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What is recombination?

In a diploid population, chromosomes are carried in pairs, one
inherited from the mother, one from the father. But the chromosomes
are not faithful copies of the parental chromosomes. One reason is
recombination.
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The ancestral recombination graph
At a recombination event, we must trace two ancestral lineages: we
see branches as well as coalescences in the genealogy.

Trapped material

[0,3] [0,3]

[0,2] [2,3]

[1,2][0,1]

[0,1]U[2,3]

[0,3] [1,2]

Ancestry of the block denoted [0, 3] for a sample of size two.
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Local trees

Wiuf and Hein scan along the genome and study the process of ‘local
trees’.
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Local trees

Wiuf and Hein scan along the genome and study the process of ‘local
trees’.
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Knowing only the local tree for [1, 2], would not see the coalescence ∗.
Local trees do not form a Markov process.
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A diversion

To trace the ancestry of a block of genome we
must trace the joint location of multiple blocks.
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A diversion

To trace the ancestry of a block of genome we
must trace the joint location of multiple blocks.

Analytic results are hard to find. We consider a
simpler process: the descent of a block of
genome forwards in time.
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The model

Each individual mates with an unrelated individual to produce a
Poiss(2(1 + s)) number of offspring. 0 ≤ s ≪ 1.
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The model

Each individual mates with an unrelated individual to produce a
Poiss(2(1 + s)) number of offspring. 0 ≤ s ≪ 1.

Genome of map length y ≤ 1. With probability y there is one crossover
at a uniformly distributed point on the block.
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The model

Each individual mates with an unrelated individual to produce a
Poiss(2(1 + s)) number of offspring. 0 ≤ s ≪ 1.

Genome of map length y ≤ 1. With probability y there is one crossover
at a uniformly distributed point on the block.
Descendant of genome inherits:

Block length probability

0 1
2 (1 − y)

y 1
2 (1 − y)

U(0, y) y
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The model

Each individual mates with an unrelated individual to produce a
Poiss(2(1 + s)) number of offspring. 0 ≤ s ≪ 1.

Genome of map length y ≤ 1. With probability y there is one crossover
at a uniformly distributed point on the block.
Descendant of genome inherits:

Block length probability

0 1
2 (1 − y)

y 1
2 (1 − y)

U(0, y) y

Note: If s = 0, the expected total block length is conserved.
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Some questions

• How long does the ancestral genome persist?
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• How long does the ancestral genome persist?

• What is the distribution of surviving blocks at time t?
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Some questions

• How long does the ancestral genome persist?

• What is the distribution of surviving blocks at time t?

Application: statistical framework for interpreting data arising from
sporadic hybridisation.
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Some questions

• How long does the ancestral genome persist?

• What is the distribution of surviving blocks at time t?

Application: statistical framework for interpreting data arising from
sporadic hybridisation.

Notation: Qt(y) = probability total loss by time t of ancestral block of
length y. Pt(y) = 1 − Qt(y).
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Loss of ancestral genome by timet

Condition on number of offspring of ancestral genome:
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Loss of ancestral genome by timet

Condition on number of offspring of ancestral genome:

Qt+1(y) = Φ

[
1 − y

2
+

1 − y

2
Qt(y) +

∫ y

0

Qt(z)dz

]

, Q0(y) = 0.
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Loss of ancestral genome by timet

Condition on number of offspring of ancestral genome:

Qt+1(y) = Φ

[
1 − y

2
+

1 − y

2
Qt(y) +

∫ y

0

Qt(z)dz

]

, Q0(y) = 0.

Substituting for Φ,

Qt+1(y) = exp

[

−2(1 + s)

(
1 − y

2
Pt(y) +

∫ y

0

Pt(z)dz

)]

,
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Loss of ancestral genome by timet

Condition on number of offspring of ancestral genome:

Qt+1(y) = Φ

[
1 − y

2
+

1 − y

2
Qt(y) +

∫ y

0

Qt(z)dz

]

, Q0(y) = 0.

Substituting for Φ,

Qt+1(y) = exp

[

−2(1 + s)

(
1 − y

2
Pt(y) +

∫ y

0

Pt(z)dz

)]

,

or, in differential form,

d

dy
Pt+1(y) = (1 + s) (1 − Pt+1(y))

(

Pt(y) + (1 − y)
d

dy
Pt(y)

)

.
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Probability of survival for ever

dP̃

dy
(y) = (1 + s)Q̃(y)

(

P̃ (y) + (1 − y)
dP̃

dy
(y)

)

.
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Probability of survival for ever

dP̃

dy
(y) = (1 + s)Q̃(y)

(

P̃ (y) + (1 − y)
dP̃

dy
(y)

)

.

General solution

P̃C =
y∗

y∗ + π (Cy∗e−y∗)
, y∗ = y − s(1 − y),

where the product log function, π, is defined by z = π(z)eπ(z).
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.
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P̃C =
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y∗ + π (Cy∗e−y∗)
, y∗ = y − s(1 − y),

where the product log function, π, is defined by z = π(z)eπ(z).
P̃ (0) is survival probability of a branching process with Poiss(1 + s)

offspring distribution:
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Probability of survival for ever

dP̃

dy
(y) = (1 + s)Q̃(y)

(

P̃ (y) + (1 − y)
dP̃

dy
(y)

)

.

General solution

P̃C =
y∗

y∗ + π (Cy∗e−y∗)
, y∗ = y − s(1 − y),

where the product log function, π, is defined by z = π(z)eπ(z).
P̃ (0) is survival probability of a branching process with Poiss(1 + s)

offspring distribution: (using π(z) ∼ z as z ↓ 0)

P̃ (y) =
y∗

y∗ + π
(

Q̃(0)

P̃ (0)
y∗e−y∗

) .
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Back to finite times
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Back to finite times

Think of process as branching random walk.
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Back to finite times

Think of process as branching random walk. Freeze individuals on
exit from [ǫ, y] × [0, t].

y

2

1

3

4

time

block length

ε
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Back to finite times

Think of process as branching random walk. Freeze individuals on
exit from [ǫ, y] × [0, t].
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Back to finite times

Think of process as branching random walk. Freeze individuals on
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A Special Markov property

Notation: Nτ = number of individuals in new process at time t. τi =

time of freezing of ith particle. Yτi
= corresponding block length.

��

��

��

ε y

2

1

3

4

time

block length

)Yττ, (

Qt(y) = E

[
Nτ∏

i=1

Qt−τi
(Yτi

)

]

.
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Qt(y) = E

[
Nτ∏

i=1

Qt−τi
(Yτi

)

]

.

Suppose ǫ ≪ 1 and maxi τi ≪ t then can approximate Qt−τi
(Yτi

) by
Qt(0).
When is this valid?
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Qt(y) = E

[
Nτ∏

i=1

Qt−τi
(Yτi

)

]

.

Suppose ǫ ≪ 1 and maxi τi ≪ t then can approximate Qt−τi
(Yτi

) by
Qt(0).
When is this valid?
Crude bound:

P

[

max
i

τi > t0

]

≤ E

[

#
{

individuals carrying block length ≥ ǫ at time t0
}]
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Qt(y) = E

[
Nτ∏

i=1

Qt−τi
(Yτi

)

]

.

Suppose ǫ ≪ 1 and maxi τi ≪ t then can approximate Qt−τi
(Yτi

) by
Qt(0).
When is this valid?
Crude bound:

P

[

max
i

τi > t0

]

≤ E

[

#
{

individuals carrying block length ≥ ǫ at time t0
}]

To estimate the right-hand side we superimpose recombinations on a
pedigree.
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Recombination on a pedigree

The pedigree is the tree of all descendants of the ancestor.
Take initial block length y = 1.
Consider one line of descent through the pedigree:
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The pedigree is the tree of all descendants of the ancestor.
Take initial block length y = 1.
Consider one line of descent through the pedigree:

0 1

L

R

R

R

L

L

L

RLLLRLR
t
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Recombination on a pedigree

The pedigree is the tree of all descendants of the ancestor.
Take initial block length y = 1.
Consider one line of descent through the pedigree:

0 1

L

R

R

R

L
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RLLLRLR
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If an ‘L’ mark is followed by an ‘R’ mark, all ancestral genome is lost.

New York, Sept. 07 – p. 13



Recombination on a pedigree

The pedigree is the tree of all descendants of the ancestor.
Take initial block length y = 1.
Consider one line of descent through the pedigree:

0 1

L

R

R

R

L

L

L

RLLLRLR
t

If an ‘L’ mark is followed by an ‘R’ mark, all ancestral genome is lost.
Survival requires RR . . .R

︸ ︷︷ ︸

m times

LL . . . L
︸ ︷︷ ︸

t0−m times

for some m ∈ {0, 1, . . . , t0}.
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Survival until time t

Probability of any block being passed down = t0+1
2t0

.
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Survival until time t

Probability of any block being passed down = t0+1
2t0

.
Probability such a block has length ≥ ǫ is at most (1 − ǫ)t0 .
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Survival until time t

Probability of any block being passed down = t0+1
2t0

.
Probability such a block has length ≥ ǫ is at most (1 − ǫ)t0 .
Combining the above,

P

[

max
i

τi > t0

]

≤ [(1 + s)(1 − ǫ)]t0 (t0 + 1).
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Survival until time t

Probability of any block being passed down = t0+1
2t0

.
Probability such a block has length ≥ ǫ is at most (1 − ǫ)t0 .
Combining the above,

P

[

max
i

τi > t0

]

≤ [(1 + s)(1 − ǫ)]t0 (t0 + 1).

Choose ǫ > s
1+s

for this to decay rapidly. Then

Qt(y) ≈ E
[
Qt(0)

Nτ

]
.
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Survival until time t

Probability of any block being passed down = t0+1
2t0

.
Probability such a block has length ≥ ǫ is at most (1 − ǫ)t0 .
Combining the above,

P

[

max
i

τi > t0

]

≤ [(1 + s)(1 − ǫ)]t0 (t0 + 1).

Choose ǫ > s
1+s

for this to decay rapidly. Then

Qt(y) ≈ E
[
Qt(0)

Nτ

]
.This gives

Pt(y) ≈
y∗

y∗ + π
(

Qt(0)
Pt(0)

y∗e−y∗

) .
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Survival until time t

Probability of any block being passed down = t0+1
2t0

.
Probability such a block has length ≥ ǫ is at most (1 − ǫ)t0 .
Combining the above,

P

[

max
i

τi > t0

]

≤ [(1 + s)(1 − ǫ)]t0 (t0 + 1).

Choose ǫ > s
1+s

for this to decay rapidly. Then

Qt(y) ≈ E
[
Qt(0)

Nτ

]
.This gives

Pt(y) ≈
y∗

y∗ + π
(

Qt(0)
Pt(0)

y∗e−y∗

) .

Approximate Pt(0) e.g. via Feller’s diffusion.
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An example

Suppose s = 0 (so y∗ = y) and yt ≫ 1, since π(z) ∼ log z as z → ∞,

Pt(y) ∼
y

log(yt/2)
.

Survival until time t declines like 1/ log t.
Compare to 1/t for a single locus.
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An example

Suppose s = 0 (so y∗ = y) and yt ≫ 1, since π(z) ∼ log z as z → ∞,

Pt(y) ∼
y

log(yt/2)
.

Survival until time t declines like 1/ log t.
Compare to 1/t for a single locus.
Recombination rapidly breaks the ancestral genome into small blocks,
but these can persist for a very long time.
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Long genomes

What about long genomes?
Crossovers according to a Poisson process of rate one.
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Long genomes

What about long genomes?
Crossovers according to a Poisson process of rate one.

What is the mean number of individuals to inherit some ancestral
material at time t?
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Long genomes

What about long genomes?
Crossovers according to a Poisson process of rate one.

What is the mean number of individuals to inherit some ancestral
material at time t?

Again consider a single line of descent
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z

a(z)=− − − + + + − +

t

− + +

+ + −

−

−

+ − +

− +

+ −

−

+ −

+ − + −

−

+ +

Label z ∈ [0, y] by a(z) = (a1(z), a2(z), . . . , at(z)) ∈ {−, +}t.
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z

a(z)=− − − + + + − +

t

− + +

+ + −

−

−

+ − +

− +

+ −

−

+ −

+ − + −

−

+ +

Label z ∈ [0, y] by a(z) = (a1(z), a2(z), . . . , at(z)) ∈ {−, +}t. A point z

is in a block that is passed down iff a(z) = (+, +, . . . , +).
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A change of perspective

Define continuous time Markov chain {Xz}z∈[0,y] by

Xz = #{i ∈ {1, 2, . . . , t} : ai(z) = −}.

We seek P [Xz = 0, for some z ∈ [0, y]] .
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A change of perspective

Define continuous time Markov chain {Xz}z∈[0,y] by

Xz = #{i ∈ {1, 2, . . . , t} : ai(z) = −}.

We seek P [Xz = 0, for some z ∈ [0, y]] .

Transitions of Xz occur at rate t.

Pij =







i
t

j = i − 1

t−i
t

j = i + 1

0 otherwise

.
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A change of perspective

Define continuous time Markov chain {Xz}z∈[0,y] by

Xz = #{i ∈ {1, 2, . . . , t} : ai(z) = −}.

We seek P [Xz = 0, for some z ∈ [0, y]] .

Transitions of Xz occur at rate t.

Pij =







i
t

j = i − 1

t−i
t

j = i + 1

0 otherwise

.

Continuous time version of the Ehrenfest model. P & T Ehrenfest
(1907).
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Some consequences

From Bellman & Harris (1951) we deduce

P [Xz = 0, for some z ∈ [0, y]] ≈
1

2t
(1 + ty).
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2t
(1 + ty).

• Mean number of individuals carrying any ancestral material
≈ (1 + s)t(ty + 1).
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• Mean number of individuals carrying any ancestral material
≈ (1 + s)t(ty + 1).

• The length of an inherited block is distributed approx as Exp(t).
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Some consequences

From Bellman & Harris (1951) we deduce

P [Xz = 0, for some z ∈ [0, y]] ≈
1

2t
(1 + ty).

• Mean number of individuals carrying any ancestral material
≈ (1 + s)t(ty + 1).

• The length of an inherited block is distributed approx as Exp(t).

• For a single line of descent, the probability of inheriting multiple
blocks is at most

P[A single block survives]×P[Xz = 0 for some z ∈ [0, y]|X0 = 1]

≈
(ty + 1)

2t

ty

2t
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For example, if s = 0, y = 1 and t = 10, this suggests that there is a
< 1% chance of seeing multiple blocks.

We expect some portion of introgressed genome to persist for a long
time, but the effect will be highly variable along the genome.

50 generations, y = 1.
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