Heterozygosity

- One measure of the diversity of a population is its **heterozygosity**.

Definition (Heterozygosity).

Heterozygosity is the probability that two genes chosen at random from the population have different alleles.

- In a biallelic WF model, the heterozygosity is equal to:

\[
H_t = 2 \frac{X_t}{M} \left(1 - \frac{X_t}{M}\right)
\]

- How does this evolve with time in the WF?
Heterozygosity in the WF

Theorem (Heterozygosity under the biallelic WF model).
Under the biallelic WF model, the expected heterozygosity decays approximately at rate $1/M$ when M is large.
Heterozygosity in the WF

Proof.

\[\mathbb{E}(H_{t+1}) = \frac{2}{M^2} \mathbb{E}(X_{t+1}(M - X_{t+1})) \]

\[= \frac{2}{M^2} \left\{ M \mathbb{E}(X_{t+1}) - \mathbb{E}(X_{t+1}^2) \right\} \]

\[= \frac{2}{M^2} \left\{ M \mathbb{E}(X_{t+1}) - \text{var}(X_{t+1}) - \mathbb{E}(X_{t+1})^2 \right\} \]

\[= \frac{2}{M^2} \left\{ MX_t - X_t + \frac{X_t^2}{M} - X_t^2 \right\} \]

\[= H_t \left(1 - \frac{1}{M} \right) \]

By induction on \(t \) we get that:

\[\mathbb{E}(H_t) = H_0 \left(1 - \frac{1}{M} \right)^t \]

\[\approx H_0 e^{-t/M} \]
Heterozygosity

• The decay of the **heterozygosity** illustrates how **genetic drift** tends to remove genetic variation from populations.

• Smaller populations loose variation faster than larger populations.

• The rate at which heterozygosity decays can be used to estimate the **effective population size**.
Once again, the data of Buri (1956) does not fit our expectation when $M = 32$ but behaves as if $M = 18$.
Fixation

- $X_t = 0$ and $X_t = M$ are absorbing states of the biallelic WF process.
- Genetic drift leads to either A or a being lost from the population.
- When this happens, the surviving allele is said to be fixed in the population, and the lost allele is said to be extinct.
- What is the probability that A will reach fixation rather than a given its initial frequency?
Fixation

Theorem (Probability of fixation).

The probability that an allele will reach fixation given its initial frequency is equal to its initial frequency.
Fixation

Proof.

• The result is implied by the fact that $\mathbb{E}(X_t)$ remains constant and equal to X_0: If fixation is reached at time t, then:

$$\mathbb{E}(X_t) = \mathbb{P}(A \text{ fixed}) \times M + \mathbb{P}(a \text{ fixed}) \times 0$$

so that:

$$\mathbb{P}(A \text{ fixed}) = \mathbb{E}(X_t)/M = X_0/M$$

• Genealogical approach: eventually all genes in the population will be descended from one unique gene in generation 0, and this gene has probability X_0/M to be of allele A.

• Markov Chain approach: let q_i be the probability of fixation of A given $X_t = i$, solve:

$$q_i = \sum_{j=0}^{M} q_j P_{i,j}$$
Examples

- In the Buri (1956) experiment, 58 of the 107 populations reached fixation: 28 for allele bw^{75} and 30 for the other allele.

- The probability that a new allele appearing in a population through mutation will eventually become fixed is equal to $1/M$ provided no further mutation occurs.

- What is the expected time before fixation?
Time before fixation

Theorem (Time before fixation).

Let $\tau(p)$ be the expected time before fixation given that $X_0 = pM$. Then:

$$\tau(p) \approx -2M(p \log(p) + (1 - p)\log(1 - p))$$

with the approximation being valid for large populations.
Time before fixation

Proof. If \(p = 0 \) or \(p = 1 \), fixation is reached so that \(\tau(0) = 0 \) and \(\tau(1) = 0 \). Otherwise, \(\tau(p) \) is equal to one plus the fixation time in the next step. By summing over all possibilities for the next step, we get:

\[
\tau(p) = 1 + \sum_{j=0}^{M} P_{pM,j} \tau(j/M)
\]

This expresses \(\tau \) as the solution of a linear equation. Unfortunately, this equation becomes increasingly difficult to solve as \(M \) increases. We therefore use an approximation.
Time before fixation

Let $p_t = X_t/M$. Recall that the variance of p_{t+1} about p_t is of order $1/M$. Thus when M is large, the terms in the sum for which $\text{abs}(pM - j)$ is “large” can be ignored. This suggests a continuous approximation. Let us assume that p is a continuous function in $[0, 1]$.

Then we can rewrite as:

$$\tau(p) = 1 + \int\epsilon \mathbb{P}(p \rightarrow p + \epsilon) \tau(p + \epsilon) d\epsilon$$
Time before fixation

Since ϵ is small, we can expand $\tau(p + \epsilon)$ as a Taylor series:

$$
\tau(p) \approx 1 + \int_{\epsilon} \mathbb{P}(p \rightarrow p + \epsilon) \left(\tau(p) + \epsilon \tau'(p) + \epsilon^2 \tau''(p)/2 \right) d\epsilon
$$

$$
= 1 + \tau(p) + \tau'(p) \int_{\epsilon} \mathbb{P}(p \rightarrow p + \epsilon) \epsilon d\epsilon
$$

$$
+ (\tau''(p)/2) \int_{\epsilon} \mathbb{P}(p \rightarrow p + \epsilon) \epsilon^2 d\epsilon
$$

$$
= 1 + \tau(p) + \tau'(p) \mathbb{E}(\epsilon) + (\tau''(p)/2) \mathbb{E}(\epsilon^2)
$$
Time before fixation

Since $\mathbb{E}(\epsilon) = \mathbb{E}(p_{t+1} - p_t) = 0$ and
$\mathbb{E}(\epsilon^2) = \text{var}(\epsilon) = \text{var}(p_{t+1}) = p(1 - p)/M$, we have:

$$\tau(p) = 1 + \tau(p) + \tau''(p)p(1 - p)/(2M)$$

or

$$\tau''(p) = \frac{-2M}{p(1 - p)}$$

This can be solved with boundary conditions $\tau(0) = 0$ and $\tau(1) = 0$ to give
the required result. □.
Time before fixation

• Thus, for the Wright-Fisher model, the expected time to fixation is of order $O(M)$.

• This is the so-called diffusion approximation to the mean absorption time, although we have not used diffusion theory explicitly here.

• For example, in the case of a newly appeared mutation, we have $p = 1/M$ and

$$\tau(p) \approx 2 + 2\log(M)$$

• In the case where $p = 1/2$, we have

$$\tau(p) \approx 1.38M$$
Summary

• The pure Wright-Fisher model results in a **decay of genetic variation**.
• This is the effect of **genetic drift**, which is compensated by **mutation**.
• It is straightforward to **extend** the WF model to incorporate mutations.
• Exact calculations are impossible so that we need to use **diffusion approximations** as we did to find the time before fixation.
• This approach was championed in the 50s and 60s by **Kimura**.
• This is one of the most sophisticated branches of applied probability.
• We will avoid these complications!