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Markov chains - continuous space

• The state space X is now continuous, e.g. Rd .

• (X t )t≥1 is a Markov chain if for any (measurable) set A,

P( X t ∈ A|X1 = x1, X2 = x2, ..., X t−1 = xt−1)

=P( X t ∈ A|X t−1 = xt−1).

The future is conditionally independent of the past given
the present.

• We have

P( X t ∈ A|X t−1 = x) =
∫

A
K

(
x, y

)
d y = K (x, A) ,

that is conditional on X t−1 = x, X t is a random variable
which admits a probability density function K (x, ·).

• K :X2→R is the kernel of the Markov chain.
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Markov chains - continuous space
• Denoting µ1 the pdf of X1, we obtain directly

P(X1 ∈ A1, ..., X t ∈ At )

=
∫

A1×···×At

µ1
(
x1

) t∏
k=2

K
(
xk−1, xk

)
d x1 · · ·d xt .

• Denoting by µt the distribution of X t , Chapman-Kolmogorov
equation reads

µt
(
y
)= ∫

X
µt−1(x)K (x, y)d x

and similarly for m >1

µt+m
(
y
)= ∫

X
µt (x)K m(x, y)d x

where

K m (xt , xt+m) =
∫
Xm−1

t+m∏
k=t+1

K
(
xk−1, xk

)
d xt+1 · · ·d xt+m−1.
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Example
• Consider the autoregressive (AR) model

X t = ρX t−1+Vt

where Vt
i.i.d.∼ N

(
0,τ2

)
. This defines a Markov chain such

that

K
(
x, y

)= 1√
2πτ2

exp

(
− 1
2τ2

(
y −ρx

)2) .

• We also have

X t+m = ρm X t +
m∑

k=1
ρm−kVt+k

so in the Gaussian case

K m (
x, y

)= 1√
2πτ2m

exp

(
−1
2

(
y −ρm x

)2
τ2m

)

with τ2m = τ2∑m
k=1

(
ρ2

)m−k = τ2 1−ρ2m

1−ρ2 .
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Irreducibility and aperiodicity

Definition

Given a probability measure µ over X, a Markov chain is
µ-irreducible if

∀x ∈X ∀A :µ(A) >0 ∃t ∈N K t (x, A) >0.

A µ-irreducible Markov chain of transition kernel K is
periodic if there exists some partition of the state space
X1, ...,Xd for d ≥2, such that

∀i , j , t , s : P
(

X t+s ∈X j
∣∣ X t ∈Xi

)= {
1 j = i + s mod d
0 otherwise.

.

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence
For any measurable set A of X, let

ηA =
∞∑

k=1
1A (Xk ) ,

the number of visits to the set A.

Definition

A µ-irreducible Markov chain is recurrent if for any
measurable set A ⊂X :µ (A) >0, then

∀x ∈ A Ex
(
ηA

)=∞.

A µ-irreducible Markov chain is Harris recurrent if for any
measurable set A ⊂X :µ (A) >0, then

∀x ∈X Px
(
ηA =∞)=1.

Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

Definition

A distribution of density π is invariant or stationary for a
Markov kernel K , if∫

X
π (x)K

(
x, y

)
d x =π(

y
)

.

A Markov kernel K is π-reversible if

∀ f
Ï

f (x, y)π (x)K
(
x, y

)
d xd y

=
Ï

f (y, x)π (x)K
(
x, y

)
d xd y

where f is a bounded measurable function.
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Detailed balance

In practice it is easier to check the detailed balance
condition:

∀x, y ∈X π(x)K (x, y) =π(y)K (y, x)

Lemma

If detailed balance holds, then π is invariant for K and K is
π-reversible.

Example: the Gaussian AR process is π-reversible, π-invariant
for

π (x) =N

(
x;0,

τ2

1−ρ2

)
when

∣∣ρ∣∣<1.
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Law of Large Numbers

Theorem

Suppose the Markov chain {Xi ; i ≥0} is π−irreducible, with
invariant distribution π, and suppose that X0 = x.
Then for any π-integrable function ϕ :X→R:

lim
t→∞
1

t

t∑
i=1

ϕ (Xi ) =
∫
X
ϕ (w)π (w)dw

almost surely, for π−almost every x.
If the chain in addition is Harris recurrent then this holds for
every starting value x.
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Convergence

Theorem

Suppose the kernel K is π-irreducible, π-invariant, aperiodic.
Then, we have

lim
t→∞

∫
X

∣∣K t (
x, y

)−π(
y
)∣∣d y =0

for π−almost all starting values x.

Under some additional conditions, one can prove that there
exists a ρ <1 and a function M :X→R+ such that for all
measurable sets A and all n

|K n(x, A)−π(A)| ≤ M(x)ρn .

The chain is then said to be geometrically ergodic.
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Central Limit Theorem

Theorem

Under regularity conditions, for a Harris recurrent,
π-invariant Markov chain, we can prove

p
t

[
1

t

t∑
i=1

ϕ (Xi )−
∫
X
ϕ (x)π (x)dx

]
D−−−→

t→∞ N
(
0,σ2

(
ϕ

))
,

where the asymptotic variance can be written

σ2
(
ϕ

)=Vπ [
ϕ

(
X1

)]+2 ∞∑
k=2

Covπ
[
ϕ

(
X1

)
,ϕ (Xk )

]
.

This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which
the variance would be Vπ(ϕ(X )).
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Central Limit Theorem

Example: for the AR Gaussian model,

π (x) =N
(
x;0,τ2/(1−ρ2)

)
for

∣∣ρ∣∣<1 and
Cov

(
X1, Xk

)= ρk−1V
[

X1
]= ρk−1 τ2

1−ρ2 .

Therefore with ϕ (x) = x,

σ2(ϕ) = τ2

1−ρ2

(
1+2

∞∑
k=1

ρk

)
= τ2

1−ρ2
1+ρ
1−ρ = τ2

(1−ρ)2
,

which increases when ρ→1.
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Markov chain Monte Carlo

• We are interested in sampling from a distribution π, for
instance a posterior distribution in a Bayesian framework.

• Markov chains with π as invariant distribution can be
constructed to approximate expectations with respect to π.

• For example, the Gibbs sampler generates a Markov chain
targeting π defined on Rd using the full conditionals

π(xi | x1, . . . , xi−1, xi+1, . . . , xd ).

13 / 76



Gibbs Sampling

• Assume you are interested in sampling from

π (x) =π(
x1, x2, ..., xd

)
, x ∈Rd .

• Notation: x−i := (
x1, ..., xi−1, xi+1, ..., xd

)
.

Systematic scan Gibbs sampler. Let
(

X (1)
1

, ..., X (1)
d

)
be the

initial state then iterate for t =2,3, ...

1. Sample X (t )
1

∼π X1|X−1

(
·|X (t−1)
2

, ..., X (t−1)
d

)
.

...

j. Sample X (t )
j ∼π X j |X− j

(
·|X (t )
1

, ..., X (t )
j−1, X (t−1)

j+1 , ..., X (t−1)
d

)
.

...

d. Sample X (t )
d ∼π Xd |X−d

(
·|X (t )
1

, ..., X (t )
d−1

)
.
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Gibbs Sampling

A few questions one can ask about this algorithm:

• Is the joint distribution π uniquely specified by the
conditional distributions πXi |X−i?

• A: Not in general!1

• Does the Gibbs sampler provide a Markov chain with the
correct stationary distribution π?

• A: Not in general!

• If yes, does the Markov chain converge towards this
invariant distribution?

• It will turn out to be the case under some mild
conditions.

1J.P. Hobert, C.P. Robert, C. Goutis, Connectedness conditions for the convergence of the Gibbs sampler
(1997)
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Hammersley-Clifford Theorem

Theorem

Consider a distribution with continuous density π
(
x1, x2, ..., xd

)
such that

supp (π) = supp

(
d⊗

i=1
πXi

)
.

Then for any
(
z1, ..., zd

) ∈ supp(π), we have

π
(
x1, x2, ..., xd

)∝ d∏
j=1

π X j |X− j

(
x j

∣∣x1: j−1, z j+1:d

)
π X j |X− j

(
z j

∣∣x1: j−1, z j+1:d

) .

The condition above is known as the positivity condition.
Equivalently, if πXi (xi ) >0 for i =1, . . . ,d , then

π(x1, . . . , xd ) >0.
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Proof of Hammersley-Clifford Theorem

Proof.

We have

π(x1:d−1, xd ) =π Xd |X−d ( xd |x1:d−1)π(x1:d−1),

π(x1:d−1, zd ) =π Xd |X−d ( zd |x1:d−1)π(x1:d−1).

Therefore

π(x1:d ) =π(x1:d−1, zd )
π(x1:d−1, xd )

π(x1:d−1, zd )

=π(x1:d−1, zd )
π(x1:d−1, xd )/π(x1:d−1)

π(x1:d−1, zd )/π(x1:d−1)

=π(x1:d−1, zd )
πXd |X1:d−1(xd | x1:d−1)

πXd |X1:d−1(zd | x1:d−1)
.
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Proof.

Similarly, we have

π(x1:d−1, zd ) =π(x1:d−2, zd−1, zd )
π(x1:d−1, zd )

π(x1:d−2, zd−1, zd )

=π(x1:d−2, zd−1, zd )
π(x1:d−1, zd )/π(x1:d−2, zd )

π(x1:d−2, zd−1, zd )/π(x1:d−2, zd )

=π(x1:d−2, zd−1, zd )
πXd−1|X −(d−1) (xd−1 | x1:d−2, zd )

πXd−1|X −(d−1) (zd−1 | x1:d−2, zd )

hence

π
(
x1:d

)=π(x1:d−2, zd−1, zd )
π Xd−1|X−(d−1)

(
xd−1

∣∣x1:d−2, zd
)

π Xd−1|X−(d−1)

(
zd−1

∣∣x1:d−2, zd
)

× π Xd |X−d

(
xd |x1:d−1

)
π Xd |X−d

(
zd |x1:d−1

)
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Proof.

By z ∈ supp(π) we have that πXi (zi ) >0 for all i . Also, we

are allowed to suppose that πXi (xi ) >0 for all i . Thus all

the conditional probabilities we introduce are positive since

πX j |X − j (x j | x1, . . . , x j−1, z j+1, . . . , zd )

=
π(x1, . . . , x j−1, x j , z j+1, . . . , zd )

π(x1, . . . , x j−1, z j , z j+1, . . . , zd )
>0.

By iterating we have the theorem.
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Example: Non-Integrable Target
• Consider the following conditionals on R+

π X1|X2
(

x1
∣∣x2

)= x2 exp
(−x2x1

)
π X2|X1

(
x2

∣∣x1
)= x1 exp

(−x1x2
)

.

We might expect that these full conditionals define a joint
probability density π

(
x1, x2

)
.

• Hammersley-Clifford would give

π
(
x1, x2, ..., xd

)∝ π X1|X2
(

x1
∣∣z2

)
π X1|X2

(
z1

∣∣z2
) π X2|X1

(
x2

∣∣x1
)

π X2|X1
(

z2
∣∣x1

)
= z2 exp

(−z2x1
)

x1 exp
(−x1x2

)
z2 exp

(−z2z1
)

x1 exp
(−x1z2

) ∝ exp
(−x1x2

)
.

• However
Î

exp
(−x1x2

)
d x1d x2 =∞ so

π X1|X2
(

x1
∣∣x2

)= x2 exp
(−x2x1

)
and

π X2|X1
(

x1
∣∣x2

)= x1 exp
(−x1x2

)
are not compatible.
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Example: Positivity condition violated
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Figure: Gibbs sampling targeting
π(x, y) ∝ 1[−1,0]×[−1,0]∪[0,1]×[0,1](x, y).

Positivity condition violated: any density of the form

f (x) =α1[−1,0]2 + (1−α)1[0,1]2 ,

has same conditionals. 21 / 76



Invariance of the Gibbs sampler I

The kernel of the Gibbs sampler (case d =2) is

K (x(t−1), x(t )) =πX1|X2(x(t )
1

| x(t−1)
2

)πX2|X1(x(t )
2

| x(t )
1

)

Case d >2:

K (x(t−1), x(t )) =
d∏

j=1
πX j |X− j (x(t )

j | x(t )
1: j−1, x(t−1)

j+1:d
)

Proposition

The systematic scan Gibbs sampler kernel admits π as
invariant distribution.
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Invariance of the Gibbs sampler II

Proof for d =2.
Let x = (x1, x2) and y = (y1, y2). Then we have∫

K (x, y)π(x)d x =
∫
π(y2 | y1)π(y1 | x2)π(x1, x2)d x1d x2

=π(y2 | y1)
∫
π(y1 | x2)π(x2)d x2

=π(y2 | y1)π(y1) =π(y1, y2) =π(y).
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Irreducibility and Recurrence

Proposition

Assume π satisfies the positivity condition, then the Gibbs
sampler yields a π−irreducible and recurrent Markov chain.

Proof.

Recurrence. Will follow from irreducibility and the fact that
π is invariant, a

(One step)Irreducibility. Let X⊂Rd , such that π(X) =1.
Write K for the kernel and let A ⊂X such that π(A) >0.
Then for any x ∈X
K (x, A) =

∫
A

K (x, y)dy

=
∫

A
πX1|X−1(y1 | x2, . . . , xd )×·· ·×πXd |X−d (yd | y1, . . . , yd−1)dy.

aMeyn and Tweedie, Markov chains and stochastic stability, Prop’n 10.1.1.
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Proof.

Thus if for some x ∈X and A with π(A) >0 we have
K (x, A) =0, we must have that

πX1|X−1(y1 | x2, . . . , xd )×·· ·×πXd |X−d (yd | y1, . . . , yd−1) =0,

for almost all y = (y1, . . . , yd ) ∈ A.

Therefore, by the Hammersley-Clifford theorem, we must
also have that

π
(
y1, y2, ..., yd

)∝ d∏
j=1

π X j |X− j

(
y j

∣∣ y1: j−1, x j+1:d

)
π X j |X− j

(
x j

∣∣ y1: j−1, x j+1:d

) =0,

for almost all y = (y1, . . . , yd ) ∈ A and thus π(A) =0 obtaining
a contradiction.

Note: Positivity not necessary for irreducibility; e.g.
f ∝ 1|x|≤1.
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LLN for Gibbs Sampler

Theorem

If the positivity condition is satisfied then for any
π-integrable function ϕ :X→R:

lim
1

t

t∑
i=1

ϕ
(

X (i )
)
=

∫
X
ϕ (x)π (x)dx

for π−almost all starting values X (1).
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Example: Bivariate Normal Distribution

• Let X := (
X1, X2

)∼N
(
µ,Σ

)
where µ= (

µ1,µ2
)
and

Σ=
(
σ2
1

ρ

ρ σ2
2

)
.

• The Gibbs sampler proceeds as follows in this case

(a) Sample X (t )
1

∼N
(
µ1+ρ/σ2

2

(
X (t−1)
2

−µ2
)

,σ2
1
−ρ2/σ2

2

)
(b) Sample X (t )

2
∼N

(
µ2+ρ/σ2

1

(
X (t )
1

−µ1
)

,σ2
2
−ρ2/σ2

1

)
.

• By proceeding this way, we generate a Markov chain X (t )

whose successive samples are correlated. If successive values
of X (t ) are strongly correlated, then we say that the Markov
chain mixes slowly.
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Bivariate Normal Distribution
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Figure: Case where ρ =0.1, first 100 steps.

28 / 76



Bivariate Normal Distribution
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Figure: Case where ρ =0.99, first 100 steps.
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Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after 1000
iterations. Small ρ on the left, large ρ on the right.
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Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after
10000 iterations. Small ρ on the left, large ρ on the right. 31 / 76



Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after
100000 iterations. Small ρ on the left, large ρ on the right. 32 / 76



Gibbs Sampling and Auxiliary Variables

• Gibbs sampling requires sampling from π X j |X− j
.

• In many scenarios, we can include a set of auxiliary
variables Z1, ..., Zp and have an “extended” distribution of
joint density π

(
x1, ..., xd , z1, ..., zp

)
such that∫

π
(
x1, ..., xd , z1, ..., zp

)
d z1...d zd =π(

x1, ..., xd
)

.

which is such that its full conditionals are easy to sample.

• Mixture models, Capture-recapture models, Tobit models,
Probit models etc.
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Mixtures of Normals
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• Independent data y1, ..., yn

Yi |θ ∼
K∑

k=1
pkN

(
µk ,σ2k

)
where θ =

(
p1, ..., pK ,µ1, ...,µK ,σ2

1
, ...,σ2K

)
.
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Bayesian Model

• Likelihood function

p
(

y1, ..., yn
∣∣θ)= n∏

i=1
p

(
yi

∣∣θ)= n∏
i=1

 K∑
k=1

pk√
2πσ2k

exp

(
−

(
yi −µk

)
2σ2k

2) .

Let’s fix K =2, σ2k =1 and pk =1/K for all k.

• Prior model

p (θ) =
K∏

k=1
p

(
µk

)
where

µk ∼N
(
αk ,βk

)
.

Let us fix αk =0,βk =1 for all k.

• Not obvious how to sample p(µ1 |µ2, y1, . . . , yn).
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Auxiliary Variables for Mixture Models
• Associate to each Yi an auxiliary variable Zi ∈

{
1, ...,K

}
such

that

P ( Zi = k|θ) = pk and Yi |Zi = k,θ ∼N
(
µk ,σ2k

)
so that

p
(

yi
∣∣θ)= K∑

k=1
P (Zi = k)N

(
yi ;µk ,σ2k

)
• The extended posterior is given by

p
(
θ, z1, ..., zn

∣∣ y1, ..., yn
)∝ p (θ)

n∏
i=1

P ( zi |θ) p
(

yi
∣∣zi ,θ

)
.

• Gibbs samples alternately

P( z1:n

∣∣ y1:n ,µ1:K )

p
(
µ1:K

∣∣ y1:n , z1:n

)
.
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Gibbs Sampling for Mixture Model

• We have

P
(

z1:n

∣∣ y1:n ,θ
)= n∏

i=1
P

(
zi | yi ,θ

)
where

P
(

zi | yi ,θ
)= P ( zi |θ) p

(
yi

∣∣zi ,θ
)∑K

k=1P ( zi = k|θ) p
(

yi
∣∣zi = k,θ

)
• Let nk =∑n

i=11{k} (zi ) ,nk yk =∑n
i=1 yi 1{k} (zi ) then

µk
∣∣z1:n , y1:n ∼N

(
nk yk

1+nk
,
1

1+nk

)
.
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Mixtures of Normals
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Figure: Histogram of the parameters obtained by 10,000
iterations of Gibbs sampling.
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iterations of Gibbs sampling.

40 / 76



Gibbs sampling in practice

• Many posterior distributions can be automatically
decomposed into conditional distributions by computer
programs.

• This is the idea behind BUGS (Bayesian inference Using
Gibbs Sampling), JAGS (Just another Gibbs Sampler).
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Gibbs Recap

• Given a target π (x) =π(
x1, x2, ..., xd

)
, Gibbs sampling works

by sampling from π X j |X− j

(
x j

∣∣x− j
)
for j =1, ...,d .

• Sampling exactly from one of these full conditionals might
be a hard problem itself.

• Even if it is possible, the Gibbs sampler might converge
slowly if components are highly correlated.

• If the components are not highly correlated then Gibbs
sampling performs well, even when d →∞, e.g. with an
error increasing “only” polynomially with d.

• Metropolis–Hastings algorithm (1953, 1970) is a more
general algorithm that can bypass these problems.

• Additionally Gibbs can be recovered as a special case.
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Metropolis–Hastings algorithm

• Target distribution on X=Rd of density π (x).

• Proposal distribution: for any x, x ′ ∈X, we have q
(

x ′∣∣x
)≥0

and
∫
X q

(
x ′∣∣x

)
d x ′ =1.

• Starting with X (1), for t =2,3, ...

(a) Sample X? ∼ q
(
·|X (t−1)

)
.

(b) Compute

α
(

X?
∣∣ X (t−1)

)
= min

1,
π

(
X?

)
q

(
X (t−1)

∣∣∣ X?
)

π
(
X (t−1)

)
q

(
X?|X (t−1)

)
 .

(c) Sample U ∼U[0,1]. If U ≤α
(

X?
∣∣ X (t−1)

)
, set X (t ) = X?,

otherwise set X (t ) = X (t−1).
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Metropolis–Hastings algorithm

• Metropolis–Hastings only requires point-wise evaluations of
π (x) up to a normalizing constant; indeed if π̃ (x) ∝π (x)
then

π
(
x?

)
q

(
x(t−1)

∣∣∣x?
)

π
(
x(t−1)

)
q

(
x?|x(t−1)

) = π̃
(
x?

)
q

(
x(t−1)

∣∣∣x?
)

π̃
(
x(t−1)

)
q

(
x?|x(t−1)

) .

• At each iteration t , a candidate is proposed.

• The average acceptance probability from the current state is

a
(
x(t−1)

)
:=

∫
X
α

(
x|x(t−1)

)
q

(
x|x(t−1)

)
d x

in which case X (t ) = X , otherwise X (t ) = X (t−1).

• This algorithm clearly defines a Markov chain (X (t ))t≥1.
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Transition Kernel and Reversibility

Lemma

The kernel of the Metropolis–Hastings algorithm is given by

K (y | x) ≡ K (x, y) =α(y | x)q(y | x)+ (1−a(x))δx (y).

Proof.

We have

K (x, y)

=
∫

q(x? | x){α(x? | x)δx?(y)+ (1−α(x? | x))δx (y)}d x?

= q(y | x)α(y | x)+
{∫

q(x? | x)(1−α(x? | x))d x?
}
δx (y)

= q(y | x)α(y | x)+
{
1−

∫
q(x? | x)α(x? | x)d x?

}
δx (y)

= q(y | x)α(y | x)+{
1−a(x)

}
δx (y).
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Reversibility

Proposition

The Metropolis–Hastings kernel K is π−reversible and thus
admit π as invariant distribution.

Proof.

For any x, y ∈X, with x 6= y

π(x)K (x, y) =π(x)q(y | x)α(y | x)

=π(x)q(y | x)

(
1∧ π(y)q(x | y)

π(x)q(y | x)

)
=

(
π(x)q(y | x)∧π(y)q(x | y)

)
=π(y)q(x | y)

(
π(x)q(y | x)

π(y)q(x | y)
∧1

)
=π(y)K (y, x).

If x = y , then obviously π(x)K (x, y) =π(y)K (y, x).
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Reducibility and periodicity of Metropolis–Hastings

• Consider the target distribution

π (x) =
(
U[0,1] (x)+U[2,3] (x)

)
/2

and the proposal distribution

q
(

x?
∣∣x

)=U(x−δ,x+δ)
(
x?

)
.

• The MH chain is reducible if δ≤1: the chain stays either in[
0,1

]
or

[
2,3

]
.

• Note that the MH chain is aperiodic if it always has a
non-zero chance of staying where it is.
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Some results

Proposition

If q
(

x?
∣∣x

)>0 for any x, x? ∈ supp(π) then the
Metropolis-Hastings chain is irreducible, in fact every state
can be reached in a single step (strongly irreducible).

Less strict conditions in (Roberts & Rosenthal, 2004).

Proposition

If the MH chain is irreducible then it is also Harris
recurrent(see Tierney, 1994).
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LLN for MH

Theorem

If the Markov chain generated by the Metropolis–Hastings
sampler is π−irreducible, then we have for any integrable
function ϕ :X→R:

lim
t→∞
1

t

t∑
i=1

ϕ
(

X (i )
)
=

∫
X
ϕ (x)π (x)d x

for every starting value X (1).
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Random Walk Metropolis–Hastings

• In the Metropolis–Hastings, pick q(x? | x) = g (x?−x) with g
being a symmetric distribution, thus

X? = X +ε, ε∼ g ;

e.g. g is a zero-mean multivariate normal or t-student.

• Acceptance probability becomes

α(x? | x) = min

(
1,
π(x?)

π(x)

)
.

• We accept...

• a move to a more probable state with probability 1;
• a move to a less probable state with probability

π(x?)/π(x) ≤1.
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Independent Metropolis–Hastings

• Independent proposal: a proposal distribution q(x? | x) which
does not depend on x.

• Acceptance probability becomes

α(x? | x) = min

(
1,
π(x?)q(x)

π(x)q(x?)

)
.

• For instance, multivariate normal or t-student
distribution.

• If π(x)/q(x) < M for all x and some M <∞, then the chain is
uniformly ergodic.

• The acceptance probability at stationarity is at least 1/M
(Lemma 7.9 of Robert & Casella).

• On the other hand, if such an M does not exist, the chain
is not even geometrically ergodic!

52 / 76



Choosing a good proposal distribution

• Goal: design a Markov chain with small correlation

ρ
(

X (t−1), X (t )
)
between subsequent values (why?).

• Two sources of correlation:

• between the current state X (t−1) and proposed value

X ∼ q
(
·|X (t−1)

)
,

• correlation induced if X (t ) = X (t−1), if proposal is
rejected.

• Trade-off: there is a compromise between

• proposing large moves,
• obtaining a decent acceptance probability.

• For multivariate distributions: covariance of proposal should
reflect the covariance structure of the target.
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Choice of proposal

• Target distribution, we want to sample from

π (x) =N

(
x;

(
0
0

)
,

(
1 0.5
0.5 1

))
.

• We use a random walk Metropolis—Hastings algorithm with

g (ε) =N

(
ε;0,σ2

(
1 0
0 1

))
.

• What is the optimal choice of σ2?

• We consider three choices: σ2 =0.12,1,102.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With

σ2 =0.12, the acceptance rate is ≈94%.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With

σ2 =1, the acceptance rate is ≈52%.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With

σ2 =10, the acceptance rate is ≈1.5%.
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With

σ2 =10, the acceptance rate is ≈1.5%.
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Choice of proposal

• Aim at some intermediate acceptance ratio: 20%? 40%?
Some hints come from the literature on “optimal scaling”.

• Literature suggest tuning to get .234...

• Maximize the expected square jumping distance:

E
[
||X t+1−X t ||2

]
• In multivariate cases, try to mimick the covariance structure
of the target distribution.

Cooking recipe: run the algorithm for T iterations, check
some criterion, tune the proposal distribution accordingly, run
the algorithm for T iterations again . . .
“Constructing a chain that mixes well is somewhat of an
art.”
All of Statistics, L. Wasserman.
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The adaptive MCMC approach

• One can make the transition kernel K adaptive, i.e. use
Kt at iteration t and choose Kt using the past sample
(X1, . . . , X t−1).

• The Markov chain is not homogeneous anymore: the
mathematical study of the algorithm is much more
complicated.

• Adaptation can be counterproductive in some cases (see
Atchadé & Rosenthal, 2005)!

• Adaptive Gibbs samplers also exist.

"Extreme care is needed when designing adaptive
algorithms: it’s easy to make an algorithm with the wrong
invariant distribution.
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Sophisticated Proposals

• “Langevin” proposal relies on

X? = X (t−1) + σ

2
∇ logπ

(
X (t−1)

)
+σW

where W ∼N
(
0, Id

)
, so the Metropolis-Hastings acceptance

ratio is

π(X?)q(X (t−1) | X?)

π(X (t−1))q(X? | X (t−1))

= π(X?)

π(X (t−1))

N (X (t−1); X?+ σ
2

.∇ logπ
(
X?

)
;σ2)

N (X?; X (t−1) + σ
2

.∇ logπ
(
X (t−1)

)
;σ2)

.

• Possibility to use higher order derivatives:

X? = X (t−1) + σ

2

[
∇2 logπ

(
X (t−1)

)]−1∇ logπ
(

X (t−1)
)
+σW.
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Sophisticated Proposals

• We can use

q(X?|X (t−1)) = g (X?;ϕ(X (t−1)))

where g is a distribution on X of parameters ϕ(X (t−1)) and
ϕ is a deterministic mapping

π(X?)q(X (t−1)|X?)

π(X (t−1))q(X?|X (t−1))
= π(X?)g (X (t−1);ϕ(X?))

π(X (t−1))g (X?;ϕ(X (t−1)))
.

• For instance, use heuristics borrowed from optimization
techniques.
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Sophisticated Proposals

The following link shows a comparison of

• adaptive Metropolis-Hastings,

• Gibbs sampling,

• No U-Turn Sampler (e.g. Hamiltonian MCMC)

on a simple linear model.

twiecki.github.io/blog/2014/01/02/visualizing-mcmc/
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Sophisticated Proposals
• Assume you want to sample from a target π with
supp(π) ⊂R+, e.g. the posterior distribution of a
variance/scale parameter.

• Any proposed move, e.g. using a normal random walk, to
R− is a waste of time.

• Given X (t−1), propose X? = exp(log X (t−1) +ε) with
ε∼N (0,σ2). What is the acceptance probability then?

α(X? | X (t−1)) = min

(
1,

π(X?)

π(X (t−1))

q(X (t−1) | X?)

q(X? | X (t−1))

)

= min

(
1,

π(X?)

π(X (t−1))

X?

X (t−1)

)
.

Why?

q(y |x)

q(x | y)
=

1
yσ

p
2π

exp
[
− (log y−log x)2

2σ2

]
1

xσ
p
2π

exp
[
− (log x−log y)2

2σ2

] = x

y
.
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Random Proposals

• Assume you want to use qσ2(X?|X (t−1)) =N (X ; X (t−1),σ2)

but you don’t know how to pick σ2. You decide to pick a
random σ2,? from a distribution f (σ2):

σ2,? ∼ f (σ2,?), X?|σ2,? ∼ qσ2,?(·|X (t−1))

so that

q(X?|X (t−1)) =
∫

qσ2,?(X?|X (t−1)) f (σ2,?)dσ2,?.

• Perhaps q(X?|X (t−1)) cannot be evaluated, e.g. the above
integral is intractable. Hence the acceptance probability

min{1,
π(X?)q(X (t−1)|X?)

π(X (t−1))q(X?|X (t−1))
}

cannot be computed.
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Random Proposals

• Instead you decide to accept your proposal with probability

αt = min

1,
π

(
X?

)
qσ2,(t−1)

(
X (t−1)

∣∣∣ X?
)

π
(
X (t−1)

)
qσ2,?

(
X?|X (t−1)

)


where σ2,(t−1) corresponds to parameter of the last accepted
proposal.

• With probability αt , set σ
2,(t ) =σ2,?, X (t ) = X?, otherwise

σ2,(t ) =σ2,(t−1), X (t ) = X (t−1).

• Question: Is it valid? If so, why?
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Random Proposals
• Consider the extended target

π̃
(
x,σ2

)
:=π (x) f

(
σ2

)
.

• Previous algorithm is a Metropolis-Hastings of target π̃(x,σ2)
and proposal

q(y,τ2|x,σ2) = f (τ2)qτ2(y |x)

• Indeed, we have

π̃(y,τ2)

π̃(x,σ2)

q(x,σ2|y,τ2)

q(y,τ2|x,σ2)

= π(y) f (τ2)

π(x) f (σ2)

f (σ2)qσ2(x|y)

f (τ2)qτ2(y |x)
= π(y)

π(x)

qσ2(x|y)

qτ2(y |x)

• Remark: we just need to be able to sample from f (·), not
to evaluate it.
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Using multiple proposals

• Consider a target of density π (x) where x ∈X.
• To sample from π, you might want to use various proposals
for Metropolis-Hastings q1

(
x ′∣∣x

)
, q2

(
x ′∣∣x

)
, ..., qp

(
x ′∣∣x

)
.

• One way to achieve this is to build a proposal

q
(

x ′∣∣x
)= p∑

j=1
β j q j

(
x ′∣∣x

)
, β j >0,

p∑
j=1

β j =1,

and Metropolis-Hastings requires evaluating

α
(

X?
∣∣ X (t−1)

)
= min

1,
π

(
X?

)
q

(
X (t−1)

∣∣∣ X?
)

π
(
X (t−1)

)
q

(
X?|X (t−1)

)
 ,

and thus evaluating q j

(
X?

∣∣ X (t−1)
)
for j =1, ..., p.
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Motivating Example

• Let

q
(

x ′∣∣x
)=β1N (

x ′; x,Σ
)+ (
1−β1

)
N

(
x ′;µ (x) ,Σ

)
where µ : X→ X is a clever but computationally expensive
deterministic optimisation algorithm.

• Using β1 ≈1 will make most proposed points come from the
cheaper proposal distribution N

(
x ′; x,Σ

)
. . .

• . . . but you won’t save time as µ
(

X (t−1)
)
needs to be

evaluated at every step.
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Composing kernels

• How to use different proposals to sample from π without
evaluating all the densities at each step?

• What about combining different Metropolis-Hastings updates
K j using proposal q j instead? i.e.

K j
(
x, x ′)=α j

(
x ′∣∣x

)
q j

(
x ′∣∣x

)+ (
1−a j (x)

)
δx

(
x ′)

where

α j (x ′|x) = min

(
1,
π(x ′)q j (x|x ′)
π(x)q j (x ′|x)

)
a j (x) =

∫
α j (x ′|x)q j (x ′|x)d x ′.

67 / 76



Composing kernels

Generally speaking, assume

• p possible updates characterised by kernels K j (·, ·),

• each kernel K j is π-invariant.

Two possibilities of combining the p MCMC updates:

• Cycle: perform the MCMC updates in a deterministic order.

• Mixture: Pick an MCMC update at random.
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Cycle of MCMC updates

• Starting with X (1) iterate for t =2,3, ...

(a) Set Z (t ,0) := X (t−1).

(b) For j =1, ..., p, sample Z (t , j) ∼ K j

(
Z (t , j−1), ·

)
.

(c) Set X (t ) := Z (t ,p).

• Full cycle transition kernel is

K
(
x(t−1), x(t )

)
=

∫
· · ·

∫
K1

(
x(t−1), z(t ,1)

)
K2

(
z(t ,1), z(t ,2)

)
· · ·Kp

(
z(t ,p−1), x(t )

)
d z(t ,1) · · ·d z(t ,p−1).

• K is π-invariant.
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Mixture of MCMC updates

• Starting with X (1) iterate for t =2,3, ...

(a) Sample J from
{
1, ..., p

}
with P (J = k) =βk .

(b) Sample X (t ) ∼ K J

(
X (t−1), ·

)
.

• Corresponding transition kernel is

K
(
x(t−1), x(t )

)
=

p∑
j=1

β j K j

(
x(t−1), x(t )

)
.

• K is π-invariant.

• The algorithm is different from using a mixture proposal

q
(

x ′∣∣x
)= p∑

j=1
β j q j

(
x ′∣∣x

)
.
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Metropolis-Hastings Design for Multivariate Targets

• If dim(X) is large, it might be very difficult to design a
“good” proposal q

(
x ′∣∣x

)
.

• As in Gibbs sampling, we might want to partition x into
x = (

x1, ..., xd
)
and denote x− j := x\

{
x j

}
.

• We propose “local” proposals where only x j is updated

q j
(

x ′∣∣x
)= q j

(
x ′

j

∣∣∣x
)

︸ ︷︷ ︸
propose new component j

δx− j

(
x ′
− j

)
︸ ︷︷ ︸

keep other components fixed

.
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Metropolis-Hastings Design for Multivariate Targets

• This yields

α j (x, x ′) = min

1,
π(x ′

− j , x ′
j )q j (x j |x− j , x ′

j )

π(x− j , x j )q j (x ′
j |x− j , x j )

δx ′
− j

(x− j )

δx− j (x ′
− j )︸ ︷︷ ︸

=1


= min

(
1,
π(x− j , x ′

j )q j (x j |x− j , x ′
j )

π(x− j , x j )q j (x ′
j |x− j , x j )

)

= min

(
1,
πX j |X− j (x ′

j |x− j )q j (x j |x− j , x ′
j )

πX j |X− j (x j |x− j )q j (x ′
j |x− j , x j )

)
.
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One-at-a-time MH (cycle/systematic scan)

Starting with X (1) iterate for t =2,3, ...
For j =1, ...,d ,

• Sample X? ∼ q j (·|X (t )
1

, . . . , X (t )
j−1, X (t−1)

j , ..., X (t−1)
d ).

• Compute

α j = min

1,
πX j |X− j

(
X?

j | X (t )
1

. . . X (t )
j−1, X (t−1)

j+1 . . . X (t−1)
d

)
πX j |X− j

(
X (t−1)

j | X (t )
1

. . . X (t )
j−1, X (t−1)

j+1 . . . X (t−1)
d

)
×

q j

(
X (t−1)

j

∣∣∣ X (t )
1

...X (t )
j−1, X?

j , X (t−1)
j+1 ...X (t−1)

d

)
q j

(
X?

j

∣∣∣ X (t )
1

...X (t )
j−1, X (t−1),

j , X (t−1)
j+1 ...X (t−1)

d

)
 .

• With probability α j , set X (t ) = X?, otherwise set X (t ) = X (t−1).
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One-at-a-time MH (mixture/random scan)

Starting with X (1) iterate for t =2,3, ...

• Sample J from
{
1, ...,d

}
with P (J = k) =βk .

• Sample X? ∼ q J

(
·|X (t )
1

, ..., X (t−1)
d

)
.

• Compute

αJ = min

1,
πX J |X−J

(
X?

J | X (t−1)
1

. . . X (t−1)
J−1 , X (t−1)

J+1 . . .
)

πX J |X−J

(
X (t−1)

J | X (t−1)
1

. . . X (t−1)
J−1 , X (t−1)

J+1 . . .
)

×
q J

(
X (t−1)

J

∣∣∣ X (t−1)
1

...X (t−1)
J−1 , X?

J , X (t−1)
J+1 ...X (t−1)

d

)
q J

(
X?

J

∣∣∣ X (t−1)
1

...X (t−1)
J−1 , X (t−1),

J , X (t−1)
J+1 ...X (t−1)

d

)
 .

• With probability αJ set X (t ) = X?, otherwise X (t ) = X (t−1).
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Gibbs Sampler as a Metropolis-Hastings algorithm

Proposition

The systematic Gibbs sampler is a cycle of one-at-a time
MH whereas the random scan Gibbs sampler is a mixture of
one-at-a time MH where

q j

(
x ′

j

∣∣∣x
)
=π X j |X− j

(
x ′

j

∣∣∣x− j

)
.

Proof.

It follows from

π
(
x− j , x ′

j

)
π

(
x− j , x j

) q j

(
x j

∣∣x− j , x ′
j

)
q j

(
x ′

j

∣∣∣x− j , x j

)
=
π

(
x− j

)
π X j |X− j

(
x ′

j

∣∣∣x− j

)
π

(
x− j

)
π X j |X− j

(
x j

∣∣x− j
) π X j |X− j

(
x j

∣∣x− j
)

π X j |X− j

(
x ′

j

∣∣∣x− j

) =1.
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This is not a Gibbs sampler

Consider a case where d =2. From X (t−1)
1

, X (t−1)
2
at time

t −1:

• Sample X?
1
∼π(X1 | X (t−1)

2
), then X?

2
∼π(X2 | X?

1
). The

proposal is then X? = (X?
1

, X?
2

).

• Compute

αt = min

1,
π(X?
1

, X?
2

)

π(X (t−1)
1

, X (t−1)
2

)

q(X (t−1) | X?

q(X? | X (t−1))



• Accept X? or not based on αt , where here

αt 6=1

!!
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