
1.8 The site frequency spectrum

The simplest statistic for a sample under the infinitely many sites mutation model is the number
of segregating sites, whose distribution we discussed in §1.5, but one can also ask for more detailed
information.

Definition 1.23 (Site frequency spectrum) For a sample of size k under the infinitely many sites
mutation model, write Mj(k) for the number of sites at which exactly j individuals carry a mutation.
The vector (M1(k),M2(k), . . . ,Mk(k)) is called the site frequency spectrum of the sample.

PICTURE

Lemma 1.24 If the genealogy of the sample is determined by the Kingman coalescent, then under the
infinitely many sites model we have

E[Mj(k)] =
θ

j
. (5)

Note: the θ here is as before, so mutations occur at rate θ/2 along each ancestral lineage.
Proof of Lemma 1.24

We use the duality between the Kingman coalescent and the Moran model. Suppose that a mutation
arose at time −t (that is t before the present) and denote individuals in our sample carrying that
mutation as type a. For the dual Moran model (with population size k), we think of the sample as
the whole population and so the Moran population has nothing to do with the population from which
we are sampling. From the point of view of the Moran model, the probability that we see j type a
individuals in the sample is the probability that a mutation arising on a single individual at time zero
is carried by j individuals at time t later. We write Xt for the number of type a individuals at time t
and p(t, i, j) = P[Xt = j|X0 = i]. In this notation, the probability that at time 0 there are exactly j
type a individuals in the sample is p(t, 1, j).

Since each mutation occurs at a different point on the genome and mutations occur at rate θ/2 per
individual (and the population size is k), the expected total number of sites at which we see a mutation
carried by exactly j individuals is then just

E[Mj(k)] =

∫ ∞

0
k
θ

2
p(t, 1, j)dt. (6)

Now G(i, j) ≡
∫ ∞

0 p(t, i, j)dt is just the expected total time that the process {Xt}t≥0 spends in site j
if it started from i and our next task is to calculate this.

Note that if Xs = i, then it moves to a new value at rate i(k − i) (which is just the number of the
(

k
2

)

ways of sampling a pair from the population in which the two individuals sampled are of different
types) and when it does move, it is equally likely to move to i− 1 or i+ 1. Let

Ti = inf{t > 0 : Xt = i}
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denote the first hitting time of site i. Then since 0 is a trap for the process we have

G(1, j) = P[Tj < T0|X0 = 1] ·G(j, j).

Now, because it is just a timechange of a simple random walk,for 0 ≤ i ≤ j,

P[T0 < Tj|X0 = i] =
j − i

j
,

and similarly, for j ≤ l ≤ k,

P[Tk < Tj |X0 = l] =
l − j

k − j
.

Thus, partitioning on whether the first jump out of j is to j−1 or to j+1, we find that if it is currently
at j, the probability that this is the last visit that Xt makes to j is

ρ =
1

2

1

j
+

1

2

1

k − j
=

1

2

k

j(k − j)
.

In other words, if we start from j, the number of visits to j (including the current one) before either the
allele is fixed in the population or lost is geometric with parameter ρ. Each visit lasts an exponentially
distributed time with mean 1

j(k−j) . Thus

G(1, j) =
1

j
G(j, j) =

1

j

1

ρ

1

j(k − j)
=

2

kj
.

Substituting into (6) completes the proof. 2

1.9 The lookdown process

The consistency of the k-coalescents for different values of k ∈ N allowed us to recover all of them
as projections of a single stochastic process, Kingman’s coalescent. Since genealogical trees for the
Moran model are precisely governed by the Kingman coalescent, it is reasonable to hope that we
can also construct Moran models corresponding to different population sizes as projections of a single
stochastic process. This is at the heart of the powerful Donnelly & Kurtz lookdown process.

To see how it works, we exploit the connection with the Kingman coalescent. Suppose that the
population at the present time is labelled {1, 2, . . . , N}. Recall that the full description of the Kingman
coalescent is as a process taking values among the set of equivalence relations on {1, 2, . . . , N}, with
each ancestral lineage corresponding to a single equivalence class. Now suppose that we label each
equivalence class by its smallest element. If blocks with labels i < j coalesce, then after the coalescence
the new block is necessarily labelled i. In our graphical representation of the Moran model, this
just dictates the direction of the arrow corresponding to that coalescence event; it will always be the
individual with the smaller label that gave birth. Backwards in time, our process is equivalent to one
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in which, as before, at the points of a rate one Poisson process π(i,j) arrows are drawn joining the
labels i and j, but now the arrows are always in the same direction (upwards with our convention).
The genealogies are still determined by the Kingman coalescent, we have simply chosen a convenient
labelling, and so in particular they are precisely those of the Moran model. But what about forwards in
time? What we saw backwards in time was that choosing the direction of the arrows corresponded to
choosing a particular labelling of the population. If the distribution of the population is exchangeable,
that is it doesn’t depend on the labelling, then forwards in time too we should not have changed the
distribution in our population. Our next task will be to check this, but first we need a formal definition.

Definition 1.25 (The N-particle lookdown process) The N -particle lookdown process will be de-
noted by the vector (ζ1(t), . . . , ζN (t)). Each index is thought of as representing a ‘level’, with ζi(t)
denoting the allelic type of the individual at level i at time t. The evolution of the process is described
as follows. The individual at level k is equipped with an exponential clock with rate (k−1), independent
of all other individuals. At the times determined by the corresponding Poisson process it selects a level
uniformly at random from {1, 2, . . . , k − 1} and adopts the current type of the individual at that level.
The levels of the individuals involved in the event do not change.

Remark 1.26 Because of our convention over the interpretation of arrows, it is not at all clear from
the above why one should call this the lookdown process. The explanation is that at rate (k − 1) the
kth individual looks down to a level chosen uniformly at random from those below and adopts the type
of the individual at that level.

To see that the lookdown process and the Moran model produce the same distribution of types in the
population, provided we start from an exchangeable initial condition, we examine their infinitesimal
generators. Recall the definition of the generator of a continuous time Markov process.

Definition 1.27 (Generator of a continuous time Markov process) Let {Xt}t≥0 be a real-valued
continuous time Markov process. For simplicity suppose that it is time homogeneous. For a function
f : R → R define

Lf(x) = lim
δt↓0

E[f(Xδt) − f(x)|X0 = x]

δt

if the limit exists. We’ll call the set D(L) of functions for which the limit exists the domain of L and
the operator L acting on D(L) the infinitesimal generator of {Xt}t≥0.

If we know L, then we can write down a differential equation for the way that E[f(Xt)] evolves with
time. If Lf is defined for sufficiently many different functions then this completely characterises the
distribution of {Xt}t≥0.

We suppose that the types of individuals are sampled from some type space E. The Moran model
for a population of size N is then simply a continuous time Markov chain on EN and its infinitesimal
generator, KN , evaluated on a function f : EN → R, is given by

KNf(x1, x2, . . . , xN ) =

N
∑

i=1

Aif(x1, x2, . . . , xN ) +
1

2

N
∑

i=1

N
∑

j=1

[Φijf(x1, . . . , xN ) − f(x1, . . . , xN )] , (7)
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where Φijf(x1, . . . , xN ) is the function obtained from f by replacing xj by xi. The operator Ai is the
generator of the mutation process, A, acting on the ith coordinate. (Recall that in the Moran model
mutation was superposed as a Markov process along lineages.)

The generator of the N -particle lookdown process, LN is given by

LNf (x1, x2, . . . , xN ) =
N

∑

i=1

Aif (x1, x2, . . . , xN ) +
∑

1≤i<j≤N

[Φijf (x1, x2 . . . , xN ) − f (x1, x2 . . . , xN )] .

(8)
Assuming that we start both processes from the same exchangeable initial condition, we should like

to show that, (ζ1(t), ζ2(t), . . . , ζN (t)) and the types under the original Moran process which we denote
(Z1(t), Z2(t), . . . , ZN (t)) have the same distribution for each fixed t > 0, even though the processes are
manifestly different.

Following Dawson (1993), we check that the generators of the two processes agree on symmetric
functions. Observe first that any symmetric function, f , satisfies

f (x1, x2, . . . , xN ) =
1

N !

∑

π

f
(

xπ(1), xπ(2), . . . , xπN

)

,

where the sum is over all permutations of {1, 2, . . . , N}. Substituting this expression for f into equa-
tion (8), we recover precisely equation (7). In other words, the generators of (ζ1, ζ2, . . . , ζN ) and
(Z1, Z2, . . . , ZN ) agree on symmetric functions as required. (We are implicitly assuming uniqueness of
the distribution on symmetric functions corresponding to this generator. It follows from duality with
the N -coalescent, but we don’t allow that to detain us here.)

The key observation now is that our Nth lookdown process is simply the first N levels of the
(N + k)th lookdown process for any k ≥ 1. The infinite lookdown process can then be constructed as
a projective limit.

Theorem 1.28 (Donnelly & Kurtz 1996) There is an infinite exchangeable particle system {Wi, i ∈
N} such that for each N ,

(W1,W2, . . . ,WN )
D
= (ζ1, ζ2, . . . , ζN ) ,

where ζ1, ζ2, . . . , ζN is the N -particle lookdown process.

Remark 1.29 In fact more is true. It is known that the sequence of empirical measures 1
N

∑N
i=1 δZi(t)

converges to a Fleming-Viot superprocess as N → ∞. Donnelly & Kurtz also show that

Y = lim
N→∞

1

N

N
∑

i=1

δWi
,

is a Fleming-Viot superprocess. Rather than introduce the general Fleming-Viot superprocess, which
takes its values among probability measures on the type space E, in §1.10 we shall consider what this
limit looks like in the special case when E is a two-point set representing two alleles a and A in which
case it is enough to specify the evolution of the proportion of type a individuals in the population.
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Since the genealogy of a sample of size k from the Moran model is a k-coalescent and since we’ve seen
that the genealogy of the first k levels in the lookdown process is also a k-coalescent, with this labelling
we have a nice consistent way of sampling from a Moran model of arbitrary size. The genealogy of the
sample is that of the first k levels in the lookdown process. And the evolution of those levels does not
depend on the population size - because we only ever look ‘down’ we don’t see the population size N
at all.

1.10 A more simplistic limit

Rather than discussing general Fleming-Viot superprocesses (which would allow us to consider essen-
tially arbitrary type spaces) we now turn to identifying the limiting model for allele frequencies when
our population is subdivided into just two types which, as usual, we label a and A. Just as in our
discussion of the rescaled Wright-Fisher model, we consider the proportion, pt, of individuals of type a
at time t.

The only possible mutations are between the two types. We suppose that each type a individual
mutates to type A at rate ν1 and each type A individual mutates to type a at rate ν2. Recall that for
the Moran model we are already in the timescale of the Kingman coalescent and so we should think of
νi = Nµi where µ1 and µ2 are the true mutation rates.

Remark 1.30 The idea that we can mutate backwards and forwards between types may seem at odds
with our discussion of mutations in §1.3. Models of this type were introduced long before biologists
knew about and had access to DNA sequences. Classically one might imagine a small number of alleles
defined through phenotype, for example colour. In modern terms one can justify the model by pooling
sequences into classes according to the corresponding phenotype.

The generator for the Moran model for a population of size N is then

LNf(p) =

(

N

2

)

p(1 − p)

(

f(p+
1

N
) − f(p)

)

+

(

N

2

)

p(1 − p)

(

f(p− 1

N
) − f(p)

)

+Nν1p

(

f(p− 1

N
) − f(p)

)

+Nν2(1 − p)

(

f(p+
1

N
) − f(p)

)

.

To see this, note that the reproduction events in the Moran model take place at the points of a Poisson
process with rate

(

N
2

)

and at the time of such a transition, if the current proportion of a alleles is p,
then

p 7→ p+
1

N
with probability p(1 − p),

p 7→ p− 1

N
with probability p(1 − p)

and there is no change with probability 1− 2p(1− p). The chance that we see a reproduction event in
a time interval of length δt is

(

N

2

)

δt+ O((δt)2)
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and the probability of seeing more than one transition is O((δt)2). For mutation events, at total rate
Npν1, one of the Np type a individuals will mutate to type A, resulting in a reduction of p by 1/N
and at total rate N(1− p)ν2 one of the N(1− p) type A individuals will mutate to type a. Putting all
this together gives that for f : [0, 1] → R and p = i

N
for some i ∈ {0, 1, . . . , N}

LNf(p) =

(

N

2

)

p(1 − p)

(

f(p+
1

N
) − f(p)

)

+

(

N

2

)

p(1 − p)

(

f(p− 1

N
) − f(p)

)

+Npν1

(

f(p+
1

N
) − f(p)

)

+Npν2

(

f(p− 1

N
) − f(p)

)

.

To see what our population process will look like for large N we take f to be twice continuously
differentiable and use Taylor’s Theorem to find an approximation for Lf . Thus

LNf(p) =

(

N

2

)

p(1 − p)
(

f(p) +
1

N
f ′(p) +

1

2N2
f ′′(p) + O(

1

N3
) − f(p)

)

+

(

N

2

)

p(1 − p)
(

f(p) − 1

N
f ′(p) +

1

2N2
f ′′(p) + O(

1

N3
) − f(p)

)

−Npν1

(

f(p) +
1

N
f ′(p) + O(

1

N2

)

+N(1 − p)ν2

(

f(p) − 1

N
f ′(p) + O(

1

N2

)

=
1

2
p(1 − p)f ′′(p) + ((1 − p)ν2 − pν1)f

′(p) + O(
1

N
).

So as N → ∞, LN → L where

Lf(p) =
d

dt
E[f(pt)|p0 = p]

∣

∣

∣

∣

t=0

=
1

2
p(1 − p)f ′′(p) + (ν2 − (ν1 + ν2)p)f

′(p). (9)

In particular, if we set ν1 = ν2 = 0 we obtain

Lf(p) =
1

2
p(1 − p)f ′′(p)

which is exactly the generator that we obtained in the large population limit from our Wright-Fisher
model. It is not hard to extend the work that we did there to include mutations and recover the full
generator (9).

What we have written down is the generator of a one-dimensional diffusion. We should like to
be able to use the convergence of generators that we have verified to justify using the corresponding
one-dimensional diffusion as an approximation for the Moran, Wright-Fisher and Cannings models (on
suitable timescales).

Theorem 1.31 Let E be a metric space. Suppose that for each N ∈ N, {X(N)
t }t≥0 is an E-valued

Markov processes with generator LN and that X is an E-valued Markov process with generator L. If,
for every f ∈ D(L),

lim
N→∞

LNf(x) = Lf(x), uniformly for x ∈ E,
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then the finite-dimensional distributions of X(N) converge to those of X. That is, for every finite set
of times 0 ≤ t1 < t2 < · · · < tn,

(X(N)(t1), . . . ,X
(N)(tn))

d→ (X(t1), . . . ,X(tn)) as N → ∞.

In fact we have used slightly more than this as our Wright-Fisher model was in discrete time. For that
Ethier & Kurtz, Chapter 1, Theorem 6.5 is exactly what we need.

Remark 1.32 This sort of convergence is enough to justify using our limiting Wright-Fisher diffusion
to approximate things like time to fixation and fixation probabilities. However, if we are really interested
in the genealogies of populations, then we need more. For our Moran models, the Donnelly-Kurtz
lookdown construction gave us a much stronger result. In general we must be careful. It is possible to
arrive at the same diffusion for allele frequencies from many different individual based models for our
population, and it is not always the case that the genealogies converge to the same limit.

Before we can exploit Theorem 1.31 we need to know that there is a Markov process with generator (9)
and that we can actually calculate quantities of interest for it. Happily both are true.

1.11 Diffusions

In this section we are going to remind ourselves of some useful facts about one-dimensional diffusions.
We start in a fairly general setting.

Definition 1.33 (One-dimensional diffusion) A one-dimensional diffusion process {Xt}t≥0 is a
strong Markov process on R which traces out a continuous path as time evolves.

At any instant in time, Xt is a continuous random variable but also any realisation of {Xt}t≥0 is a
continuous function of time. Its range need not be the whole of R and indeed for the most part we’ll
be interested in diffusions on (0, 1). For the time being let us take the state space to be an interval
(a, b) (possibly infinite). The generator of the diffusion takes the form

Lf(x) =
1

2
σ2(x)

d2f

dx2
(x) + µ(x)

df

dx
(x). (10)

Evidently for this to be defined f must be twice continuously differentiable on (a, b). Depending on the
behaviour of the diffusion close to the boundaries of its domain, f may also have to satisfy boundary
conditions at a and b. We’ll specify these precisely in Theorem 1.45, but for now assume that if we
apply the generator to a function then it is in the domain. To avoid pathologies, we make the following
assumptions:

1. For any compact interval I ⊂ (a, b), there exists ε > 0 such that σ2(x) > ε for all x ∈ I,

2. the coefficients µ(x) and σ2(x) are continuous functions of x ∈ (a, b).
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Note that (crucially for applications in genetics) we do allow σ2(x) to vanish at the boundary points
{a, b}. This is (more than) enough to guarantee that the diffusion has a transition density function,
denoted p(t, x, y) (see Knight 1981 Theorem 4.3.5 for a more general result).

Definition 1.34 The transition density function of {Xt}t≥0 is the function p : R+ × R × R → R+ for
which

P[Xt ∈ A|X0 = x] ≡ Px[Xt ∈ A] =

∫

A

p(t, x, y)dy

for any subset A ⊆ R.

Let us write ∆hX(t) = Xt+h −Xt, then taking f1(x) = x in the generator (and using the Markov
property) we see that

Lf1(Xt) = lim
h↓0

1

h
E[∆hX(t)|Xt] = µ(Xt)

and so
E[∆hX(t)|Xt] = hµ(Xt) + o(h) as h ↓ 0. (11)

Now observe that we can write (Xt+h−Xt)
2 = X2

t+h−X2
t −2Xt(Xt+h−Xt) and so, taking f2(x) = x2,

Lf2(Xt) − 2XtLf1(Xt) = lim
h↓0

1

h
E[ (∆hX(t))2

∣

∣Xt] = σ2(Xt)

which yields
E[ (∆hX(t))2

∣

∣Xt] = hσ2(Xt) + o(h) as h ↓ 0. (12)

This motivates the standard terminology.

Definition 1.35 (Infinitesimal drift and variance) The coefficients µ(x) and σ2(x) are called the
(infinitesimal) drift and variance of the diffusion {Xt}t≥0.

In fact if a strong Markov process {Xt}t≥0 is càdlàg (that is its paths are right continuous with left
limits) and satisfies (11), (12) and the additional condition

lim
h↓0

1

h
E[ |∆hX(t)|p|Xt = x] = 0 for some p > 2

where the convergence is uniform in (x, t) on compact subsets of (a, b)×R+, then {Xt}t≥0 is necessarily
a diffusion (see Karlin & Taylor, §15.1, Lemma 1.1).

The canonical example of a one-dimensional diffusion is one-dimensional Brownian motion which
has generator

LBf(x) =
1

2

d2f

dx2
(x)
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and transition density function

p(t, x, y) =
1√
2πt

exp

(

−(x− y)2

2t

)

.

Brownian motion can be thought of as a building block from which other one-dimensional diffusions
are constructed. One approach is to observe that the diffusion corresponding to the generator L of
equation (10) can be expressed as the solution of a stochastic differential equation driven by Brownian
motion (with appropriate boundary conditions)

dXt = µ(Xt)dt + σ(Xt)dBt.

Remark 1.36 (Mathematical drift versus genetic drift) We have already encountered the Wright-
Fisher diffusion several times, corresponding to the solution of the stochastic differential equation

dpt = (ν2(1 − pt) − ν1pt)dt+
√

pt(1 − pt)dBt.

It is an unfortunate accident of history, that the standard terminology for the stochastic term (driven
by Brownian motion) is genetic drift, whereas to a mathematician it is the deterministic mutation term
that corresponds to drift.

1.11.1 Speed and scale

Our approach to constructing one-dimensional diffusions from Brownian motion will not be via stochas-
tic differential equations, but rather through the theory of speed and scale. A nice feature of one
dimensional diffusions is that many quantities can be calculated explicitly. This is because (except
at certain singular points which will only ever be at a or b under our conditions) all one-dimensional
diffusions can be transformed into Brownian motion first by a change of space variable (through the
so-called scale function) and then a timechange (through what is known as the speed measure).

To see how this works, we first investigate what happens to a diffusion when we change the timescale.
Suppose that a diffusion {Zt}t≥0 has generator LZ . We define a new process {Yt}t≥0 by Yt = Zτ(t)

where

τ(t) =

∫ t

0
β(Ys)ds,

for some function β(x) which we assume to be bounded, continuous and strictly positive. So if Y0 = Z0,
then the increment of Yt over an infinitesimal time interval (0, dt) is that of Zt over the interval
(0, dτ(t)) = (0, β(Y0)dt). In our previous notation,

E[∆hY (0)|Y (0)] = β(Y0)hµZ(Z0) + o(h) = β(Y0)µZ(Y0)h+ o(h),

and
E[(∆hY )2|Y0] = β(Y0)hσ

2
Z(Z0) + o(h) = β(Y0)σ

2(Y0)h+ o(h).
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In other words,
LY f(x) = β(x)LZf(x).

We are now in a position to understand speed and scale. Let {Xt}t≥0 be governed by the generator (10).
Suppose now that S(x) is a strictly increasing function on (a, b) and consider the new process Zt =
S(Xt). Then the generator LZ of Z can be calculated as

LZf(x) =
d

dt
E[f(Zt)|Z0 = x]

∣

∣

∣

∣

t=0

=
d

dt
E[f(S(Xt))|S(X0) = x]

∣

∣

∣

∣

t=0

=
1

2
σ2(S−1(x))

d2

dx2
(f(x) + µ(S−1(x))

d

dx
f(x)

=
1

2
σ2(S−1(x))

{

(S′(x))2
d2f

dx2
(x) + S′′(x)

df

dx
(x)

}

+ µ(S−1(x))S′(x)
df

dx
(x)

=
1

2
σ2(S−1(x))S′(S−1(x))2

d2

dx2
f(x) + LS(x)

d

dx
f(x). (13)

Now if we can find a strictly increasing function S that satisfies LS ≡ 0, then the drift term (in the
mathematical sense) in (13) will vanish and so Zt will just be a time change of Brownian motion on
the interval (S(a), S(b)). Such an S is provided by the scale function of the diffusion.

Definition 1.37 (Scale function) For a diffusion Xt on (a, b) with drift µ and variance σ2, the scale
function is defined by

S(x) =

∫ x

x0

exp

(

−
∫ y

η

2µ(z)

σ2(z)
dz

)

dy,

where x0, η are points fixed (arbitrarily) in (a, b).

The scale change resulted in a timechanged Brownian motion. The change of time required to
transform this into standard Brownian motion is dictated by the speed measure.

Definition 1.38 (Speed measure) The function m(ξ) = 1
σ2(ξ)S′(ξ)

is the density of the speed mea-

sure or just the speed density of the process Xt. We write

M(x) =

∫ x

x0

m(ξ)dξ.

Remark 1.39 The function m plays the rôle of β before. Notice that
∫ x

x0

m(ξ)dξ =

∫ S(x)

S(x0)
m(S−1(y))

1

S′(S−1(y))
dy =

∫ S(x)

S(x0)

1

σ2(S−1(y))
(

S′(S−1(y))
)2dy.

The additional S′(y) in the generator (13) has been absorbed since our time change is applied to a
diffusion on (S(a), S(b)).
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In summary, we have the following.

Lemma 1.40 Denoting the scale function and the speed measure by S and M respectively we have

Lf =
1

2

1

dM/dS

d2f

dS2
=

1

2

d

dM

(

df

dS

)

.

Proof

1

2

d

dM

(

df

dS

)

=
1

2

1

dM/dx

d

dx

(

1

dS/dx

df

dx

)

=
1

2
σ2(x)S′(x)

d

dx

(

1

S′(x)

df

dx

)

=
1

2
σ2(x)

d2f

dx2
− 1

2
σ2(x)S′(x)

S′′(x)

(S′(x))2
df

dx

=
1

2
σ2(x)

d2f

dx2
+ µ(x)

df

dx

(since S solves LS = 0) as required. 2

1.11.2 Hitting probabilities and Feller’s boundary classification

Before going further, let’s see how we might apply this. Suppose that a diffusion process on (0, 1)
represents the frequency of an allele, a say, in a population and that zero and one are traps for the
process. One question that we should like to answer is “What is the probability that the a-allele is
eventually lost from the population?” In other words, what is the probability that the diffusion hits
zero before one? To prove a general result we need first to be able to answer this question for Brownian
motion.

Lemma 1.41 Let {Bt}t≥0 be standard Brownian motion on the line. For each y ∈ R, let Ty denote
the random time at which it hits y for the first time. Then for a < x < b,

P[Ta < Tb|B0 = x] =
b− x

b− a
.

Sketch of Proof
Let u(x) = P[Ta < Tb|B0 = x] and choose h small enough that P[Ta ∧ Tb < h|B0 = x] = o(h). We

suppose that u is twice differentiable, then

u(x) = E[u(Bh)|B0 = x] + o(h)

= E[u(x) + (Bh − x)u′(x) +
1

2
(Bh − x)2u′′(x)] + o(h)

= u(x) +
1

2
hu′′(x) + o(h).
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Subtracting u(x) from each side, dividing by h and letting h tend to zero, we obtain u′′(x) = 0. We
also have the boundary conditions u(a) = 1 and u(b) = 0. This is easily solved to give

u(x) =
b− x

b− a

as required. 2 Of course this reflects the corresponding result for simple random walk that we used in
the proof of Lemma ??. In general we can reduce the corresponding question for {Xt}t≥0 to solution
of the equation Lu(x) = 0 with u(a) = 1 and u(b) = 0, but in fact we have already done all the work
we need. We have the following result.

Lemma 1.42 (Hitting probabilities) Let {Xt}t≥0 be a one-dimensional diffusion on (a, b) with in-
finitesimal drift µ(x) and variance σ2(x) satisfying the conditions above. If a < a0 < x < b0 < b
then

P[Ta0
< Tb0 |X0 = x] =

S(b0) − S(X0)

S(b0) − S(a0)
,

where S is the scale function for the diffusion.

Remark 1.43 Notice that η cancels in the ratio and x0 in the difference, so that this ratio is well-
defined.

Proof
Evidently it is enough to consider the corresponding hitting probabilities for the process Zt = S(Xt),

where S is the scale function. The process Zt is a time changed Brownian motion, but since we only
care about where not when the process exits the interval (S(a0), S(b0)), then we need only determine
the hitting probabilities for Brownian motion and the result follows immediately from Lemma 1.41. 2

Before continuing to calculate quantities of interest, we fill in a gap left earlier when we failed
to completely specify the domain of the generators of our one-dimensional diffusions. Whether or not
functions in the domain must satisfy boundary conditions at a and b is determined by the nature of those
boundaries from the perspective of the diffusion. More precisely, we have the following classification.

Definition 1.44 (Feller’s boundary classification) Define

u(x) =

∫ x

x0

MdS, v(x) =

∫ x

x0

SdM.

The boundary b is said to be

regular if u(b) <∞ and v(b) <∞
exit if u(b) <∞ and v(b) = ∞
entrance if u(b) = ∞ and v(b) <∞
natural if u(b) = ∞ and v(b) = ∞
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with symmetric definitions at a.
Regular and exit boundaries are said to be accessible while entrance and natural boundaries are

called inaccessible.

Theorem 1.45 The domain of the generator (10) is continuous functions f on [a, b] which are twice
continuously differentiable on the interior and for which

1. if a and b are inaccessible there are no further conditions,

2. if b (resp. a) is an exit boundary, then

lim
x→b

Lf(x) = 0
(

resp. lim
x→a

Lf(x) = 0
)

.

If b (resp. a) is a regular boundary, then for each q ∈ [0, 1] we get a different process by restricting f
in the domain to satisfy

q lim
x→b

Lf(x) = (1 − q) lim
x→b

S′(x)f ′(x)
(

resp. q lim
x→a

Lf(x) = −(1 − q) lim
x→a

S′(x)f ′(x)
)

.

For a more careful discussion see Ethier & Kurtz (1986), Chapter 8.

1.11.3 Green’s functions

Lemma 1.42 tells us the probability that we exit (a, b) for the first time through a, but can we glean
some information about how long we must wait for Xt to exit the interval (a, b) (either through
a or b) or, more generally, writing T ∗ for the first exit time of (a, b), can we say anything about

E[
∫ T ∗

0 g(Xs)ds|X0 = p]? (Putting g = 1 this gives the mean exit time.) Let us write

w(p) = E[

∫ T ∗

0
g(XS)ds|X0 = p]

and we’ll derive the differential equation satisfied by w.
We assume that g is continuous. First note that w(a) = w(b) = 0. Now consider a small interval of

time of length h. We’re going to split the integral into the contribution up to time h and after time h.
Because {Xt}t≥0 is a Markov process,

E[

∫ T ∗

h

g(Xs)ds|Xh = z] = E[

∫ T ∗

0
g(Xs)ds|X0 = z] = w(z)

and so for a < p < b

w(p) = E[

∫ h

0
g(Xs)ds|X0 = p] + E[w(Xh)|X0 = p]. (14)
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Since g is continuous and the paths of X are continuous we have the approximation

E[

∫ h

0
g(Xs)ds|X0 = p] = hg(p) + O(h2). (15)

Now subtract w(p) from both sides of (14), divide by h and let h ↓ 0 to obtain

µ(p)w′(p) +
1

2
σ2(p)w′′(p) = −g(p), w(a) = 0 = w(b). (16)

Let us now turn to solving this equation. Using Lemma 1.40 we have

d

dp

(

1

S′(p)
w′(p)

)

= −2g(p)m(p)

and so
1

S′(p)
w′(p) = −2

∫ p

a

g(ξ)m(ξ)dξ + β

where β is a constant. Multiplying by S′(p) and integrating gives

w(p) = −2

∫ p

a

S′(ξ)

∫ ξ

a

g(η)m(η)dηdξ + β(S(p) − S(a)) + α

for constants α, β. Since w(a) = 0, we immediately have that α = 0. Reversing the order of integration,

w(p) = −2

∫ p

a

∫ p

η

S′(ξ)dξg(η)m(η)dη + β(S(p) − S(a))

= −2

∫ p

a

(S(p) − S(η))g(η)m(η)dη + β(S(p) − S(a))

and w(b) = 0 now gives

β =
2

S(b) − S(a)

∫ b

a

(S(b) − S(η))g(η)m(η)dη.

Finally then

w(p) =
2

S(b) − S(a)

{

(S(p) − S(a))

∫ b

a

(S(b) − S(η))g(η)m(η)dη

− (S(b) − S(a))

∫ p

a

(S(p) − S(η))g(η)m(η)dη
}

=
2

S(b) − S(a)

{

(S(p) − S(a))

∫ b

a

(S(b) − S(η))g(η)m(η)dη

+ (S(b) − S(p))

∫ p

a

(S(η) − S(a))g(η)m(η)dη
}

where the last line is obtained by splitting the first integral into
∫ b

a
=

∫ b

p
+

∫ p

a
.
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Theorem 1.46 For a continuous function g,

E[

∫ T∗

0
g(Xs)ds|X0 = p] =

∫ b

a

G(p, ξ)g(ξ)dξ,

where for a < p < b we have

G(p, ξ) =

{

2 (S(p)−S(a))
(S(b)−S(a)) (S(b) − S(ξ))m(ξ), for p < ξ < b

2 (S(b)−S(p))
(S(b)−S(a)) (S(ξ) − S(a))m(ξ), for a < ξ < p,

with S the scale function given in Definition 1.37 and m(ξ) = 1
σ2(ξ)S′(ξ)

, the density of the speed
measure.

Definition 1.47 The function G(p, ξ) is called the Green’s function of the process Xt.

By taking g to approximate 1x1,x2
we see that

∫ x2

x1
G(p, ξ)dξ is the mean time spent by the process in

(x1, x2) before exiting (a, b) if initially X0 = p. Sometimes, the Green’s function is called the sojourn
density.

Example 1.48 Consider the Wright-Fisher diffusion with generator

Lf(p) =
1

2
p(1 − p)f ′′(p).

Notice that since it has no drift term (µ = 0) it is already in natural scale, S(x) = x (up to an arbitrary
additive constant). What about E[T ∗]?

Using Theorem 1.46 with g = 1 we have

Ep[T
∗] = E[

∫ T∗

0
1ds|X0 = p] =

∫ 1

0
G(p, ξ)dξ

= 2

∫ 1

p

p(1 − ξ)
1

ξ(1 − ξ)
dξ + 2

∫ p

0
(1 − p)ξ

1

ξ(1 − ξ)
dξ

= 2p

∫ 1

p

1

ξ
dξ + 2(1 − p)

∫ p

0

1

1 − ξ
dξ

= −2 {p log p+ (1 − p) log(1 − p)} .

2

In our Moran model, at least if the population is large, then we expect that if the current proportion
of a alleles is p, the time until either the a allele or the A allele is fixed in the population has mean
approximately

−2 {p log p+ (1 − p) log(1 − p)} . (17)
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In fact by conditioning on whether the proportion of a-alleles increases or decreases at the first repro-
duction event, one obtains a recurrence relation for the number of jumps until the process first hits
either zero or one. This recurrence relation can be solved explicitly and since jumps ocur at indepen-
dent exponentially distributed times with mean 1/

(

N
2

)

, it is easy to verify that (17) is indeed a good
approximation. For the Wright-Fisher model, in its original timescale, there is no explicit expression
for the expected time to fixation, t(p). However, since changes in p over a single generation are typically
small, one can expand t(p) in a Taylor series, in just the way we did to derive equation (1) and thus
verify that for a large population,

p(1 − p)t′′(p) = −2N, t(0) = 0 = t(1).

This is readily solved to give

t(p) = −2N {p log p+ (1 − p) log(1 − p)} ,

just as predicted by our diffusion approximation.

1.11.4 Stationary distributions and reversibility

Before moving on to models in which a gene is allowed to have more than two alleles, we consider one
last quantity for our one-dimensonial diffusions. First a general definition.

Definition 1.49 (Stationary distribution) Let {Xt}t≥0 be a Markov process on the space E. A
stationary distribution for {Xt}t≥0 is a probability distribution ψ on E such that if X0 has distribution
ψ, then Xt has distribution ψ for all t ≥ 0.

In particular this definition tells us that if ψ is a stationary distribution for {Xt}t≥0, then

d

dt
E [f(Xt)|X0 ∼ ψ] = 0,

where we have used X0 ∼ ψ to indicate that X0 is distributed according to ψ. In other words

d

dt

∫

E

E [f(Xt)|X0 = x]ψ(dx) = 0.

Evaluating the time derivative at t = 0 gives

∫

E

Lf(x)ψ(dx) = 0.

Sometimes this allows us to find an explicit expression for ψ(dx). Let {Xt}t≥0 be a one-dimensional
diffusion on (a, b) with generator given by (10). We’re going to suppose that there is a stationary
distribution which is absolutely continuous with respect to Lebesgue measure. Let us abuse notation a
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little by using ψ(x) to denote the density of ψ(dx) on (a, b). Then, integrating by parts, we have that
for all f ∈ D(L),

0 =

∫ b

a

{

1

2
σ2(x)

d2f

dx2
(x) + µ(x)

df

dx
(x)

}

ψ(x)dx

=

∫ b

a

f(x)

{

1

2

d2

dx2

(

σ2(x)ψ(x)
)

− d

dx
(µ(x)ψ(x))

}

dx+ boundary terms.

This equation must hold for all f in the domain of L and so, in particular,

1

2

d2

dx2

(

σ2(x)ψ(x)
)

− d

dx
(µ(x)ψ(x)) = 0.

Integrating once gives
1

2

d

dx

(

σ2(x)ψ(x)
)

− (µ(x)ψ(x)) = C1,

for some constant C1 and then using S′(x) as in integrating factor we obtain

d

dy

(

S′(y)σ2(y)ψ(y)
)

= C1S
′(y),

from which

ψ(x) = C1
S(x)

S′(x)σ2(x)
+ C2

1

S′(x)σ2(x)
= m(x) [C1S(x) + C2] .

If can arrange constants so that ψ ≥ 0 and

∫ b

a

ψ(ξ)dξ = 1

then the stationary density exists and equals ψ. In particular, if
∫ b

a
m(y)dy <∞, then

ψ(x) =
m(x)

∫ b

a
m(y)dy

is a stationary measure for the diffusion.

Example 1.50 Recall the generator of the Wright-Fisher diffusion with mutation,

Lf(x) =
1

2
x(1 − x)

d2f

dx2
+

(

ν2(1 − x) − ν2x
) df

dx
.
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