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ABSTRACT

The SAGE (Space-Alternating Generalized Expectation-
Maximization) algorithm [2] is one of the most elegant and
popular extensions of the EM (Expectation Maximization)
algorithm for performing ML (Maximum Likelihood) or MAP
(Maximum A Posteriori) parameter estimation. This algo-
rithm updates parameter components by subblocks by alter-
nating missing data spaces. Its efficiency has been reported
in numerous simulation studies. We propose here a MCMC
(Markov chain Monte Carlo) strategy named SADA (Space-
Alternating Data Augmentation) which relies on the same
principle in order to sample efficiently from (posterior) dis-
tributions and we discuss its application to finite mixtures
of Gaussians. For this model, we also present an original
implementation of the SAGE algorithm. In Monte Carlo
simulations and in an application to speaker recognition,
these methods which are straightforward modifications of
the standard EM and DA (Data augmentation) algorithms
consistently outperform them.

Keywords: Expectation-Maximization algorithm, Finite
mixture distributions, Latent variable models, Markov chain
Monte Carlo.

1 Introduction

In Bayesian inference, we are often interested in computing
expectations with respect to posterior distributions which
do not admit any closed-form expression. In these cases,
the tools of choice to approximate these expectations are
MCMC algorithms; i.e. we simulate an ergodic Markov
chain whose stationary distribution corresponds to the tar-
get posterior distribution of interest. In practice, we are in-
terested in devising Markov chain transition kernels whose
convergence to the stationary distribution is fast. There is
no general method available to build such kernels and one
has to use specificities of the statistical model under study
to obtain efficient algorithms.

In many problems of interest, it is however possible to
introduce so-called missing data to facilitate the design of
such algorithms. The introduction of such missing data is at
the core of the very popular EM algorithm for performing
ML/MAP parameter estimation [4]. Similarly, when we are
not interested in point estimates but in sampling from the
whole posterior distribution, then the introduction of miss-
ing data often allows us to develop a simple MCMC algo-

rithm known as DA [7]; DA is the simplest form of the pop-
ular Gibbs sampler.

Although these popular methods are elegant and can
provide satisfactory results, they can also converge slowly.
Loosely speaking, the more informative the missing data
introduced, the slower the convergence rate; see for exam-
ple [2], [4]. There have been numerous attempts to devise
more efficient methods; see [4] for a recent survey of the
literature. One of the most effective and useful extension
of the EM algorithm is known as SAGE, as been proposed
by Hero and Fessler [2]. The basic principle of SAGE is
to update parameter components by subblocks. A specific
missing data space is associated with each subblock such
that complete data spaces which are less informative can be
used and the convergence rate improved.

To quote [4, pp. 226-227] “It is expected that the ap-
proaches of the SAGE (and AECM) algorithms will give
rise to a more flexible formulation of the Gibbs sampler...
Such work has not yet been done”. In this paper, we show
that it is possible to adapt the SAGE idea to obtain an effi-
cient MCMC algorithm for sampling from posterior distrib-
utions. Similarly to SAGE, we update the parameter compo-
nents by subblocks and each subblock of parameters is sam-
pled conditional on a specific missing data set. The resulting
algorithm is named SADA for Space Alternating Data Aug-
mentation. Wherever SAGE has been used, it should be rel-
atively easy to devise a SADA version if we are interested in
sampling from the posterior. We present an application to fi-
nite mixtures of multivariate Gaussian distributions. In this
case, we develop an original SAGE algorithm and its asso-
ciated SADA version. These two new algorithms appear as
straightforward modifications of the standard EM and DA
algorithms. In Monte Carlo simulations on simulated data
and in an application to speech recognition, we demonstrate
that SAGE and SADA consistently outperform them.

2 EM and SAGE Algorithms

To facilitate the presentation and comparison to DA and
SADA, we introduce the EM and SAGE algorithm in the
Bayesian framework; i.e. we are interested in obtaining the
MAP estimate of the random variable X given a realization
of Y = y which satisfies

xMAP = argmax p (x| y)
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where
p (x| y) ∝ p (y|x) p (x) .

We will further assume that X is a random vector whose
components can be partitioned into n subsets X = X1:n =
(X1, . . . , Xn). We use the notation Zi:j = (Zi, Zi+1, . . . , Zj)
and X−k = X1:n\ {Xk} = (X1, . . . , Xk−1, Xk+1, . . . , Xn) .

To maximize p (x| y), the EM algorithm introduces miss-
ing data Z with a given conditional distribution p (z| y, x).
Based on this missing data, EM proceeds as follows, at iter-
ation i, to maximize p (x| y) :

x(i) = arg max
x

∫
log (p (x, z| y)) p

(
z| y, x(i−1)

)
dz.

To maximize p (x| y), the SAGE algorithm introduces
not one but n missing data sets Z1:n [2]. With each random
variable or vector Zk a conditional distribution p (zk| y, x1:n)
is associated where

p (y|x1:n, zk) = p (y|x−k, zk) .

The SAGE algorithm proceeds as follows to maximize the
posterior distribution at iteration i. Select an index k ∈
{1, . . . , n} , set x

(i)
k as

arg max
x

∫
log

(
p

(
x

(i−1)
−k , xk, z

∣∣∣ y))
p

(
zk| y, x(i−1)

)
dzk.

and x
(i)
−k = x

(i−1)
−k . Typically we update the components

cyclically; i.e. at iteration i we update the component k =
(i mod n) +1.

3 DA and SADA Algorithms

In MCMC, the objective is not to maximize p (x| y) but
to obtain random samples

{
X(i)

}
distributed according to

p (x| y) [7]. Based on these samples, it is easy to approxi-
mate the MMSE estimate

xMMSE =
∫

xp (x| y) dx by x̂MMSE =
1
N

N∑
i=1

X(i).

It is also possible to compute posterior variances, confi-
dence intervals or predictive distributions. Constructing ef-
ficient MCMC algorithms to sample from p (x| y) is typi-
cally difficult and the introduction of missing data can sub-
stantially ease this task.

Similarly to the EM algorithm, the DA algorithm intro-
duces some missing data Z to sample from p (x| y) and we
have the joint posterior distribution

p (x, z| y) = p (x| y) p (z| y, x)

The DA algorithm proceeds as follows at iteration i given
X(i−1) :

• Sample Z(i) ∼ p
( ·| y, X(i−1)

)
• Sample X(i) ∼ p

( ·| y, Z(i)
)
.

The transition kernel associated to
{
X(i), Z(i)

}
admits

p (x, z| y) as an invariant distribution. Under weak addi-
tional assumptions (irreducibility and aperiodicity), it can

be shown that the instantaneous distribution of
(
X(i), Z(i)

)
converges towards p (x, z| y) as i goes to infinity [7].

Similarly to SAGE, the SADA algorithm introduces not
one but n missing data sets Z1:n. With each random variable
Zk a distribution p (zk| y, x1:n) is associated and we define
the following joint posterior distribution

p (x1:n, z1:n| y) = p (x1:n| y)
n∏

k=1

p (zk| y, x1:n) . (1)

Typically, p (y|x1:n, zk) = p (y|x−k, zk) and all zk are
independent given y and x1:n but this is not necessarily the
case. To sample from (1), the SADA algorithm proceeds at
iteration i given X

(i−1)
1:n with k = (i mod n) + 1 as follows.

• Sample Z
(i)
k ∼ p

( ·| y, X(i−1)
)

• Sample X
(i)
k ∼ p

(
·| y, Z

(i)
k , X

(i−1)
−k

)
.

• Set X
(i)
−k = X

(i−1)
−k .

To establish the validity of this algorithm, i.e. that it

generates a Markov chain
{

X
(i)
1:n, Z

(i)
1:n

}
with invariant dis-

tribution given by (1), it is sufficient to notice that it could
be rewritten as:

• Sample Z
(i)
k , Z−k ∼ p

(
·| y, X

(i−1)
1:n

)
• Sample X

(i)
k , Z−k ∼ p

(
·| y, Z

(i)
k , X

(i−1)
−k

)
.

• Set X
(i)
−k = X

(i−1)
−k .

At each time step, we can think of the previous algo-
rithm as not only simulating Zk and Xk but also Z−k at
each iteration. Because these updates are performed ac-
cording to full conditional distributions p (z1:n| y, x1:n) and
p (x1:n| y, z1:n) they admit (1) as an invariant distribution.
However, as Z−k is not necessary, it is discarded.

4 Finite Mixture of Gaussians

In the finite mixture distributions context, the EM and DA
algorithms are routinely used to perform ML/MAP para-
meter estimation, and to sample the posterior respectively.
Here we propose a new version of the SAGE algorithm
which improves over [1] and a SADA algorithm; these algo-
rithms can be straightforwardly extended to hidden Markov
chains with Gaussian observations.

Assume we have T i.i.d. R
d-valued observations Y1:T

distributed according to a finite mixture of s Gaussians

Yt ∼
s∑

j=1

πjN (µj ; Σj) .

The parameters X = {(µj , Σj , πj) ; j = 1, . . . , s} are un-
known, random and distributed according to the following
conjugate prior distributions [3], [5]

µj |Σj ∼ N (αj , Σj/λj) , Σ−1
j ∼ W (rj , Cj) ,

(π1, . . . , πs) ∼ D (ζ1, . . . , ζs) .
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The notation Σ−1
j ∼ W (rj , Cj) denotes a Wishart distrib-

ution which has density proportional to

∣∣Σ−1
j

∣∣ 1
2 (r−d−1)

exp
(
−1

2
tr

(
Σ−1

j C−1
j

))
.

The notation (π1, . . . , πs) ∼ D (ζ1, . . . , ζs) denotes a Dirich-
let distribution which has a density restricted to the sim-
plex proportional to

∏s
k=1 πζk−1

k . Here, the hyperparame-
ters {(αj , λj , rj , Cj , ζj) ; j = 1, . . . , s} are assumed fixed
but they could also be estimated from the data in a hierar-
chical Bayes model.

4.1 EM and DA

EM and DA introduce the i.i.d. missing data Zt ∈ {1, . . . , s}
such that

Yt|Zt = j ∼ N (µj ; Σj) , Pr (Zt = j) = πj .

The EM algorithm is standard and we omit the update equa-
tions for it. The DA algorithm proceeds as follows. We
sample the discrete latent variables according to

Z
(i)
t ∼ p

(
·| yt, X

(i−1)
)

and compute the sufficient statistics n
(i)
j �

∑T
t=1 δ

Z
(i)
t ,j

,

n
(i)
j y

(i)
j �

T∑
t=1

δ
Z

(i)
t ,j

yt, S
(i)

j �
T∑

t=1

δ
Z

(i)
t ,j

yty
T
t .

Then we sample the parameters according to

Σ−1(i)
j ∼ W

(
rj + n

(i)
j , Σ̃−1(i)

j

)
(2)

where

m
(i)
j =

λjαj + n
(i)
j y

(i)
j

λj + n
(i)
j

and

Σ̃(i)
j = C−1

j + λjαjα
T
j + S

(i)

j −
(
λj + n

(i)
j

)
m

(i)
j m

(i)T
j

then

µ
(i)
j

∣∣∣ Σ(i)
j ∼ N

(
m

(i)
j ,

Σ(i)
j

λj + n
(i)
j

)
. (3)

Finally the weights are sampled according to

(
π

(i)
1 , . . . , π(i)

s

)
∼ D

(
n

(i)
1 + ζ1, . . . , n

(i)
s + ζs

)
. (4)

4.2 SAGE and SADA

We follow the idea introduced in [1] for designing less infor-
mative missing data. Assume that we are interested in up-
dating only (µj , Σj), the other components being fixed. The
idea involves introducing binary missing data Z t,j ∈ {0, j}
such that

Pr (Zt,j = j) = πj ;

i.e. these missing data tell us whether an observation is
coming from component j which is less informative than
knowing from which particular component it is derived. As
outlined in [1], we cannot update πj using this strategy be-
cause of the constraint

∑s
j=1 πj = 1. Hence the authors

in [1] propose updating the weights (π1, . . . , πs) using the
standard EM approach. In our experiments we found that
this can significantly reduce the rate of convergence of the
algorithm. Here we follow an alternative approach. We
propose updating the parameters of two components say j
and k at the same time; i.e. we introduce the missing data
Zt,j,k ∈ {0, j, k} such that

Pr (Zt,j,k = j) = πj , Pr (Zt,j,k = k) = πk

and

Yt|Zt,j,k = j ∼ N (µj ; Σj) , Yt|Zt,j,k = k ∼ N (µk; Σk) ,

Yt|Zt,j = 0 ∼
∑

l �=j,l �=k πlN (µl; Σl)∑
l �=j,l �=k πl

.

It follows that the SAGE update for(µj , Σj , πj) (and simi-
larly for (µk, Σk, πk)) is given at iteration i by

µ
(i)
j =

λjαj +
∑T

t=1 ytp
(
Zt,j,k = j| yt, X

(i−1)
)

λj +
∑T

t=1 p
(
Zt,j,k = j| yt, X(i−1)

) ,

Σ(i)
j =

(
rj − d − 1 + λj +

T∑
t=1

p
(
Zt,j,k = j| yt, X

(i−1)
))−1

×
(

C−1
j + λj

(
µ

(i)
j − αj

)(
µ

(i)
j − αj

)T

+
T∑

t=1

(
yt − µ

(i)
j

) (
yt − µ

(i)
j

)T
p

(
Zt,j,k = j| yt, X

(i−1)
))

,

π
(i)
j =

(
1 − ∑

l �=j,l �=k π
(i−1)
l

)

×
⎛
⎝1 +

T�

t=1
p(Zt,j,k=k|yt,X

(i−1))+(ζk−1)

T�

t=1
p(Zt,j,k=j|yt,X(i−1))+(ζj−1)

⎞
⎠

−1

.

The SADA algorithm proceeds similarly. To sample
(µj , Σj , πj) (and (µk, Σk, πk)), we first sample the discrete
latent variables

Z
(i)
t,j,k ∼ p

(
·| yt, X

(i−1)
)

and compute the sufficient statistics n
(i)
j �

∑T
t=1 δ

Z
(i)
t,j,k,j

,
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Table 1: Log-posterior values for final iteration EM/SAGE
and average log-posterior values for DA/SADA.

s EM SAGE DA SADA
5 -915.8 -671.5 -873.7 -886.0
6 -929.6 –603.2 -877.3 -886.7
7 -941.4 -576.5 -893.9 -906.9
8 -965.7 -559.2 -904.9 -875.0
9 -968.9 -503.0 -898.8 -882.5
10 -983.2 -478.1 -924.0 -906.6

n
(i)
j y

(i)
j �

T∑
t=1

δ
Z

(i)
t,j,k,j

yt, S
(i)

j �
T∑

t=1

δ
Z

(i)
t,j,k,j

yty
T
t

and similarly n
(i)
k , n

(i)
k y

(i)
k and S

(i)

k . Then we sample the

parameters
(
µ

(i)
j , Σ(i)

j

)
and

(
µ

(i)
k , Σ(i)

k

)
according to (2)

and (3). Finally we sample
(
π

(i)
j , π

(i)
k

)
according to

(
π

(i)
j , π(i)

s

)
∼

⎛
⎝1 −

∑
l �=j,l �=k

π
(i−1)
l

⎞
⎠D

(
n

(i)
j + ζj , n

(i)
k + ζk

)
.

Note that the above algorithms extended for finite mix-
tures of Gaussians are classified to the expectation/conditional
maximization[6].

4.3 Simulations

We generate a mixture of 5 10-dimensional Gaussians with
components whose parameters were sampled according to
the prior. For this dataset, we run 200 iterations of standard
EM and SAGE 50 times fitting s components using the same
initial random initializations. We have d = 10, T = 100
and the prior parameters were set to ζj = 1, αj = 0, λj =
0.01, rj = d + 1, Cj = 0.01I. We also run 5000 iterations
of DA and SADA 10 times. In Table 1, for EM and SAGE,
we present the mean of the log-posterior values at the final
iteration. For SA and SADA, we present the mean of the
average log-posterior values of the last 1000 iterations. In
terms of computational complexity, these comparisons are
favourable to EM and DA. Indeed one iteration of EM/DA is
more expensive than one iteration of SAGE/SADA because
parameters for all components are updated in the first case
whereas parameters for only two components are updated in
the second case. The results are displayed in the table below.
In all simulations SAGE outperforms EM consistently and
significantly. For a larger number of components than eight,
SADA performed better than DA. The difference between
SADA and DA is not as impressive but the correlations (not
presented here) of the SADA chain are reduced compared
to the DA chain.

The performance of the SAGE algorithm is compared
with that of the conventional EM algorithm for text-indepen-
dent speaker identification experiments using a finite mix-
ture of Gaussians as a speaker model. The data for training
and testing were collected from 10 male speakers. A feature

vector of 26 components, consisting of 12 mel-frequency
cepstral coefficients plus normalized log energy and their
first derivatives, is derived once every 10 ms over a 25.6
ms Hamming-windowed speech segment. A mixture of 16
full covariance Gaussians is used as a speaker model. For
the EM and SAGE algorithms, the parameters are initialized
with the same random value and used on 3 utterances from
each speaker. The averaged speaker identification rates with
the confidence intervals at a 90% confidence level for the
SAGE and EM algorithms are respectively 83.3 [78.7, 88.0]
and 81.3 [76.0, 86.0]. The confidence intervals are calcu-
lated based on the assumption that the accuracy rates follow
the binomial distribution. The log-posterior value reached
by SAGE was significantly superior to EM but this does not
translate to major improvement in terms of speaker recog-
nition. However, SAGE is competitive with the EM algo-
rithm and is computationally cheaper to implement. In Fig-
ure 1, we display the speaker identification rates for each
speaker. The dispersion in the rates for the SAGE algorithm
is smaller than that for the EM algorithm. It can be con-
sidered that SAGE obtains more stable estimates for a wide
range of speakers.
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Figure 1: Speaker identification rates
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