\(X_0, \ldots, X_{n-1}\}\)
- consequently the algorithms are **not Markovian**!
- standard MCMC theory of validating the simulation does not apply
a fundamental problem

- adaptive MCMC algorithms learn about π on the fly and use this information during the simulation
- the transition kernel P_n used for obtaining $X_n | X_{n-1}$ is allowed to depend on $\{X_0, \ldots, X_{n-1}\}$
- consequently the algorithms are not Markovian!
- standard MCMC theory of validating the simulation does not apply
ergodicity: a toy counterexample

- Let $\mathcal{X} = \{0, 1\}$ and π be uniform.

$$P_1 = \begin{bmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{bmatrix} \quad \text{and} \quad P_2 = (1 - \varepsilon) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \varepsilon P_1 \quad \text{for some} \quad \varepsilon > 0.$$

- π is the stationary distribution for both, P_1 and P_2.

- Consider X_n, evolving for $n \geq 1$ according to the following adaptive kernel:

$$Q_n = \begin{cases} P_1 & \text{if} \quad X_{n-1} = 0 \\ P_2 & \text{if} \quad X_{n-1} = 1 \end{cases}$$

- Note that after two consecutive 1 the adaptive process X_n is trapped in 1 and can escape only with probability ε.

- Let $\bar{q}_1 := \lim_{n \to \infty} P(X_n = 1)$ and $\bar{q}_0 := \lim_{n \to \infty} P(X_n = 0)$.

- Now it is clear, that for small ε we will have $\bar{q}_1 \gg \bar{q}_0$ and the procedure fails to give the expected asymptotic distribution.
Adaptive Gibbs sampler - a generic algorithm

AdapRSG

1. Set \(\alpha_n := R_n(\alpha_{n-1}, X_{n-1}, \ldots, X_0) \in \mathcal{Y} \subset [0, 1]^d \)
2. Choose coordinate \(i \in \{1, \ldots, d\} \) according to selection probabilities \(\alpha_n \)
3. Draw \(Y \sim \pi(\cdot | X_{n-1}, -i) \)
4. Set \(X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d}) \)

It is easy to get tricked into thinking that if step 1 is not doing anything "crazy" then the algorithm must be ergodic.

Theorem 2.1 of [LC06] states that ergodicity of adaptive Gibbs samplers follows from the following two conditions:

(i) \(\alpha_n \to \alpha \) a.s. for some fixed \(\alpha \in (0, 1)^d \); and
(ii) The random scan Gibbs sampler with fixed selection probabilities \(\alpha \) induces an ergodic Markov chain with stationary distribution \(\pi \).

The above theorem is simple, neat and wrong.
Adaptive Gibbs sampler - a generic algorithm

AdapRSG

1. Set $\alpha_n := R_n(\alpha_{n-1}, X_{n-1}, \ldots, X_0) \in \mathcal{Y} \subset [0, 1]^d$
2. Choose coordinate $i \in \{1, \ldots, d\}$ according to selection probabilities α_n
3. Draw $Y \sim \pi(\cdot | X_{n-1}, -i)$
4. Set $X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d})$

- It is easy to get tricked into thinking that if step 1 is not doing anything "crazy" then the algorithm must be ergodic.
- Theorem 2.1 of [LC06] states that ergodicity of adaptive Gibbs samplers follows from the following two conditions:

 (i) $\alpha_n \rightarrow \alpha$ a.s. for some fixed $\alpha \in (0, 1)^d$; and
 (ii) The random scan Gibbs sampler with fixed selection probabilities α induces an ergodic Markov chain with stationary distribution π.

- The above theorem is simple, neat and wrong.
Adaptive Gibbs sampler - a generic algorithm

AdapRSG

1. Set $\alpha_n := R_n(\alpha_{n-1}, X_{n-1}, \ldots, X_0) \in Y \subset [0, 1]^d$
2. Choose coordinate $i \in \{1, \ldots, d\}$ according to selection probabilities α_n
3. Draw $Y \sim \pi(\cdot | X_{n-1}, -i)$
4. Set $X_n := (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d})$

- It is easy to get tricked into thinking that if step 1 is not doing anything ”crazy” then the algorithm must be ergodic.
- Theorem 2.1 of [LC06] states that ergodicity of adaptive Gibbs samplers follows from the following two conditions:

 (i) $\alpha_n \to \alpha$ a.s. for some fixed $\alpha \in (0, 1)^d$; and
 (ii) The random scan Gibbs sampler with fixed selection probabilities α induces an ergodic Markov chain with stationary distribution π.

- The above theorem is simple, neat and wrong.
Adaptive Gibbs sampler - a generic algorithm

AdapRSG

1. Set $\alpha_n := R_n(\alpha_{n-1}, X_{n-1}, \ldots, X_0) \in \mathcal{Y} \subset [0, 1]^d$
2. Choose coordinate $i \in \{1, \ldots, d\}$ according to selection probabilities α_n
3. Draw $Y \sim \pi(\cdot | X_{n-1}, -i)$
4. Set $X_n := (X_{n-1}, X_{n-1, i-1}, Y, X_{n-1, i+1}, \ldots, X_{n-1, d})$

- It is easy to get tricked into thinking that if step 1 is not doing anything "crazy" then the algorithm must be ergodic.
- Theorem 2.1 of [LC06] states that ergodicity of adaptive Gibbs samplers follows from the following two conditions:

 (i) $\alpha_n \to \alpha$ a.s. for some fixed $\alpha \in (0, 1)^d$; and

 (ii) The random scan Gibbs sampler with fixed selection probabilities α induces an ergodic Markov chain with stationary distribution π.

- The above theorem is simple, neat and wrong.
Let $\mathcal{X} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : i = j \text{ or } i = j + 1\}$,

with target distribution given by $\pi(i,j) \propto j^{-2}$,

consider a class of adaptive random scan Gibbs samplers with update rule given by:

$$R_n(\alpha_{n-1}, X_{n-1} = (i,j)) = \begin{cases} \left\{ \frac{1}{2} + \frac{4}{a_n}, \frac{1}{2} - \frac{4}{a_n} \right\} & \text{if } i = j, \\ \left\{ \frac{1}{2} - \frac{4}{a_n}, \frac{1}{2} + \frac{4}{a_n} \right\} & \text{if } i = j + 1, \end{cases}$$

for some choice of the sequence $(a_n)_{n=0}^{\infty}$ satisfying $8 < a_n \rightarrow \infty$.

if $a_n \rightarrow \infty$ slowly enough, then X_n is transient with positive probability, i.e. $\mathbb{P}(X_{1,n} \rightarrow \infty) > 0$.

A cautionary example that disproves [LC06]
a cautionary example that disproves [LC06]

- Let $\mathcal{X} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : i = j \text{ or } i = j + 1\}$,
- with target distribution given by $\pi(i,j) \propto j^{-2}$
- consider a class of adaptive random scan Gibbs samplers with update rule given by:

$$R_n\left(\alpha_{n-1}, X_{n-1} = (i,j)\right) = \begin{cases} \left\{\frac{1}{2} + \frac{4}{a_n}, \frac{1}{2} - \frac{4}{a_n}\right\} & \text{if } i = j, \\ \left\{\frac{1}{2} - \frac{4}{a_n}, \frac{1}{2} + \frac{4}{a_n}\right\} & \text{if } i = j + 1, \end{cases}$$

for some choice of the sequence $(a_n)_{n=0}^{\infty}$ satisfying $8 < a_n \nearrow \infty$
- if $a_n \to \infty$ slowly enough, then X_n is transient with positive probability, i.e. $\mathbb{P}(X_{1,n} \to \infty) > 0$.
a cautionary example that disproves [LC06]

- Let $\mathcal{X} = \{(i, j) \in \mathbb{N} \times \mathbb{N} : i = j \text{ or } i = j + 1\}$,
- with target distribution given by $\pi(i, j) \propto j^{-2}$
- consider a class of adaptive random scan Gibbs samplers with update rule given by:

$$R_n\left(\alpha_{n-1}, X_{n-1} = (i, j)\right) = \begin{cases} \left\{ \frac{1}{2} + \frac{4}{a_n}, \frac{1}{2} - \frac{4}{a_n} \right\} & \text{if } i = j, \\ \left\{ \frac{1}{2} - \frac{4}{a_n}, \frac{1}{2} + \frac{4}{a_n} \right\} & \text{if } i = j + 1, \end{cases}$$

for some choice of the sequence $(a_n)_{n=0}^\infty$ satisfying $8 < a_n \to \infty$

- if $a_n \to \infty$ slowly enough, then X_n is transient with positive probability, i.e. $\mathbb{P}(X_{1, n} \to \infty) > 0$.
Let $\mathcal{X} = \{(i,j) \in \mathbb{N} \times \mathbb{N} : i = j \text{ or } i = j + 1\}$, with target distribution given by $\pi(i,j) \propto j^{-2}$.

Consider a class of adaptive random scan Gibbs samplers with update rule given by:

$$R_n\left(\alpha_{n-1}, X_{n-1} = (i,j)\right) = \begin{cases} \left\{ \frac{1}{2} + \frac{4}{a_n}, \frac{1}{2} - \frac{4}{a_n} \right\} & \text{if } i = j, \\ \left\{ \frac{1}{2} - \frac{4}{a_n}, \frac{1}{2} + \frac{4}{a_n} \right\} & \text{if } i = j + 1, \end{cases}$$

for some choice of the sequence $(a_n)_{n=0}^{\infty}$ satisfying $8 < a_n \nearrow \infty$.

If $a_n \to \infty$ slowly enough, then X_n is transient with positive probability, i.e. $\mathbb{P}(X_{1,n} \to \infty) > 0$.

A cautionary example that disproves [LC06]
a cautionary example...
Ergodicity of an adaptive algorithm - framework

- \(\mathcal{X} \)-valued process of interest \(X_n \)
- \(\Theta \)-valued random parameter \(\theta_n \)
 representing the choice of kernel when updating \(X_n \) to \(X_{n+1} \)
- Define the filtration generated by \(\{(X_n, \theta_n)\} \)
 \[G_n = \sigma(X_0, \ldots, X_n, \theta_0, \ldots, \theta_n), \]

- Thus
 \[P(X_{n+1} \in B \mid X_n = x, \theta_n = \theta, G_{n-1}) = P_\theta(x, B) \]
- The distribution of \(\theta_{n+1} \) given \(G_n \) depends on the algorithm.
- Define
 \[A^{(n)}(x, \theta, B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta) \]
 \[T(x, \theta, n) = \| A^{(n)}(x, \theta, \cdot) - \pi(\cdot) \|_{TV} \]
- We say the adaptive algorithm is ergodic if
 \[\lim_{n \to \infty} T(x, \theta, n) = 0 \quad \text{for all } x \in \mathcal{X} \quad \text{and } \theta \in \Theta. \]
Ergodicity of an adaptive algorithm - framework

- \mathcal{X} valued process of interest X_n.
- Θ valued random parameter θ_n representing the choice of kernel when updating X_n to X_{n+1}.
- Define the filtration generated by $\{(X_n, \theta_n)\}$
 $$G_n = \sigma(X_0, \ldots, X_n, \theta_0, \ldots, \theta_n),$$
- Thus
 $$P(X_{n+1} \in B \mid X_n = x, \theta_n = \theta, G_{n-1}) = P_\theta(x, B),$$
- The distribution of θ_{n+1} given G_n depends on the algorithm.
- Define
 $$A^{(n)}(x, \theta, B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta)$$
 $$T(x, \theta, n) = \|A^{(n)}(x, \theta, \cdot) - \pi(\cdot)\|_{TV}$$
- We say the adaptive algorithm is ergodic if
 $$\lim_{n \to \infty} T(x, \theta, n) = 0 \quad \text{for all } x \in \mathcal{X} \quad \text{and } \theta \in \Theta.$$
Ergodicity of an adaptive algorithm - framework

- \mathcal{X} valued process of interest X_n
- Θ valued random parameter θ_n
 representing the choice of kernel when updating X_n to X_{n+1}
- Define the filtration generated by $\{(X_n, \theta_n)\}$
 $$\mathcal{G}_n = \sigma(X_0, \ldots, X_n, \theta_0, \ldots, \theta_n),$$
- Thus
 $$P(X_{n+1} \in B \mid X_n = x, \theta_n = \theta, \mathcal{G}_{n-1}) = P_{\theta}(x, B)$$
- The distribution of θ_{n+1} given \mathcal{G}_n depends on the algorithm.
- Define
 $$A^{(n)}(x, \theta, B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta)$$
 $$T(x, \theta, n) = \|A^{(n)}(x, \theta, \cdot) - \pi(\cdot)\|_{TV}$$
- We say the adaptive algorithm is ergodic if
 $$\lim_{n \to \infty} T(x, \theta, n) = 0 \quad \text{for all } x \in \mathcal{X} \text{ and } \theta \in \Theta.$$
Ergodicity of an adaptive algorithm - framework

- \mathcal{X} valued process of interest X_n
- Θ valued random parameter θ_n
 representing the choice of kernel when updating X_n to X_{n+1}
- Define the filtration generated by $\{(X_n, \theta_n)\}$
 \[G_n = \sigma(X_0, \ldots, X_n, \theta_0, \ldots, \theta_n), \]
- Thus
 \[P(X_{n+1} \in B \mid X_n = x, \theta_n = \theta, G_{n-1}) = P_{\theta}(x, B) \]
- The distribution of θ_{n+1} given G_n depends on the algorithm.
- Define
 \[A^{(n)}(x, \theta, B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta) \]
 \[T(x, \theta, n) = \|A^{(n)}(x, \theta, \cdot) - \pi(\cdot)\|_{TV} \]
- We say the adaptive algorithm is ergodic if
 \[\lim_{n \to \infty} T(x, \theta, n) = 0 \quad \text{for all } x \in \mathcal{X} \quad \text{and } \theta \in \Theta. \]
Ergodicity of an adaptive algorithm - framework

- \mathcal{X} valued process of interest X_n
- Θ valued random parameter θ_n
 representing the choice of kernel when updating X_n to X_{n+1}
- Define the filtration generated by $\{(X_n, \theta_n)\}$
 \[G_n = \sigma(X_0, \ldots, X_n, \theta_0, \ldots, \theta_n), \]
- Thus
 \[P(X_{n+1} \in B \mid X_n = x, \theta_n = \theta, G_{n-1}) = P_\theta(x, B) \]
- The distribution of θ_{n+1} given G_n depends on the algorithm.
- Define
 \[A^{(n)}(x, \theta, B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta) \]
 \[T(x, \theta, n) = \|A^{(n)}(x, \theta, \cdot) - \pi(\cdot)\|_{TV} \]
- We say the adaptive algorithm is ergodic if
 \[\lim_{n \to \infty} T(x, \theta, n) = 0 \quad \text{for all } x \in \mathcal{X} \quad \text{and } \theta \in \Theta. \]
Ergodicity of an adaptive algorithm - framework

- X valued process of interest X_n
- Θ valued random parameter θ_n
 representing the choice of kernel when updating X_n to X_{n+1}
- Define the filtration generated by $\{(X_n, \theta_n)\}$

 $$G_n = \sigma(X_0, \ldots, X_n, \theta_0, \ldots, \theta_n),$$

- Thus

 $$P(X_{n+1} \in B \mid X_n = x, \theta_n = \theta, G_{n-1}) = P_{\theta}(x, B)$$

- The distribution of θ_{n+1} given G_n depends on the algorithm.
- Define

 $$A^{(n)}(x, \theta, B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta)$$

 $$T(x, \theta, n) = \|A^{(n)}(x, \theta, \cdot) - \pi(\cdot)\|_{TV}$$

- We say the adaptive algorithm is ergodic if

 $$\lim_{n \to \infty} T(x, \theta, n) = 0 \quad \text{for all } x \in X \quad \text{and } \theta \in \Theta.$$
Ergodicity of an adaptive algorithm - framework

- \mathcal{X} valued process of interest X_n
- Θ valued random parameter θ_n
 representing the choice of kernel when updating X_n to X_{n+1}
- Define the filtration generated by $\{(X_n, \theta_n)\}$
 $$\mathcal{G}_n = \sigma(X_0, \ldots, X_n, \theta_0, \ldots, \theta_n),$$
- Thus
 $$P(X_{n+1} \in B \mid X_n = x, \theta_n = \theta, \mathcal{G}_{n-1}) = P_\theta(x, B)$$
- The distribution of θ_{n+1} given \mathcal{G}_n depends on the algorithm.
- Define
 $$A^{(n)}(x, \theta, B) = P(X_n \in B \mid X_0 = x, \theta_0 = \theta)$$
 $$T(x, \theta, n) = \|A^{(n)}(x, \theta, \cdot) - \pi(\cdot)\|_{TV}$$
- We say the adaptive algorithm is ergodic if
 $$\lim_{n \to \infty} T(x, \theta, n) = 0 \quad \text{for all } x \in \mathcal{X} \quad \text{and } \theta \in \Theta.$$
Tools for establishing ergodicity

- **(Diminishing Adaptation)** Let \(D_n = \sup_{x \in \mathcal{X}} \| P_{\Gamma_{n+1}}(x, \cdot) - P_{\Gamma_n}(x, \cdot) \| \) and assume \(\lim_{n \to \infty} D_n = 0 \) in probability.

- **(Simultaneous uniform ergodicity)** For all \(\varepsilon > 0 \), there exists \(N = N(\varepsilon) \) s.t. \(\| P_{\gamma}(x, \cdot) - \pi(\cdot) \| \leq \varepsilon \) for all \(x \in \mathcal{X} \) and \(\gamma \in \mathcal{Y} \).

- **(Containment condition)** Let \(M_{\varepsilon}(x, \gamma) = \inf \{ n \geq 1 : \| P_{\gamma}^n(x, \cdot) - \pi(\cdot) \| \leq \varepsilon \} \) and assume \(\{ M_{\varepsilon}(X_n, \gamma_n) \}_{n=0}^{\infty} \) is bounded in probability, i.e. given \(X_0 = x_* \) and \(\Gamma_0 = \gamma_* \), for all \(\delta > 0 \), there exists \(N \) s.t. \(\mathbb{P}[M_{\varepsilon}(X_n, \Gamma_n) \leq N | X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta \) for all \(n \in \mathbb{N} \).

Theorem (Roberts Rosenthal 2007)

\((\text{diminishing adaptation}) + (\text{simultaneous uniform ergodicity}) \Rightarrow \text{ergodicity.}\)

Theorem (Roberts Rosenthal 2007)

\((\text{diminishing adaptation}) + (\text{containment}) \Rightarrow \text{ergodicity.}\)
Tools for establishing ergodicity

- **(Diminishing Adaptation)** Let \(D_n = \sup_{x \in \mathcal{X}} \| P_{\Gamma_{n+1}}(x, \cdot) - P_{\Gamma_n}(x, \cdot) \| \) and assume \(\lim_{n \to \infty} D_n = 0 \) in probability.

- **(Simultaneous uniform ergodicity)** For all \(\epsilon > 0 \), there exists \(N = N(\epsilon) \) s.t. \(\| P_{\gamma}^N(x, \cdot) - \pi(\cdot) \| \leq \epsilon \) for all \(x \in \mathcal{X} \) and \(\gamma \in \mathcal{Y} \).

- **(Containment condition)** Let \(M_\epsilon(x, \gamma) = \inf\{n \geq 1 : \| P_{\gamma}^n(x, \cdot) - \pi(\cdot) \| \leq \epsilon \} \) and assume \(\{M_\epsilon(X_n, \gamma_n)\}_{n=0}^{\infty} \) is bounded in probability, i.e. given \(X_0 = x_* \) and \(\Gamma_0 = \gamma_* \), for all \(\delta > 0 \), there exists \(N \) s.t. \(\mathbb{P}[M_\epsilon(X_n, \Gamma_n) \leq N | X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta \) for all \(n \in \mathbb{N} \).

Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (simultaneous uniform ergodicity) \(\Rightarrow \) ergodicity.

Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (containment) \(\Rightarrow \) ergodicity.
Tools for establishing ergodicity

- **(Diminishing Adaptation)** Let \(D_n = \sup_{x \in \mathcal{X}} \| P_{\Gamma_{n+1}}(x, \cdot) - P_{\Gamma_n}(x, \cdot) \| \) and assume \(\lim_{n \to \infty} D_n = 0 \) in probability.

- **(Simultaneous uniform ergodicity)** For all \(\varepsilon > 0 \), there exists \(N = N(\varepsilon) \) s.t. \(\| P^N_{\gamma}(x, \cdot) - \pi(\cdot) \| \leq \varepsilon \) for all \(x \in \mathcal{X} \) and \(\gamma \in \mathcal{Y} \).

- **(Containment condition)** Let \(M_\varepsilon(x, \gamma) = \inf\{ n \geq 1 : \| P^n_{\gamma}(x, \cdot) - \pi(\cdot) \| \leq \varepsilon \} \) and assume \(\{ M_\varepsilon(X_n, \gamma_n) \}_{n=0}^{\infty} \) is bounded in probability, i.e. given \(X_0 = x_* \) and \(\Gamma_0 = \gamma_* \), for all \(\delta > 0 \), there exists \(N \) s.t. \(\mathbb{P}[M_\varepsilon(X_n, \Gamma_n) \leq N | X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta \) for all \(n \in \mathbb{N} \).

Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (simultaneous uniform ergodicity) \(\Rightarrow \) ergodicity.

Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (containment) \(\Rightarrow \) ergodicity.
Tools for establishing ergodicity

- **(Diminishing Adaptation)** Let $D_n = \sup_{x \in \mathcal{X}} \| P_{\Gamma_{n+1}}(x, \cdot) - P_{\Gamma_n}(x, \cdot) \|$ and assume $\lim_{n \to \infty} D_n = 0$ in probability.

- **(Simultaneous uniform ergodicity)** For all $\varepsilon > 0$, there exists $N = N(\varepsilon)$ s.t. $\| P^n_{\gamma}(x, \cdot) - \pi(\cdot) \| \leq \varepsilon$ for all $x \in \mathcal{X}$ and $\gamma \in \mathcal{Y}$.

- **(Containment condition)** Let $M_{\varepsilon}(x, \gamma) = \inf \{ n \geq 1 : \| P^n_{\gamma}(x, \cdot) - \pi(\cdot) \| \leq \varepsilon \}$ and assume $\{M_{\varepsilon}(X_n, \gamma_n)\}_{n=0}^\infty$ is bounded in probability, i.e. given $X_0 = x^*$ and $\Gamma_0 = \gamma^*$, for all $\delta > 0$, there exists N s.t. $\mathbb{P}[M_{\varepsilon}(X_n, \Gamma_n) \leq N | X_0 = x^*, \Gamma_0 = \gamma^*] \geq 1 - \delta$ for all $n \in \mathbb{N}$.

Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (simultaneous uniform ergodicity) \Rightarrow ergodicity.

Theorem (Roberts Rosenthal 2007)

**(diminishing adaptation) + (containment) \Rightarrow ergodicity.
Tools for establishing ergodicity

- **(Diminishing Adaptation)** Let $D_n = \sup_{x \in X} \left\| P_{\Gamma_{n+1}}(x, \cdot) - P_{\Gamma_n}(x, \cdot) \right\|$ and assume $\lim_{n \to \infty} D_n = 0$ in probability

- **(Simultaneous uniform ergodicity)** For all $\varepsilon > 0$, there exists $N = N(\varepsilon)$ s.t. $\|P_{\gamma}(x, \cdot) - \pi(\cdot)\| \leq \varepsilon$ for all $x \in X$ and $\gamma \in \mathcal{Y}$

- **(Containment condition)** Let $M_\varepsilon(x, \gamma) = \inf\{n \geq 1 : \|P_{\gamma}^n(x, \cdot) - \pi(\cdot)\| \leq \varepsilon\}$ and assume $\{M_\varepsilon(X_n, \gamma_n)\}_{n=0}^\infty$ is bounded in probability, i.e. given $X_0 = x_*$ and $\Gamma_0 = \gamma_*$, for all $\delta > 0$, there exists N s.t. $\mathbb{P}[M_\varepsilon(X_n, \Gamma_n) \leq N|X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta$ for all $n \in \mathbb{N}$.

Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (simultaneous uniform ergodicity) \Rightarrow ergodicity.

Theorem (Roberts Rosenthal 2007)

(diminishing adaptation) + (containment) \Rightarrow ergodicity.
Containment: a closer look

- **(Containment condition)** \(M_\varepsilon(x, \gamma) = \inf\{ n \geq 1 : \| P^n_\gamma(x, \cdot) - \pi(\cdot) \| \leq \varepsilon \} \)

given \(X_0 = x_* \) and \(\Gamma_0 = \gamma_* \), for all \(\delta > 0 \),
 there exists \(N \) s.t. \(\mathbb{P}[M_\varepsilon(X_n, \Gamma_n) \leq N | X_0 = x_* , \Gamma_0 = \gamma_*] \geq 1 - \delta \) for all \(n \in \mathbb{N} \).

- Containment can be verified using simultaneous geometrical ergodicity or simultaneous polynomial ergodicity. (details in [BRR10])

- The family \(\{ P_\gamma : \gamma \in \mathcal{Y} \} \) is Simultaneously Geometrically Ergodic if
 - there exist a uniform \(\nu_m \)-small set \(C \) i.e.
 - for each \(\gamma \) \(P^m_\gamma(x, \cdot) \geq \delta \nu_\gamma(\cdot) \) for all \(x \in C \).
 - \(P_\gamma V \leq \lambda V + b|C| \) for all \(\gamma \).

- S.G.E. implies containment
Containment: a closer look

- **(Containment condition)** \(M_\varepsilon(x, \gamma) = \inf\{n \geq 1 : \|P^n_\gamma(x, \cdot) - \pi(\cdot)\| \leq \varepsilon\}\)

given \(X_0 = x_*\) and \(\Gamma_0 = \gamma_*\), for all \(\delta > 0\),

there exists \(N\) s.t. \(P[M_\varepsilon(X_n, \Gamma_n) \leq N|X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta\) for all \(n \in \mathbb{N}\).

- Containment can be verified using **simultaneous geometrical ergodicity** or **simultaneous polynomial ergodicity**. (details in [BRR10])

- The family \(\{P_\gamma : \gamma \in \mathcal{Y}\}\) is **Simultaneously Geometrically Ergodic** if

 - there exist a uniform \(\nu_m\)-small set \(C\) i.e.

 for each \(\gamma\) \(P^m_\gamma(x, \cdot) \geq \delta \nu_\gamma(\cdot)\) for all \(x \in C\).

 - \(P_\gamma V \leq \lambda V + b\|C\|\) for all \(\gamma\).

- **S.G.E. implies containment**
Containment: a closer look

- **(Containment condition)** $M_\varepsilon(x, \gamma) = \inf\{n \geq 1 : \|P^n_{\gamma}(x, \cdot) - \pi(\cdot)\| \leq \varepsilon\}$
 given $X_0 = x_*$ and $\Gamma_0 = \gamma_*$, for all $\delta > 0$,
 there exists N s.t. $\mathbb{P}[M_\varepsilon(X_n, \Gamma_n) \leq N | X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta$ for all $n \in \mathbb{N}$.

- Containment can be verified using simultaneous geometrical ergodicity or simultaneous polynomial ergodicity. (details in [BRR10])

- The family $\{P_\gamma : \gamma \in \mathcal{Y}\}$ is Simultaneously Geometrically Ergodic if
 - there exist a uniform ν_m-small set C i.e. for each γ $P^m_\gamma(x, \cdot) \geq \delta \nu_\gamma(\cdot)$ for all $x \in C$.
 - $P_\gamma V \leq \lambda V + b I_C$ for all γ.

- S.G.E. implies containment
Containment: a closer look

- **(Containment condition)** \(M_\varepsilon(x, \gamma) = \inf\{n \geq 1 : \|P^n_\gamma(x, \cdot) - \pi(\cdot)\| \leq \varepsilon\} \)
given \(X_0 = x_* \) and \(\Gamma_0 = \gamma_* \), for all \(\delta > 0 \),
there exists \(N \) s.t. \(\mathbb{P}[M_\varepsilon(X_n, \Gamma_n) \leq N|X_0 = x_*, \Gamma_0 = \gamma_*] \geq 1 - \delta \) for all \(n \in \mathbb{N} \).

- Containment can be verified using simultaneous geometrical ergodicity or simultaneous polynomial ergodicity. (details in [BRR10])

- The family \(\{P_\gamma : \gamma \in \mathcal{Y}\} \) is Simultaneously Geometrically Ergodic if
 - there exist a uniform \(\nu_m \)-small set \(C \) i.e.
 for each \(\gamma \) \(P^n_\gamma(x, \cdot) \geq \delta \nu_\gamma(\cdot) \) for all \(x \in C \).
 - \(P_\gamma V \leq \lambda V + b \|I_C \) for all \(\gamma \).

- S.G.E. implies containment
Adaptive random scan Metropolis within Gibbs

AdapRSMwG

1. Set \(\alpha_n := R_n(\alpha_{n-1}, X_{n-1}, \ldots, X_0) \in \mathcal{Y} \)
2. Choose coordinate \(i \in \{1, \ldots, d\} \) according to selection probabilities \(\alpha_n \)
3. Draw \(Y \sim Q_{X_{n-1},-i}(X_{n-1},i, \cdot) \)
4. With probability

\[
\min \left(1, \frac{\pi(Y|X_{n-1},-i) q_{X_{n-1},-i}(Y,X_{n-1},i)}{\pi(X_{n-1}|X_{n-1},-i) q_{X_{n-1},-i}(X_{n-1},i,Y)} \right),
\]

accept the proposal and set

\[
X_n = (X_{n-1},1, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d}) ;
\]

otherwise, reject the proposal and set \(X_n = X_{n-1} \).
Adaptive random scan adaptive Metropolis within Gibbs

1. Set $\alpha_n := R_n(\alpha_{n-1}, X_{n-1}, \ldots, X_0, \gamma_{n-1}, \ldots, \gamma_0) \in \mathcal{Y}$
2. Set $\gamma_n := R'_n(\alpha_{n-1}, X_{n-1}, \ldots, X_0, \gamma_{n-1}, \ldots, \gamma_0) \in \Gamma_1 \times \ldots \times \Gamma_n$
3. Choose coordinate $i \in \{1, \ldots, d\}$ according to selection probabilities α, i.e. with $\Pr(i = j) = \alpha_j$
4. Draw $Y \sim Q_{X_{n-1},-i,\gamma_{n-1}}(X_{n-1},i,\cdot)$
5. With probability (1),
 \[
 \min \left(1, \frac{\pi(Y|X_{n-1},-i) q_{X_{n-1},-i,\gamma_{n-1}}(Y,X_{n-1},i)}{\pi(X_{n-1}|X_{n-1},-i) q_{X_{n-1},-i,\gamma_{n-1}}(X_{n-1},i,Y)} \right),
 \]
 accept the proposal and set
 \[
 X_n = (X_{n-1,1}, \ldots, X_{n-1,i-1}, Y, X_{n-1,i+1}, \ldots, X_{n-1,d}) ;
 \]
 otherwise, reject the proposal and set $X_n = X_{n-1}$.
Assuming that $RSG(\beta)$ is uniformly ergodic and $|\alpha_n - \alpha_{n-1}| \to 0$, we can prove ergodicity of
- AdapRSG
- AdapRSMwG
- AdapRSadapMwG

by establishing diminishing adaptation and simultaneous uniform ergodicity.

Assuming that $|\alpha_n - \alpha_{n-1}| \to 0$ and regularity conditions for the target and proposal distributions (in the spirit of Roberts Rosenthal 98, Fort et al 03) ergodicity of
- AdapRSMwG
- AdapRSadapMwG

can be verified by establishing diminishing adaptation and containment (by simultaneous geometrical ergodicity, using results of Bai et al 2008).
Assuming that $RSG(\beta)$ is \textit{uniformly} ergodic and $|\alpha_n - \alpha_{n-1}| \to 0$, we can prove ergodicity of
- AdapRSG
- AdapRSMwG
- AdapRSadapMwG

by establishing \textit{diminishing adaptation} and \textit{simultaneous uniform ergodicity}.

Assuming that $|\alpha_n - \alpha_{n-1}| \to 0$ and regularity conditions for the target and proposal distributions (in the spirit of Roberts Rosenthal 98, Fort et al 03) ergodicity of
- AdapRSMwG
- AdapRSadapMwG

can be verified by establishing \textit{diminishing adaptation} and \textit{containment} (by simultaneous geometrical ergodicity, using results of Bai et al 2008)
Recall the Adaptive Scaling Metropolis Algorithm with proposals

\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, I_d), \]

the proposal uses \(I_d \) for covariance and does not depend on the shape of the target...

in a certain setting, if the covariance of the target is \(\Sigma \) and one uses \(\tilde{\Sigma} \) for proposal increments, the suboptimality factor is computable [RR01]

\[b = d \frac{\sum_{i=1}^{d} \lambda_i^{-2}}{(\sum_{i=1}^{d} \lambda_i^{-1})^2}, \]

where \(\{\lambda_i\} \) are eigenvalues of \(\tilde{\Sigma}^{1/2} \Sigma^{-1/2} \).

the optimal proposal increment is

\[N(0, (2.38)^2 \Sigma / d). \]

Again we have a very precise guidance. One should estimate \(\Sigma \) and use it for proposals.
Recall the Adaptive Scaling Metropolis Algorithm with proposals

\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, I_d), \]

the proposal uses \(I_d \) for covariance and does not depend on the shape of the target...

in a certain setting, if the covariance of the target is \(\Sigma \) and one uses \(\tilde{\Sigma} \) for proposal increments, the suboptimality factor is computable [RR01]

\[b = d \frac{\sum_{i=1}^{d} \lambda_i^{-2}}{\left(\sum_{i=1}^{d} \lambda_i^{-1} \right)^2}, \]

where \(\{\lambda_i\} \) are eigenvalues of \(\tilde{\Sigma}^{1/2} \Sigma^{-1/2} \).

the optimal proposal increment is

\[N(0, (2.38)^2 \Sigma / d). \]

Again we have a very precise guidance. One should estimate \(\Sigma \) and use it for proposals.
Recall the Adaptive Scaling Metropolis Algorithm with proposals

$$Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, I_d),$$

the proposal uses I_d for covariance and does not depend on the shape of the target...

in a certain setting, if the covariance of the target is Σ and one uses $\tilde{\Sigma}$ for proposal increments, the suboptimality factor is computable [RR01]

$$b = d \frac{\sum_{i=1}^{d} \lambda_i^{-2}}{(\sum_{i=1}^{d} \lambda_i^{-1})^2},$$

where $\{\lambda_i\}$ are eigenvalues of $\tilde{\Sigma}^{1/2} \Sigma^{-1/2}$.

the optimal proposal increment is

$$N(0, (2.38)^2 \Sigma / d).$$

Again we have a very precise guidance. One should estimate Σ and use it for proposals.
Recall the Adaptive Scaling Metropolis Algorithm with proposals

\[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, I_d), \]

the proposal uses \(I_d \) for covariance and does not depend on the shape of the target...

in a certain setting, if the covariance of the target is \(\Sigma \) and one uses \(\tilde{\Sigma} \) for proposal increments, the suboptimality factor is computable [RR01]

\[b = d \frac{\sum_{i=1}^{d} \lambda_i^{-2}}{(\sum_{i=1}^{d} \lambda_i^{-1})^2}, \]

where \(\{\lambda_i\} \) are eigenvalues of \(\tilde{\Sigma}^{1/2} \Sigma^{-1/2} \).

the optimal proposal increment is

\[N(0, (2.38)^2 \Sigma / d). \]

Again we have a very precise guidance. One should estimate \(\Sigma \) and use it for proposals.
Adaptive MCMC

Do we have Theory?

Ergodicity results

Adaptive Fail Algorithms

Formal setting

Coupling as a convenient tool

Application: Adaptive Random Scan Gibbs Samplers

Adaptive Metropolis - yet another look

Adaptive Metropolis - shape of the distribution

- Recall the Adaptive Scaling Metropolis Algorithm with proposals
 \[Y_{n+1} \sim q_{\sigma_n}(X_n, \cdot) = X_n + \sigma_n N(0, I_d), \]

- the proposal uses \(I_d \) for covariance and does not depend on the shape of the target...

- in a certain setting, if the covariance of the target is \(\Sigma \) and one uses \(\tilde{\Sigma} \) for proposal increments, the suboptimality factor is computable [RR01]
 \[
 b = d \frac{\sum_{i=1}^{d} \lambda_i^{-2}}{(\sum_{i=1}^{d} \lambda_i^{-1})^2},
 \]
 where \(\{\lambda_i\} \) are eigenvalues of \(\tilde{\Sigma}^{1/2} \Sigma^{-1/2} \).

- the optimal proposal increment is
 \[N(0, (2.38)^2 \Sigma/d). \]

- Again we have a very precise guidance. One should estimate \(\Sigma \) and use it for proposals.
The theory suggests increment

\[N(0, (2.38)^2 \Sigma_n/d) \]

The AM version of [HST01] (the original one) uses

\[N(0, \Sigma_n + \varepsilon Id) \]

Modification due to [RR09] is to use

\[Q_n = (1 - \beta)N(0, (2.38)^2 \Sigma_n/d) + \beta N(0, \varepsilon Id/d). \]

the above modification appears more tractable: containment has been verified for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

the original version has been analyzed in [SV10] and [FMP10] using different techniques.
Adaptive Metropolis - versions and stability

- The theory suggests increment

\[N(0, (2.38)^2 \frac{\Sigma_n}{d}) \]

- The AM version of [HST01] (the original one) uses

\[N(0, \Sigma_n + \epsilon \text{Id}) \]

- Modification due to [RR09] is to use

\[Q_n = (1 - \beta)N(0, (2.38)^2 \frac{\Sigma_n}{d}) + \beta N(0, \epsilon \text{Id}/d). \]

- the above modification appears more tractable: containment has been verified for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

- the original version has been analyzed in [SV10] and [FMP10] using different techniques.
Adaptive Metropolis - versions and stability

- The theory suggests increment

\[N(0, (2.38)^2 \Sigma_n / d) \]

- The AM version of [HST01] (the original one) uses

\[N(0, \Sigma_n + \varepsilon Id) \]

- Modification due to [RR09] is to use

\[Q_n = (1 - \beta)N(0, (2.38)^2 \Sigma_n / d) + \beta N(0, \varepsilon Id / d). \]

- The above modification appears more tractable: containment has been verified for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

- The original version has been analyzed in [SV10] and [FMP10] using different techniques.
The theory suggests increment

\[N(0, (2.38)^2 \Sigma_n / d) \]

The AM version of [HST01] (the original one) uses

\[N(0, \Sigma_n + \varepsilon \text{Id}) \]

Modification due to [RR09] is to use

\[Q_n = (1 - \beta)N(0, (2.38)^2 \Sigma_n / d) + \beta N(0, \varepsilon \text{Id} / d). \]

The above modification appears more tractable: containment has been verified for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

The original version has been analyzed in [SV10] and [FMP10] using different techniques.
Adaptive Metropolis - versions and stability

- The theory suggests increment

\[N(0, (2.38)^2 \Sigma_n / d) \]

- The AM version of [HST01] (the original one) uses

\[N(0, \Sigma_n + \varepsilon Id) \]

- Modification due to [RR09] is to use

\[Q_n = (1 - \beta)N(0, (2.38)^2 \Sigma_n / d) + \beta N(0, \varepsilon Id / d). \]

- The above modification appears more tractable: containment has been verified for both, exponentially and super-exponentially decaying tails (Bai et al 2009).

- The original version has been analyzed in [SV10] and [FMP10] using different techniques.

Krzysztof Latuszynski (University of Warwick, UK)
The Theory is very delicate and is building on the following crucial conditions.

- **A1**: For any $\theta \in \Theta$, there exists π_{θ}, s.t. $\pi_{\theta} = P_{\theta} \pi_{\theta}$.

- **A2(a)**: For any $\epsilon > 0$, there exists a non-decreasing sequence $r_{\epsilon}(n)$, s.t.
 \[
 \limsup_{n \to \infty} r_{\epsilon}(n)/n = 0 \quad \text{and} \quad \limsup_{n \to \infty} \frac{1}{E} \left[\left\| P_{\theta_{n-r_{\epsilon}(n)}}(X_{n-r_{\epsilon}(n)}, \cdot) - \pi_{\theta_{n-r_{\epsilon}(n)}} \right\|_{TV} \right] \leq \epsilon.
 \]

- **A2(b)**: For any $\epsilon > 0$,
 \[
 \lim_{n \to \infty} \sum_{j=0}^{r_{\epsilon}(n)-1} E \left[D(\theta_{n-r_{\epsilon}(n)+j}, \theta_{n-r_{\epsilon}(n)}) \right] = 0.
 \]

- the dependence on θ in π_{θ} above, is crucial for other algorithms like Interacting Tempering, however I will drop it for clarity in subsequent slides.
Techniques of Fort et al.

- The Theory is very delicate and is building on the following crucial conditions.

- **A1:** For any $\theta \in \Theta$, there exists π_θ, s.t. $\pi_\theta = P_\theta \pi_\theta$.

- **A2(a):** For any $\epsilon > 0$, there exists a non-decreasing sequence $r_\epsilon(n)$, s.t.
 \[\limsup_{n \to \infty} r_\epsilon(n)/n = 0 \] and
 \[\limsup_{n \to \infty} \mathbb{E} \left[\left\| P_{\theta_{n-r_\epsilon(n)}}^{r_\epsilon(n)} \left(X_{n-r_\epsilon(n)} , \cdot \right) - \pi_{n-r_\epsilon(n)} \right\|_{TV} \right] \leq \epsilon. \]

- **A2(b):** For any $\epsilon > 0$,
 \[\lim_{n \to \infty} \sum_{j=0}^{r_\epsilon(n)-1} \mathbb{E} \left[D(\theta_{n-r_\epsilon(n)+j} , \theta_{n-r_\epsilon(n)}) \right] = 0. \]

- the dependence on θ in π_θ above, is crucial for other algorithms like Interacting Tempering, however I will drop it for clarity in subsequent slides.
The Theory is very delicate and is building on the following crucial conditions.

- **A1**: For any \(\theta \in \Theta \), there exists \(\pi_\theta \), s.t. \(\pi_\theta = P_\theta \pi_\theta \).

- **A2(a)**: For any \(\epsilon > 0 \), there exists a non-decreasing sequence \(r_\epsilon(n) \), s.t. \(\limsup_{n \to \infty} r_\epsilon(n)/n = 0 \) and
 \[
 \limsup_{n \to \infty} \mathbb{E} \left[\left\| P_{\theta_n-r_\epsilon(n)}^{r_\epsilon(n)} (X_{n-r_\epsilon(n)}, \cdot) - \pi_{\theta_n-r_\epsilon(n)} \right\|_{TV} \right] \leq \epsilon.
 \]

- **A2(b)**: For any \(\epsilon > 0 \),
 \[
 \lim_{n \to \infty} \sum_{j=0}^{r_\epsilon(n)-1} \mathbb{E} \left[D(\theta_{n-r_\epsilon(n)+j}, \theta_{n-r_\epsilon(n)}) \right] = 0.
 \]

- the dependence on \(\theta \) in \(\pi_\theta \) above, is crucial for other algorithms like Interacting Tempering, however I will drop it for clarity in subsequent slides.
The Theory is very delicate and is building on the following crucial conditions.

- **A1**: For any $\theta \in \Theta$, there exists π_{θ}, s.t. $\pi_{\theta} = P_{\theta} \pi_{\theta}$.

- **A2(a)**: For any $\epsilon > 0$, there exists a non-decreasing sequence $r_{\epsilon}(n)$, s.t. $\limsup_{n \to \infty} r_{\epsilon}(n)/n = 0$ and

\[
\limsup_{n \to \infty} \mathbb{E} \left[\| P^{r_{\epsilon}(n)}_{\theta_{n-r_{\epsilon}(n)}} (X_{n-r_{\epsilon}(n)}, \cdot) - \pi_{\theta_{n-r_{\epsilon}(n)}} \|_{TV} \right] \leq \epsilon.
\]

- **A2(b)**: For any $\epsilon > 0$,

\[
\lim_{n \to \infty} \sum_{j=0}^{r_{\epsilon}(n)-1} \mathbb{E} \left[D(\theta_{n-r_{\epsilon}(n)}+j, \theta_{n-r_{\epsilon}(n)}) \right] = 0.
\]

The dependence on θ in π_{θ} above, is crucial for other algorithms like Interacting Tempering, however I will drop it for clarity in subsequent slides.
Techniques of Fort et al.

- The Theory is very delicate and is building on the following crucial conditions.
- **A1:** For any \(\theta \in \Theta \), there exists \(\pi_{\theta} \), s.t. \(\pi_{\theta} = P_{\theta} \pi_{\theta} \).
- **A2(a):** For any \(\epsilon > 0 \), there exists a non-decreasing sequence \(r_{\epsilon}(n) \), s.t.
 \[
 \limsup_{n \to \infty} \frac{r_{\epsilon}(n)}{n} = 0 \quad \text{and} \quad \limsup_{n \to \infty} \mathbb{E} \left[\left\| P_{\theta_{n-r_{\epsilon}(n)}}^{r_{\epsilon}(n)} (X_{n-r_{\epsilon}(n)}, \cdot) - \pi_{\theta_{n-r_{\epsilon}(n)}} \right\|_{TV} \right] \leq \epsilon.
 \]
- **A2(b):** For any \(\epsilon > 0 \),
 \[
 \lim_{n \to \infty} \sum_{j=0}^{r_{\epsilon}(n)-1} \mathbb{E} \left[D(\theta_{n-r_{\epsilon}(n)}+j, \theta_{n-r_{\epsilon}(n)}) \right] = 0.
 \]
- the dependence on \(\theta \) in \(\pi_{\theta} \) above, is crucial for other algorithms like Interacting Tempering, however I will drop it for clarity in subsequent slides.
Comparison to containment

- **A2(a):** For any $\epsilon > 0$, $\exists r_\epsilon(n)$, s.t. $\limsup_{n \to \infty} r_\epsilon(n)/n = 0$ and
 \[
 \limsup_{n \to \infty} \mathbb{E} \left[\left\| P_{\theta_{n-r_\epsilon(n)}}^{r_\epsilon(n)} (X_{n-r_\epsilon(n)}, \cdot) - \pi \right\|_{TV} \right] \leq \epsilon.
 \]

- **A2(b):** For any $\epsilon > 0$, $\lim_{n \to \infty} \sum_{j=0}^{r_\epsilon(n)-1} \mathbb{E} \left[D(\theta_{n-r_\epsilon(n)+j}, \theta_{n-r_\epsilon(n)}) \right] = 0$.

- **Containment C(a):** recall $M_\epsilon(x, \theta) := \inf_n \{\| P_n^x (x, \cdot) - \pi \|_{TV} \leq \epsilon\}$, and assume
 \[
 \forall \delta > 0, \epsilon > 0, \exists M_\epsilon,\delta \text{ s.t. } \forall n \ P(M_\epsilon(X_n, \theta_n) \leq M_\epsilon,\delta) \geq 1 - \delta.
 \]

- **Diminishing Adaptation C(b):** $\lim_{n \to \infty} \mathbb{E} \left[D(\theta_{n-1}, \theta_n) \right] = 0$.

- **C(a), C(b) ⇒ A2(a), A2(b) by taking e.g. $r_\epsilon(n) = M_{\epsilon/2,\epsilon/2}$.

- **if $r_\epsilon(n) = \text{const}(\epsilon) = r_\epsilon$, then $A2(a), A2(b) ⇒ C(a), C(b)$ by taking e.g. $M_{\epsilon,\delta} := r_{\epsilon\delta}$.**
Comparison to containment

- **A2(a):** For any $\epsilon > 0$, $\exists r_{\epsilon}(n)$, s.t. $\limsup_{n \to \infty} r_{\epsilon}(n)/n = 0$ and
 \[
 \limsup_{n \to \infty} \mathbb{E} \left[\| P^{r_{\epsilon}(n)}_{\theta_{n-r_{\epsilon}(n)}}(X_{n-r_{\epsilon}(n)}, \cdot) - \pi \|_{TV} \right] \leq \epsilon.
 \]

- **A2(b):** For any $\epsilon > 0$,
 \[
 \lim_{n \to \infty} \sum_{j=0}^{r_{\epsilon}(n)-1} \mathbb{E} \left[D(\theta_{n-r_{\epsilon}(n)+j}, \theta_{n-r_{\epsilon}(n)}) \right] = 0.
 \]

- Containment C(a): recall $M_{\epsilon}(x, \theta) := \inf_n \{\| P^n_{\theta}(x, \cdot) - \pi \|_{TV} \leq \epsilon\}$, and assume
 \[
 \forall \delta > 0, \epsilon > 0, \exists M_{\epsilon,\delta} \text{ s.t. } \forall n \quad P(M_{\epsilon}(X_n, \theta_n) \leq M_{\epsilon,\delta}) \geq 1 - \delta.
 \]

- Diminishing Adaptation C(b): \[
 \lim_{n \to \infty} \mathbb{E} \left[D(\theta_{n-1}, \theta_n) \right] = 0.
 \]

- C(a), C(b) \Rightarrow A2(a), A2(b) by taking e.g. $r_{\epsilon}(n) = M_{\epsilon/2,\epsilon/2}$.

- if $r_{\epsilon}(n) = \text{const}(\epsilon) = r_{\epsilon}$, then

A2(a), A2(b) \Rightarrow C(a), C(b) by taking e.g. $M_{\epsilon,\delta} := r_{\epsilon \delta}$.

Krzysztof Latuszynski (University of Warwick, UK)
Comparison to containment

- **A2(a):** For any $\epsilon > 0$, $\exists r_\epsilon(n)$, s.t. $\limsup_{n \to \infty} r_\epsilon(n)/n = 0$ and
 \[
 \limsup_{n \to \infty} \mathbb{E} \left[\left\| P_{\theta_n-r_\epsilon(n)}^{r_\epsilon(n)} (X_n-r_\epsilon(n), \cdot) - \pi \right\|_{TV} \right] \leq \epsilon.
 \]

- **A2(b):** For any $\epsilon > 0$, $\lim_{n \to \infty} \sum_{j=0}^{r_\epsilon(n)-1} \mathbb{E} \left[D(\theta_n-r_\epsilon(n)+j, \theta_n-r_\epsilon(n)) \right] = 0$.

- **Containment C(a):** recall $M_\epsilon(x, \theta) := \inf_n \{ \| P^n_\theta(x, \cdot) - \pi \|_{TV} \leq \epsilon \}$, and assume
 \[
 \forall \delta > 0, \epsilon > 0, \exists M_{\epsilon,\delta} \quad \text{s.t.} \quad \forall n \quad P(M_\epsilon(X_n, \theta_n) \leq M_{\epsilon,\delta}) \geq 1 - \delta.
 \]

- **Diminishing Adaptation C(b):** $\lim_{n \to \infty} \mathbb{E} [D(\theta_{n-1}, \theta_n)] = 0$.

- **C(a), C(b) \Rightarrow A2(a), A2(b) by taking e.g. $r_\epsilon(n) = M_{\epsilon/2,\epsilon/2}$.

- **if** $r_\epsilon(n) = \text{const}(\epsilon) = r_\epsilon$, **then**
 A2(a), A2(b) \Rightarrow C(a), C(b) by taking e.g. $M_{\epsilon,\delta} := r_\epsilon \delta$.

Krzysztof Latuszynski (University of Warwick, UK) Adaptive MCMC
Comparison to containment

- **A2(a):** For any $\epsilon > 0$, $\exists r_{\epsilon}(n)$, s.t. $\limsup_{n \to \infty} r_{\epsilon}(n)/n = 0$ and
 \[
 \limsup_{n \to \infty} \mathbb{E} \left[\| P_{\theta_{n-r_{\epsilon}(n)}}^{r_{\epsilon}(n)} X_{n-r_{\epsilon}(n)}, \cdot \|_{TV} - \pi \right] \leq \epsilon.
 \]

- **A2(b):** For any $\epsilon > 0$, $\lim_{n \to \infty} \sum_{j=0}^{r_{\epsilon}(n)-1} \mathbb{E} \left[D(\theta_{n-r_{\epsilon}(n)+j}, \theta_{n-r_{\epsilon}(n)}) \right] = 0$.

- **Containment C(a):** recall $M_{\epsilon}(x, \theta) := \inf_n \{ \| P^n_{\theta} (x, \cdot) - \pi \|_{TV} \leq \epsilon \}$, and assume
 \[
 \forall \delta > 0, \epsilon > 0, \exists M_{\epsilon, \delta} \text{ s.t. } \forall n \ P(M_{\epsilon}(X_n, \theta_n) \leq M_{\epsilon, \delta}) \geq 1 - \delta.
 \]

- **Diminishing Adaptation C(b):** $\lim_{n \to \infty} \mathbb{E} [D(\theta_{n-1}, \theta_n)] = 0$.

- C(a), C(b) \Rightarrow A2(a), A2(b) by taking e.g. $r_{\epsilon}(n) = M_{\epsilon/2, \epsilon/2}$.

- if $r_{\epsilon}(n) = \text{const}(\epsilon) = r_{\epsilon}$, then
 A2(a), A2(b) \Rightarrow C(a), C(b) by taking e.g. $M_{\epsilon, \delta} := \epsilon \delta$.
Comparison to containment

- **A2(a):** For any $\epsilon > 0$, $\exists r_\epsilon(n)$, s.t. \(\limsup_{n \to \infty} r_\epsilon(n)/n = 0\) and
 \[
 \limsup_{n \to \infty} \mathbb{E} \left[\| P_{\theta_n-r_\epsilon(n)}^n (X_n-r_\epsilon(n), \cdot) - \pi \|_{TV} \right] \leq \epsilon.
 \]

- **A2(b):** For any $\epsilon > 0$,
 \[
 \lim_{n \to \infty} \sum_{j=0}^{r_\epsilon(n)-1} \mathbb{E} \left[D(\theta_{n-r_\epsilon(n)+j}, \theta_{n-r_\epsilon(n)}) \right] = 0.
 \]

- **Containment C(a):** Recall $M_\epsilon(x, \theta) := \inf_n \{\| P_\theta^n(x, \cdot) - \pi \|_{TV} \leq \epsilon\}$, and assume
 \[
 \forall \delta > 0, \epsilon > 0, \exists M_{\epsilon, \delta} \text{ s.t. } \forall n \ P(M_\epsilon(X_n, \theta_n) \leq M_{\epsilon, \delta}) \geq 1 - \delta.
 \]

- **Diminishing Adaptation C(b):** \(\lim_{n \to \infty} \mathbb{E} \left[D(\theta_{n-1}, \theta_n) \right] = 0\).

- **C(a), C(b) ⇒ A2(a), A2(b) by taking e.g.** $r_\epsilon(n) = M_{\epsilon/2, \epsilon/2}$.

- **if** $r_\epsilon(n) = \text{const}(\epsilon) = r_\epsilon$, **then**
 A2(a), A2(b) ⇒ C(a), C(b) by taking e.g. $M_{\epsilon, \delta} := r_{\epsilon \delta}$.
Comparison to containment

- A2(a): For any $\epsilon > 0$, $\exists r_\epsilon(n)$, s.t. $\limsup_{n \to \infty} r_\epsilon(n)/n = 0$ and
 \[
 \limsup_{n \to \infty} \mathbb{E} \left[\| P_{\theta_n - r_\epsilon(n)} \left(X_n - r_\epsilon(n), \cdot \right) - \pi \|_{TV} \right] \leq \epsilon.
 \]

- A2(b): For any $\epsilon > 0$, $\lim_{n \to \infty} \sum_{j=0}^{r_\epsilon(n)-1} \mathbb{E} \left[D(\theta_n - r_\epsilon(n)+j, \theta_n - r_\epsilon(n)) \right] = 0$.

- Containment C(a): recall $M_\epsilon(x, \theta) := \inf_n \{ \| P^n(x, \cdot) - \pi \|_{TV} \leq \epsilon \}$, and assume
 \[
 \forall \delta > 0, \epsilon > 0, \exists M_{\epsilon, \delta} \text{ s.t. } \forall n P(M_\epsilon(X_n, \theta_n) \leq M_{\epsilon, \delta}) \geq 1 - \delta.
 \]

- Diminishing Adaptation C(b): $\lim_{n \to \infty} \mathbb{E} [D(\theta_{n-1}, \theta_n)] = 0$.

- C(a), C(b) \Rightarrow A2(a), A2(b) by taking e.g. $r_\epsilon(n) = M_{\epsilon/2, \epsilon/2}$.

- if $r_\epsilon(n) = \text{const}(\epsilon) = r_\epsilon$, then
 A2(a), A2(b) \Rightarrow C(a), C(b) by taking e.g. $M_{\epsilon, \delta} := r_\epsilon \delta$.
Comparison to containment

- \(C(a), C(b) \Rightarrow A2(a), A2(b) \) by taking e.g. \(r_\epsilon(n) = M_{\epsilon/2, \epsilon/2} \).

- If \(r_\epsilon(n) = \text{const}(\epsilon) = r_\epsilon \), then \(A2(a), A2(b) \Rightarrow C(a), C(b) \) by taking e.g. \(M_{\epsilon, \delta} := r_{\epsilon \delta} \).

- Therefore \(A2(a), A2(b) \) generalize \(C(a), C(b) \) (rather then weaken) and the generalization is in settings where \(r_\epsilon(n) \) needs to grow to \(\infty \) as \(n \to \infty \).

- We shall **try to investigate**, what happens if \(r_\epsilon(n) \) needs to grow to \(\infty \) as \(n \to \infty \).
Comparison to containment

- $C(a), C(b) \Rightarrow A2(a), A2(b)$ by taking e.g. $r_{\epsilon}(n) = M_{\epsilon/2, \epsilon/2}$.

- If $r_{\epsilon}(n) = \text{const}(\epsilon) = r_{\epsilon}$, then $A2(a), A2(b) \Rightarrow C(a), C(b)$ by taking e.g. $M_{\epsilon, \delta} := r_{\epsilon \delta}$.

- Therefore $A2(a), A2(b)$ generalize $C(a), C(b)$ (rather then weaken) and the generalization is in settings where $r_{\epsilon}(n)$ needs to grow to ∞ as $n \to \infty$.

- We shall try to investigate, what happens if $r_{\epsilon}(n)$ needs to grow to ∞ as $n \to \infty$.
Comparison to containment

- C(a), C(b) ⇒ A2(a), A2(b) by taking e.g. \(r_\epsilon(n) = M_{\epsilon/2, \epsilon/2} \).
- if \(r_\epsilon(n) = \text{const}(\epsilon) = r_\epsilon \), then
 A2(a), A2(b) ⇒ C(a), C(b) by taking e.g. \(M_{\epsilon, \delta} := r_{\epsilon\delta} \).
- Therefore A2(a), A2(b) generalize C(a), C(b) (rather then weaken) and the generalization is in settings where \(r_\epsilon(n) \) needs to grow to \(\infty \) as \(n \to \infty \).

- We shall try to investigate, what happens if \(r_\epsilon(n) \) needs to grow to \(\infty \) as \(n \to \infty \).
Comparison to containment

- $C(a), C(b) \Rightarrow A2(a), A2(b)$ by taking e.g. $r_\epsilon(n) = M_{\epsilon/2, \epsilon/2}$.
- If $r_\epsilon(n) = \text{const}(\epsilon) = r_\epsilon$, then $A2(a), A2(b) \Rightarrow C(a), C(b)$ by taking e.g. $M_{\epsilon, \delta} := r_{\epsilon \delta}$.
- Therefore $A2(a), A2(b)$ generalize $C(a), C(b)$ (rather than weaken) and the generalization is in settings where $r_\epsilon(n)$ needs to grow to ∞ as $n \rightarrow \infty$.

- We shall try to investigate, what happens if $r_\epsilon(n)$ needs to grow to ∞ as $n \rightarrow \infty$.

a new class: \textbf{AdapFail Algorithms}

- an adaptive algorithm $\mathcal{A} \in \text{AdapFail}$, if with positive probability, it is asymptotically less efficient than any MCMC algorithm with fixed θ.

- more formally, \textbf{AdapFail} can be defined e.g. as follows: $\mathcal{A} \in \text{AdapFail}$, if

\[
\forall \epsilon_* > 0, \ \exists 0 < \epsilon < \epsilon_*, \ \text{s.t.} \ \lim_{K \to \infty} \inf_{\theta \in \Theta} \lim_{n \to \infty} P\left(M_\epsilon(X_n, \theta_n) > K M_\epsilon(\tilde{X}_n, \theta) \right) > 0,
\]

where $\{\tilde{X}_n\}$ is a Markov chain independent of $\{X_n\}$, which follows the fixed kernel P_θ.

- QuasiLemma: If containment doesn’t hold for \mathcal{A} then $\mathcal{A} \in \text{AdapFail}$.

- If $A_2(a)$, $A_2(b)$ hold but $C(a)$, $C(b)$ do not hold, then $\mathcal{A} \in \text{AdapFail}$, but it deteriorates slowly enough (due to more restrictive $A_2(b)$), so that marginal distributions (still) converge, and SLLN (still) holds.

- However, if $\mathcal{A} \not\in \text{AdapFail}$, then we do not want to use it anyway!!
a new class: $\text{AdapFail Algorithms}$

- an adaptive algorithm $\mathcal{A} \in \text{AdapFail}$, if with positive probability, it is asymptotically less efficient than ANY MCMC algorithm with fixed θ.

- more formally, AdapFail can be defined e.g. as follows: $\mathcal{A} \in \text{AdapFail}$, if

\[
\forall \epsilon_*>0, \; \exists 0<\epsilon<\epsilon_*, \; \text{s.t.} \; \lim_{K \to \infty} \inf_{\theta \in \Theta} \lim_{n \to \infty} P\left(M_\epsilon(X_n, \theta_n) > K M_\epsilon(\tilde{X}_n, \theta)\right) > 0,
\]

where $\{\tilde{X}_n\}$ is a Markov chain independent of $\{X_n\}$, which follows the fixed kernel P_θ.

- **QuasiLemma:** If containment doesn’t hold for \mathcal{A} then $\mathcal{A} \in \text{AdapFail}$.

- If $A_2(a), A_2(b)$ hold but $C(a), C(b)$ do not hold, then $\mathcal{A} \in \text{AdapFail}$, but it deteriorates slowly enough (due to more restrictive $A_2(b)$), so that marginal distributions (still) converge, and SLLN (still) holds.

- However, if $\mathcal{A} \in \text{AdapFail}$, then we do not want to use it anyway!!
an adaptive algorithm $\mathcal{A} \in \text{AdapFail}$, if with positive probability, it is asymptotically less efficient than ANY MCMC algorithm with fixed θ.

more formally, AdapFail can be defined e.g. as follows: $\mathcal{A} \in \text{AdapFail}$, if

$$\forall \epsilon_* > 0, \; \exists 0 < \epsilon < \epsilon_*, \; \text{s.t.} \lim_{K \to \infty} \inf_{\theta \in \Theta} \lim_{n \to \infty} P\left(M_\epsilon(X_n, \theta_n) > K M_\epsilon(\tilde{X}_n, \theta) \right) > 0,$$

where $\{\tilde{X}_n\}$ is a Markov chain independent of $\{X_n\}$, which follows the fixed kernel P_θ.

QuasiLemma: If containment doesn’t hold for \mathcal{A} then $\mathcal{A} \in \text{AdapFail}$.

If A2(a), A2(b) hold but C(a), C(b) do not hold, then $\mathcal{A} \in \text{AdapFail}$, but it deteriorates slowly enough (due to more restrictive A2(b)), so that marginal distributions (still) converge, and SLLN (still) holds.

However, if $\mathcal{A} \in \text{AdapFail}$, then we do not want to use it anyway!!
a new class: **AdapFail Algorithms**

- an adaptive algorithm \(\mathcal{A} \in \text{AdapFail} \), if with positive probability, it is asymptotically less efficient than ANY MCMC algorithm with fixed \(\theta \).
- more formally, **AdapFail** can be defined e.g. as follows: \(\mathcal{A} \in \text{AdapFail} \), if

\[
\forall \epsilon_* > 0, \ \exists 0 < \epsilon < \epsilon_*, \ \text{s.t.} \ \lim_{K \to \infty} \inf_{\theta \in \Theta} \lim_{n \to \infty} P\left(M_\epsilon(X_n, \theta_n) > K M_\epsilon(\tilde{X}_n, \theta) \right) > 0,
\]

where \(\{\tilde{X}_n\} \) is a Markov chain independent of \(\{X_n\} \), which follows the fixed kernel \(P_\theta \).

QuasiLemma: If containment doesn’t hold for \(\mathcal{A} \) then \(\mathcal{A} \in \text{AdapFail} \).

- If A2(a), A2(b) hold but C(a), C(b) do not hold, then \(\mathcal{A} \in \text{AdapFail} \), but it deteriorates slowly enough (due to more restrictive A2(b)), so that marginal distributions (still) converge, and SLLN (still) holds.
- However, if \(\mathcal{A} \in \text{AdapFail} \), then we do not want to use it anyway!!
a new class: AdapFail Algorithms

- an adaptive algorithm $\mathcal{A} \in \text{AdapFail}$, if with positive probability, it is asymptotically less efficient than ANY MCMC algorithm with fixed θ.
- more formally, AdapFail can be defined e.g. as follows: $\mathcal{A} \in \text{AdapFail}$, if

$$\forall \epsilon_* > 0, \exists 0 < \epsilon < \epsilon_* \text{, s.t. } \lim_{K \to \infty} \inf_{\theta \in \Theta} \lim_{n \to \infty} P \left(M_\epsilon(X_n, \theta_n) > K M_\epsilon(\tilde{X}_n, \theta) \right) > 0,$$

where $\{\tilde{X}_n\}$ is a Markov chain independent of $\{X_n\}$, which follows the fixed kernel P_θ.
- **QuasiLemma:** If containment doesn’t hold for \mathcal{A} then $\mathcal{A} \in \text{AdapFail}$.
- If $A2(a), A2(b)$ hold but $C(a), C(b)$ do not hold, then $\mathcal{A} \in \text{AdapFail}$, but it deteriorates slowly enough (due to more restrictive $A2(b)$), so that marginal distributions (still) converge, and SLLN (still) holds.

- However, if $\mathcal{A} \in \text{AdapFail}$, then we do not want to use it anyway!!
a new class: AdapFail Algorithms

- an adaptive algorithm $\mathcal{A} \in \text{AdapFail}$, if with positive probability, it is asymptotically less efficient than \textbf{ANY} MCMC algorithm with fixed θ.

- more formally, \textbf{AdapFail} can be defined e.g. as follows: $\mathcal{A} \in \text{AdapFail}$, if

$$\forall \epsilon_* > 0, \exists 0 < \epsilon < \epsilon_*, \text{ s.t. } \lim_{K \to \infty} \inf_{\theta \in \Theta} \lim_{n \to \infty} P\left(M\epsilon(X_n, \theta_n) > K M\epsilon(\tilde{X}_n, \theta) \right) > 0,$$

where $\{\tilde{X}_n\}$ is a Markov chain independent of $\{X_n\}$, which follows the fixed kernel P_θ.

- \textbf{QuasiLemma:} If containment doesn’t hold for \mathcal{A} then $\mathcal{A} \in \text{AdapFail}$.

- If $A2(a)$, $A2(b)$ hold but $C(a)$, $C(b)$ do not hold, then $\mathcal{A} \in \text{AdapFail}$, but it deteriorates slowly enough (due to more restrictive $A2(b)$), so that marginal distributions (still) converge, and SLLN (still) holds.

- However, if $\mathcal{A} \in \text{AdapFail}$, then \textbf{we do not want to use it anyway!!}
Current Challenges - theory and methodology

- Simplify the theoretical analysis of Adaptive MCMC
- Prove THE THEOREM that you can actually do it under verifiable conditions
- Design algorithms that are easier to analyse (recall the Adaptive Metropolis sampler)
- Devise other sound criteria that would guide adaptation (similarly as the 0.234 acceptance rule does)
- Adaptive MCMC is increasingly popular among practitioners - a research opportunity with large impact
- Good review articles: [AT08], [RR09], [Ros08], [Ros13] (from which I took the Goldilock principle plots)
Current Challenges - theory and methodology

- Simplify the theoretical analysis of Adaptive MCMC
- Prove THE THEOREM that you can actually do it under verifiable conditions
- Design algorithms that are easier to analyse (recall the Adaptive Metropolis sampler)
- Devise other sound criteria that would guide adaptation (similarly as the 0.234 acceptance rule does)
- Adaptive MCMC is increasingly popular among practitioners - a research opportunity with large impact
- Good review articles: [AT08], [RR09], [Ros08], [Ros13] (from which I took the Goldilock principle plots)
Current Challenges - theory and methodology

- Simplify the theoretical analysis of Adaptive MCMC
- Prove THE THEOREM that you can actually do it under verifiable conditions
- Design algorithms that are easier to analyse (recall the Adaptive Metropolis sampler)
- Devise other sound criteria that would guide adaptation (similarly as the 0.234 acceptance rule does)
- Adaptive MCMC is increasingly popular among practitioners - a research opportunity with large impact
- Good review articles: [AT08], [RR09], [Ros08], [Ros13] (from which I took the Goldilock principle plots)
Current Challenges - theory and methodology

- Simplify the theoretical analysis of Adaptive MCMC
- Prove THE THEOREM that you can actually do it under verifiable conditions
- Design algorithms that are easier to analyse (recall the Adaptive Metropolis sampler)
- Devise other sound criteria that would guide adaptation (similarly as the 0.234 acceptance rule does)
- Adaptive MCMC is increasingly popular among practitioners - a research opportunity with large impact
- Good review articles: [AT08], [RR09], [Ros08], [Ros13] (from which I took the Goldilock principle plots)
Current Challenges - theory and methodology

- Simplify the theoretical analysis of Adaptive MCMC
- Prove THE THEOREM that you can actually do it under verifiable conditions
- Design algorithms that are easier to analyse (recall the Adaptive Metropolis sampler)
- Devise other sound criteria that would guide adaptation (similarly as the 0.234 acceptance rule does)
- Adaptive MCMC is increasingly popular among practitioners - a research opportunity with large impact
- Good review articles: [AT08], [RR09], [Ros08], [Ros13] (from which I took the Goldilock principle plots)
Current Challenges - theory and methodology

- Simplify the theoretical analysis of Adaptive MCMC
- Prove THE THEOREM that you can actually do it under verifiable conditions
- Design algorithms that are easier to analyse (recall the Adaptive Metropolis sampler)
- Devise other sound criteria that would guide adaptation (similarly as the 0.234 acceptance rule does)
- Adaptive MCMC is increasingly popular among practitioners - a research opportunity with large impact
- Good review articles: [AT08], [RR09], [Ros08], [Ros13] (from which I took the Goldilock principle plots)
C. Andrieu and J. Thoms.
A tutorial on adaptive MCMC.

On the containment condition for adaptive Markov chain Monte Carlo algorithms.

G. Fort, E. Moulines, and P. Priouret.
Convergence of adaptive mcmc algorithms: Ergodicity and law of large numbers.
2010.

Adaptive markov chain monte carlo through regeneration.
H. Haario, E. Saksman, and J. Tamminen.
An adaptive Metropolis algorithm.

R.A. Levine and G. Casella.
Optimizing random scan Gibbs samplers.

Adaptive Gibbs samplers and related MCMC methods.

Weak convergence and optimal scaling of random walk Metropolis algorithms.

J.S Rosenthal.
Optimal proposal distributions and adaptive MCMC.
Preprint, 2008.
J.S. Rosenthal.
Optimising and adapting the metropolis algorithm.

Optimal scaling for various Metropolis-Hastings algorithms.

Examples of adaptive MCMC.

E. Saksman and M. Vihola.
On the ergodicity of the adaptive metropolis algorithm on unbounded domains.