Advanced Simulation - Lecture 6

George Deligiannidis

February 4th, 2020
Markov chains - discrete space

• Let X be discrete, e.g. $X = \mathbb{Z}$.

• $(X_t)_{t \geq 1}$ is a Markov chain if

$$
P(X_t = x_t | X_1 = x_1, \ldots, X_{t-1} = x_{t-1}) = P(X_t = x_t | X_{t-1} = x_{t-1}).$$

The future is conditionally independent of the past given the present.

• Homogeneous Markov chains:

$$
\forall m \in \mathbb{N}: P(X_t = y | X_{t-1} = x) = P(X_{t+m} = y | X_{t+m-1} = x).
$$

• The Markov transition kernel is a stochastic matrix

$$
K(i, j) = K_{ij} = P(X_t = j | X_{t-1} = i).
$$
Markov chains - discrete space

- Let $\mu_t(x) = \mathbb{P}(X_t = x)$, the chain rule yields

$$
\mathbb{P}(X_1 = x_1, X_2 = x_2, ..., X_t = x_t) = \mu_1(x_1) \prod_{i=2}^{t} K_{x_{i-1}x_i}.
$$

- The m-transition matrix K^m as

$$
K^m_{ij} = \mathbb{P}(X_t + m = j \mid X_t = i).
$$

- Chapman-Kolmogorov equation:

$$
K^{m+n}_{ij} = \sum_{k \in \mathcal{X}} K^m_{ik} K^n_{kj}.
$$

- We obtain

$$
\mu_{t+1}(j) = \sum_i \mu_t(i) K_{ij}
$$

i.e. using "linear algebra notation",

$$
\mu_{t+1} = \mu_t K.
$$
Roadmap

- We will see that we can choose the transition matrix K such that if $\mu_0 = \pi$ then $\mu_t = \pi$ for all t.
- In practice we will have $\mu_0 \neq \pi$;
- We will see that under certain conditions, not matter what μ_0 is, $\mu_t \to \pi$ in total variation.
- This is enough to guarantee us a law of large numbers and a central limit theorem;
- Making this convergence precise, e.g. in terms of the dimension, is still an active research area.
Irreducibility and aperiodicity

Definition

A Markov chain is said to be **irreducible** if all the states communicate with each other, that is

\[
\forall x, y \in \mathbb{X} \quad \min \left\{ t : K_{xy}^t > 0 \right\} < \infty.
\]

A state \(x \) has **period** \(d(x) \) defined as

\[
d(x) = \gcd \{ s \geq 1 : K_{xx}^s > 0 \}.
\]

An irreducible chain is **aperiodic** if all states have period 1.

Example: \(K_\theta = \begin{pmatrix} \theta & 1 - \theta \\ 1 - \theta & \theta \end{pmatrix} \) is irreducible if \(\theta \in [0, 1) \) and aperiodic if \(\theta \in (0, 1) \). If \(\theta = 0 \), the gcd is 2.
Transience and recurrence

Introduce the number of visits to \(x \):

\[
\eta_x := \sum_{k=1}^{\infty} 1\{X_k = x\}.
\]

Definition

A state \(x \) is termed **transient** if:

\[
E_x (\eta_x) < \infty,
\]

where \(E_x \) refers to the law of the chain starting from \(x \).

A state is called **recurrent** otherwise and

\[
E_x (\eta_x) = \infty.
\]

Proposition

If a finite state chain is irreducible, then either all states are **recurrent** or **transient**. In addition all states have the same period.
Invariant distribution

Definition

A distribution π is **invariant**, or **stationary**, for a Markov kernel K, if

$$\pi K = \pi.$$

Note: if there exists t such that $X_t \sim \pi$, then

$$X_{t+s} \sim \pi$$

for all $s \in \mathbb{N}$.

Example: for any $\theta \in [0, 1]$

$$K_\theta = \begin{pmatrix} \theta & 1 - \theta \\ 1 - \theta & \theta \end{pmatrix}$$

admits the invariant distribution

$$\pi = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$
Detailed balance

Definition
A Markov kernel K satisfies detailed balance for π if
\[\forall x, y \in X : \pi(x)K_{xy} = \pi(y)K_{yx}. \]

Lemma
If K satisfies detailed balance for π then K is π-invariant.

If K satisfies detailed balance for π then the Markov chain is reversible, i.e. at stationarity,
\[\forall x, y \in X : \mathbb{P}(X_t = x, X_{t+1} = y) = \mathbb{P}(X_t = x, X_{t-1} = y). \]
Lack of reversibility

- Let \(P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \).

- Check \(\pi P = \pi \) for \(\pi = (1/2, 1/3, 1/6) \).

- \(P \) cannot be \(\pi \) reversible as

\[1 \rightarrow 3 \rightarrow 2 \rightarrow 1 \]

is a possible sequence whereas

\[1 \rightarrow 2 \rightarrow 3 \rightarrow 1 \]

is not (as \(P_{2,3} = 0 \)).

- Detailed balance does not hold as \(\pi_2 P_{23} = 0 \neq \pi_3 P_{32} \).
Remarks

- All finite space Markov chains have at least one stationary distribution but not all stationary distributions are also limiting distributions.

\[
P = \begin{pmatrix}
0.4 & 0.6 & 0 & 0 \\
0.2 & 0.8 & 0 & 0 \\
0 & 0 & 0.4 & 0.6 \\
0 & 0 & 0.2 & 0.8
\end{pmatrix}
\]

Two left eigenvectors of eigenvalue 1:

\[
\pi_1 = \left(\frac{1}{4}, \frac{3}{4}, 0, 0 \right),
\]
\[
\pi_2 = \left(0, 0, \frac{1}{4}, \frac{3}{4} \right)
\]

depending on the initial state, two different stationary distributions.
Equilibrium

Proposition

If a discrete space Markov chain is aperiodic and irreducible and admits an invariant distribution $\pi(\cdot)$, then

$$\forall x \in \mathcal{X} \quad \mathbb{P}_\mu(X_t = x) \xrightarrow{t \to \infty} \pi(x),$$

for any starting distribution μ.

- In the Monte Carlo perspective, we will be primarily interested in convergence of empirical averages, such as

$$\hat{I}_n = \frac{1}{n} \sum_{t=1}^{n} \varphi(X_t) \xrightarrow{a.s. \ \ n \to \infty} I = \sum_{x \in \mathcal{X}} \varphi(x) \pi(x).$$

- Before turning to these “ergodic theorems”, let us consider continuous spaces.
Markov chains - continuous space

- The state space \mathbb{X} is now continuous, e.g. \mathbb{R}^d.

- $(X_t)_{t \geq 1}$ is a Markov chain if for any (measurable) set A,

$$
P(X_t \in A | X_1 = x_1, X_2 = x_2, \ldots, X_{t-1} = x_{t-1})
= P(X_t \in A | X_{t-1} = x_{t-1}).$$

The future is conditionally independent of the past given the present.

- We have

$$
P(X_t \in A | X_{t-1} = x) = \int_A K(x, y) \, dy = K(x, A),$$

that is conditional on $X_{t-1} = x$, X_t is a random variable which admits a probability density function $K(x, \cdot)$.

- $K : \mathbb{X}^2 \to \mathbb{R}$ is the **kernel** of the Markov chain.
Markov chains - continuous space

- Denoting μ_1 the pdf of X_1, we obtain directly

$$P(X_1 \in A_1, ..., X_t \in A_t) = \int_{A_1 \times \cdots \times A_t} \mu_1(x_1) \prod_{k=2}^{t} K(x_{k-1}, x_k) \, dx_1 \cdots dx_t.$$

- Denoting by μ_t the distribution of X_t, Chapman-Kolmogorov equation reads

$$\mu_t(y) = \int_{X} \mu_{t-1}(x) K(x, y) \, dx$$

and similarly for $m > 1$

$$\mu_{t+m}(y) = \int_{X} \mu_t(x) K^m(x, y) \, dx$$

where

$$K^m(x_t, x_{t+m}) = \int_{X^{m-1}} \prod_{k=t+1}^{t+m} K(x_{k-1}, x_k) \, dx_{t+1} \cdots dx_{t+m-1}.$$
Example

- Consider the autoregressive (AR) model

\[X_t = \rho X_{t-1} + V_t \]

where \(V_t \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \tau^2) \). This defines a Markov chain such that

\[K(x, y) = \frac{1}{\sqrt{2\pi\tau^2}} \exp\left(-\frac{1}{2\tau^2} (y - \rho x)^2\right). \]

- We also have

\[X_{t+m} = \rho^m X_t + \sum_{k=1}^{m} \rho^{m-k} V_{t+k} \]

so in the Gaussian case

\[K^m(x, y) = \frac{1}{\sqrt{2\pi\tau^2_m}} \exp\left(-\frac{1}{2 \frac{\tau^2_m}{\tau^2_m}} (y - \rho^m x)^2\right) \]

with \(\tau^2_m = \tau^2 \sum_{k=1}^{m} (\rho^2)^{m-k} = \tau^2 \frac{1-\rho^{2m}}{1-\rho^2}. \)
Irreducibility and aperiodicity

Definition

Given a probability measure μ over \mathbb{X}, a Markov chain is μ-irreducible if

$$\forall x \in \mathbb{X} \ \forall A: \mu(A) > 0 \ \exists t \in \mathbb{N} \ K^t(x, A) > 0.$$

A μ-irreducible Markov chain of transition kernel K is periodic if there exists some partition of the state space $\mathbb{X}_1, ..., \mathbb{X}_d$ for $d \geq 2$, such that

$$\forall i, j, t, s: \mathbb{P}(X_{t+s} \in \mathbb{X}_j \mid X_t \in \mathbb{X}_i) = \begin{cases} 1 & j = i + s \mod d \\ 0 & \text{otherwise.} \end{cases}.$$

Otherwise the chain is aperiodic.
Recurrence and Harris Recurrence

For any measurable set \(A \) of \(\mathbb{X} \), let

\[
\eta_A = \sum_{k=1}^{\infty} 1_A (X_k),
\]

the number of visits to the set \(A \).

Definition

A \(\mu \)-irreducible Markov chain is **recurrent** if for any measurable set \(A \subset \mathbb{X} : \mu(A) > 0 \), then

\[
\forall x \in A \quad \mathbb{E}_x (\eta_A) = \infty.
\]

A \(\mu \)-irreducible Markov chain is **Harris recurrent** if for any measurable set \(A \subset \mathbb{X} : \mu(A) > 0 \), then

\[
\forall x \in \mathbb{X} \quad \mathbb{P}_x (\eta_A = \infty) = 1.
\]

Harris recurrence is stronger than recurrence.
Invariant Distribution and Reversibility

Definition

A distribution of density π is invariant or *stationary* for a Markov kernel K, if

$$\int_X \pi(x) K(x, y) \, dx = \pi(y).$$

A Markov kernel K is π-reversible if

$$\forall f \quad \iint f(x, y) \pi(x) K(x, y) \, dx \, dy = \iint f(y, x) \pi(x) K(x, y) \, dx \, dy$$

where f is a bounded measurable function.
Detailed balance

In practice it is easier to check the detailed balance condition:

\[\forall x, y \in \mathbb{X} \quad \pi(x)K(x, y) = \pi(y)K(y, x) \]

Lemma

If detailed balance holds, then \(\pi \) is invariant for \(K \) and \(K \) is \(\pi \)-reversible.

Example: the Gaussian AR process is \(\pi \)-reversible, \(\pi \)-invariant for

\[\pi(x) = \mathcal{N}\left(x; 0, \frac{\tau^2}{1 - \rho^2}\right) \]

when \(|\rho| < 1 \).
Theorem

Suppose the Markov chain \(\{X_i; i \geq 0\} \) is \(\pi \)-irreducible, with invariant distribution \(\pi \), and suppose that \(X_0 = x \). Then for any \(\pi \)-integrable function \(\phi : X \to \mathbb{R} \):

\[
\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \phi(X_i) = \int_{X} \phi(w) \pi(w) \, dw
\]

almost surely, for \(\pi \)-almost every \(x \).

If the chain in addition is Harris recurrent then this holds for every starting value \(x \).
Convergence

Theorem

Suppose the kernel K is π-irreducible, π-invariant, aperiodic. Then, we have

$$\lim_{t \to \infty} \int_X |K^t(x, y) - \pi(y)| \, dy = 0$$

for π–almost all starting values x.

Under some additional conditions, one can prove that there exists a $\rho < 1$ and a function $M : X \to \mathbb{R}^+$ such that for all measurable sets A and all n

$$|K^n(x, A) - \pi(A)| \leq M(x) \rho^n.$$

The chain is then said to be **geometrically ergodic**.
Central Limit Theorem

Theorem

Under regularity conditions, for a Harris recurrent, \(\pi \)-invariant Markov chain, we can prove

\[
\sqrt{t} \left[\frac{1}{t} \sum_{i=1}^{t} \varphi(X_i) - \int_{\mathbb{X}} \varphi(x) \pi(x) \, dx \right] \xrightarrow{d} \mathcal{N} \left(0, \sigma^2(\varphi) \right),
\]

where the asymptotic variance can be written

\[
\sigma^2(\varphi) = \mathbb{V}_{\pi} \left[\varphi(X_1) \right] + 2 \sum_{k=2}^{\infty} \text{Cov}_{\pi} \left[\varphi(X_1), \varphi(X_k) \right].
\]

This formula shows that (positive) correlations increase the asymptotic variance, compared to i.i.d. samples for which the variance would be \(\mathbb{V}_{\pi}(\varphi(X)) \).
Central Limit Theorem

Example: for the AR Gaussian model,
\[\pi(x) = \mathcal{N}\left(x; 0, \tau^2 / (1 - \rho^2)\right) \] for \(|\rho| < 1\) and

\[\text{Cov}(X_1, X_k) = \rho^{k-1} \forall [X_1] = \rho^{k-1} \frac{\tau^2}{1 - \rho^2}. \]

Therefore with \(\varphi(x) = x\),

\[\sigma^2(\varphi) = \frac{\tau^2}{1 - \rho^2} \left(1 + 2 \sum_{k=1}^{\infty} \rho^k\right) = \frac{\tau^2}{1 - \rho^2} \frac{1 + \rho}{1 - \rho} = \frac{\tau^2}{(1 - \rho)^2}, \]

which increases when \(\rho \to 1\).
Markov chain Monte Carlo

- We are interested in sampling from a distribution π, for instance a posterior distribution in a Bayesian framework.

- Markov chains with π as invariant distribution can be constructed to approximate expectations with respect to π.

- For example, the Gibbs sampler generates a Markov chain targeting π defined on \mathbb{R}^d using the full conditionals

 $$\pi(x_i \mid x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_d).$$
Gibbs Sampling

• Assume you are interested in sampling from

\[\pi(x) = \pi(x_1, x_2, ..., x_d), \quad x \in \mathbb{R}^d. \]

• Notation: \(x_{-i} := (x_1, ..., x_{i-1}, x_{i+1}, ..., x_d) \).

Systematic scan Gibbs sampler. Let \((X_1^{(1)}, ..., X_d^{(1)}) \) be the initial state then iterate for \(t = 2, 3, ... \)

1. Sample \(X_1^{(t)} \sim \pi_{X_1|X_{-1}} (\cdot | X_2^{(t-1)}, ..., X_d^{(t-1)}) \).

\[\vdots \]

j. Sample \(X_j^{(t)} \sim \pi_{X_j|X_{-j}} (\cdot | X_1^{(t)}, ..., X_{j-1}^{(t)}, X_{j+1}^{(t-1)}, ..., X_d^{(t-1)}) \).

\[\vdots \]

d. Sample \(X_d^{(t)} \sim \pi_{X_d|X_{-d}} (\cdot | X_1^{(t)}, ..., X_{d-1}^{(t)}) \).
Gibbs Sampling

A few questions one can ask about this algorithm:

• Is the joint distribution π uniquely specified by the conditional distributions $\pi_{X_i|X_{-i}}$?

• Does the Gibbs sampler provide a Markov chain with the correct stationary distribution π?

• If yes, does the Markov chain converge towards this invariant distribution?

• It will turn out to be the case under some mild conditions.
Hammersley-Clifford Theorem

Theorem

Consider a distribution with continuous density $\pi(x_1, x_2, \ldots, x_d)$ such that

$$\text{supp}(\pi) = \text{supp}\left(\bigotimes_{i=1}^d \pi_{X_i} \right).$$

Then for any $(z_1, \ldots, z_d) \in \text{supp}(\pi)$, we have

$$\pi(x_1, x_2, \ldots, x_d) \propto \prod_{j=1}^d \frac{\pi_{X_j|X_{-j}}(x_j|x_{1:j-1}, z_{j+1:d})}{\pi_{X_j|X_{-j}}(z_j|x_{1:j-1}, z_{j+1:d})}.$$

The condition above is known as the **positivity condition**.

Equivalently, if $\pi_{X_i}(x_i) > 0$ for $i = 1, \ldots, d$, then

$$\pi(x_1, \ldots, x_d) > 0.$$
Proof of Hammersley-Clifford Theorem

Proof.

We have

\[\pi(x_{1:d-1}, x_d) = \pi_{X_d|X_{-d}}(x_d | x_{1:d-1}) \pi(x_{1:d-1}), \]
\[\pi(x_{1:d-1}, z_d) = \pi_{X_d|X_{-d}}(z_d | x_{1:d-1}) \pi(x_{1:d-1}). \]

Therefore

\[\pi(x_{1:d}) = \pi(x_{1:d-1}, z_d) \frac{\pi(x_{1:d-1}, x_d)}{\pi(x_{1:d-1}, z_d)} \]
\[= \pi(x_{1:d-1}, z_d) \frac{\pi(x_{1:d-1}, x_d) / \pi(x_{1:d-1})}{\pi(x_{1:d-1}, z_d) / \pi(x_{1:d-1})} \]
\[= \pi(x_{1:d-1}, z_d) \frac{\pi_{X_d|X_{1:d-1}}(x_d | x_{1:d-1})}{\pi_{X_d|X_{1:d-1}}(z_d | x_{1:d-1})}. \]
Proof.

Similarly, we have

\[\pi(x_{1:d-1}, z_d) = \pi(x_{1:d-2}, z_{d-1}, z_d) = \frac{\pi(x_{1:d-2}, z_{d-1}, z_d)}{\pi(x_{1:d-2}, z_{d-1}, z_d)} \]

\[= \pi(x_{1:d-2}, z_{d-1}, z_d) = \frac{\pi(x_{1:d-1}, z_d)}{\pi(x_{1:d-1}, z_d) / \pi(x_{1:d-2}, z_d)} \]

\[= \pi(x_{1:d-2}, z_{d-1}, z_d) = \frac{\pi X_{d-1}X_{-(d-1)}(x_{d-1} | x_{1:d-2}, z_d)}{\pi X_{d-1}X_{-(d-1)}(z_{d-1} | x_{1:d-2}, z_d)} \]

hence

\[\pi(x_{1:d}) = \pi(x_{1:d-2}, z_{d-1}, z_d) = \pi X_{d-1}X_{-(d-1)}(x_{d-1} | x_{1:d-2}, z_d) \]

\[\times \frac{\pi X_{d}X_{d-1}(x_d | x_{1:d-1})}{\pi X_{d}X_{d-1}(z_d | x_{1:d-1})} \]
Proof.

By \(z \in \text{supp}(\pi) \) we have that \(\pi_{X_i}(z_i) > 0 \) for all \(i \). Also, we are allowed to suppose that \(\pi_{X_i}(x_i) > 0 \) for all \(i \). Thus all the conditional probabilities we introduce are positive since

\[
\pi_{X_j|X^{-j}}(x_j \mid x_1, \ldots, x_{j-1}, z_{j+1}, \ldots, z_d) \\
= \frac{\pi(x_1, \ldots, x_{j-1}, x_j, z_{j+1}, \ldots, z_d)}{\pi(x_1, \ldots, x_{j-1}, z_j, z_{j+1}, \ldots, z_d)} > 0.
\]

By iterating we have the theorem.
Example: Non-Integrable Target

- Consider the following conditionals on \mathbb{R}^+

\[
\begin{align*}
\pi_{X_1|X_2}(x_1|x_2) &= x_2 \exp(-x_2x_1) \\
\pi_{X_2|X_1}(x_2|x_1) &= x_1 \exp(-x_1x_2).
\end{align*}
\]

We might expect that these full conditionals define a joint probability density $\pi(x_1, x_2)$.

- Hammersley-Clifford would give

\[
\begin{align*}
\pi(x_1, x_2, \ldots, x_d) &\propto \frac{\pi_{X_1|X_2}(x_1|z_2) \pi_{X_2|X_1}(x_2|x_1)}{\pi_{X_1|X_2}(z_1|z_2) \pi_{X_2|X_1}(z_2|x_1)} \\
&= \frac{z_2 \exp(-z_2x_1) x_1 \exp(-x_1x_2)}{z_2 \exp(-z_2z_1) x_1 \exp(-x_1z_2)} \propto \exp(-x_1x_2).
\end{align*}
\]

- However $\int \int \exp(-x_1x_2) \, dx_1 \, dx_2 = \infty$ so

\[
\begin{align*}
\pi_{X_1|X_2}(x_1|x_2) &= x_2 \exp(-x_2x_1) \text{ and} \\
\pi_{X_2|X_1}(x_1|x_2) &= x_1 \exp(-x_1x_2)
\end{align*}
\]

are not compatible.
Example: Positivity condition violated

Figure: Gibbs sampling targeting \(\pi(x, y) \propto 1_{[-1,0] \times [-1,0] \cup [0,1] \times [0,1]}(x, y)\).

Positivity condition is sufficient for the Gibbs sampler to be irreducible.
Invariance of the Gibbs sampler

The kernel of the Gibbs sampler (case $d=2$) is

$$K(x^{(t-1)}, x^{(t)}) = \pi_{X_1|X_2}(x_1^{(t)} | x_2^{(t-1)})\pi_{X_2|X_1}(x_2^{(t)} | x_1^{(t)})$$

Case $d > 2$:

$$K(x^{(t-1)}, x^{(t)}) = \prod_{j=1}^{d} \pi_{X_j|X_{-j}}(x_j^{(t)} | x_{1:j-1}^{(t)}, x_{j+1:d}^{(t-1)})$$

Proposition

The systematic scan Gibbs sampler kernel admits π as invariant distribution.
Invariance of the Gibbs sampler II

Proof for $d = 2$.

Let $x = (x_1, x_2)$ and $y = (y_1, 2)$. Then we have

\[
\int K(x, y)\pi(x)dx = \int \pi(y_2 \mid y_1)\pi(y_1 \mid x_2)\pi(x_1, x_2)dx_1 dx_2 \\
= \pi(y_2 \mid y_1) \int \pi(y_1 \mid x_2)\pi(x_2)dx_2 \\
= \pi(y_2 \mid y_1)\pi(y_1) = \pi(y_1, y_2) = \pi(y).
\]
Irreducibility and Recurrence

Proposition

Assume π satisfies the positivity condition, then the Gibbs sampler yields a π-irreducible and recurrent Markov chain.

Proof.

Recurrence. Will follow from irreducibility and the fact that π is invariant, \(^a\)

Irreducibility. Let $X \subset \mathbb{R}^d$, such that $\pi(X) = 1$. Write K for the kernel and let $A \subset X$ such that $\pi(A) > 0$. Then for any $x \in X$

$$K(x, A) = \int_A K(x, y)dy$$

$$= \int_A \pi_{X_1|X_{-1}}(y_1 \mid x_2, \ldots, x_d) \times \cdots$$

$$\times \pi_{X_d|X_{-d}}(y_d \mid y_1, \ldots, y_{d-1}) dy.$$

\(^a\)Meyn and Tweedie, Markov chains and stochastic stability, Prop’n 10.1.1.
Proof.

Thus if for some \(x \in \mathbb{X} \) and \(A \) with \(\pi(A) > 0 \) we have \(K(x, A) = 0 \), we must have that

\[
\pi_{X_1 | X^{-1}}(y_1 | x_2, \ldots, x_d) \times \cdots \times \pi_{X_d | X^{-d}}(y_d | y_1, \ldots, y_{d-1}) = 0,
\]

for almost all \(y = (y_1, \ldots, y_d) \in A \).

Therefore, by the Hammersley-Clifford theorem, we must also have that

\[
\pi(y_1, y_2, \ldots, y_d) \propto \prod_{j=1}^{d} \frac{\pi_{X_j | X^{-j}}(y_j | y_1:j-1, x_{j+1:d})}{\pi_{X_j | X^{-j}}(x_j | y_1:j-1, x_{j+1:d})} = 0,
\]

for almost all \(y = (y_1, \ldots, y_d) \in A \) and thus \(\pi(A) = 0 \) obtaining a contradiction.
If the positivity condition is satisfied then for any π-integrable function $\varphi : X \rightarrow \mathbb{R}$:

$$\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \varphi \left(X^{(i)} \right) = \int_{X} \varphi (x) \pi (x) \, dx$$

for π–almost all starting values $X^{(1)}$.

Theorem
Example: Bivariate Normal Distribution

- Let \(X := (X_1, X_2) \sim \mathcal{N}(\mu, \Sigma) \) where \(\mu = (\mu_1, \mu_2) \) and

\[
\Sigma = \begin{pmatrix}
\sigma_1^2 & \rho \\
\rho & \sigma_2^2
\end{pmatrix}.
\]

- The Gibbs sampler proceeds as follows in this case

(a) Sample \(X_1^{(t)} \sim \mathcal{N}\left(\mu_1 + \rho / \sigma_2^2 \left(X_2^{(t-1)} - \mu_2 \right), \sigma_1^2 - \rho^2 / \sigma_2^2 \right) \)

(b) Sample \(X_2^{(t)} \sim \mathcal{N}\left(\mu_2 + \rho / \sigma_1^2 \left(X_1^{(t)} - \mu_1 \right), \sigma_2^2 - \rho^2 / \sigma_1^2 \right) \).

- By proceeding this way, we generate a Markov chain \(X^{(t)} \) whose successive samples are correlated. If successive values of \(X^{(t)} \) are strongly correlated, then we say that the Markov chain mixes slowly.
Figure: Case where $\rho = 0.1$, first 100 steps.
Bivariate Normal Distribution

Figure: Case where $\rho = 0.99$, first 100 steps.
Figure: Histogram of the first component of the chain after 1000 iterations. Small ρ on the left, large ρ on the right.
Bivariate Normal Distribution

Figure: Histogram of the first component of the chain after 10000 iterations. Small ρ on the left, large ρ on the right.
Bivariate Normal Distribution

Figure: Histogram of the first component of the chain after 100000 iterations. Small ρ on the left, large ρ on the right.
Gibbs Sampling and Auxiliary Variables

- Gibbs sampling requires sampling from $\pi_{X_j|X_{-j}}$.
- In many scenarios, we can include a set of auxiliary variables $Z_1, ..., Z_p$ and have an “extended” distribution of joint density $\pi(x_1, ..., x_d, z_1, ..., z_p)$ such that

$$\int \pi(x_1, ..., x_d, z_1, ..., z_p) \, dz_1 ... dz_d = \pi(x_1, ..., x_d).$$

which is such that its full conditionals are easy to sample.
- Mixture models, Capture-recapture models, Tobit models, Probit models etc.
Mixtures of Normals

- Independent data \(y_1, \ldots, y_n \)

\[
Y_i | \theta \sim \sum_{k=1}^{K} p_k \mathcal{N} \left(\mu_k, \sigma_k^2 \right)
\]

where \(\theta = \left(p_1, \ldots, p_K, \mu_1, \ldots, \mu_K, \sigma_1^2, \ldots, \sigma_K^2 \right) \).
Bayesian Model

- **Likelihood function**

\[
p(y_1, ..., y_n | \theta) = \prod_{i=1}^{n} p(y_i | \theta) = \prod_{i=1}^{n} \left(\frac{p_k}{\sqrt{2\pi\sigma_k^2}} \exp \left(- \frac{(y_i - \mu_k)^2}{2\sigma_k^2} \right) \right).
\]

Let’s fix \(K = 2 \), \(\sigma_k^2 = 1 \) and \(p_k = 1 / K \) for all \(k \).

- **Prior model**

\[
p(\theta) = \prod_{k=1}^{K} p(\mu_k)
\]

where

\[
\mu_k \sim \mathcal{N}(\alpha_k, \beta_k).
\]

Let us fix \(\alpha_k = 0, \beta_k = 1 \) for all \(k \).

- **Not obvious how to sample** \(p(\mu_1 | \mu_2, y_1, ..., y_n) \).
Auxiliary Variables for Mixture Models

- Associate to each Y_i an auxiliary variable $Z_i \in \{1, \ldots, K\}$ such that

$$\mathbb{P}(Z_i = k|\theta) = p_k \quad \text{and} \quad Y_i|Z_i = k, \theta \sim \mathcal{N}(\mu_k, \sigma_k^2)$$

so that

$$p(y_i|\theta) = \sum_{k=1}^{K} \mathbb{P}(Z_i = k) \mathcal{N}(y_i; \mu_k, \sigma_k^2)$$

- The extended posterior is given by

$$p(\theta, z_1, \ldots, z_n|y_1, \ldots, y_n) \propto p(\theta) \prod_{i=1}^{n} \mathbb{P}(z_i|\theta) p(y_i|z_i, \theta).$$

- Gibbs samples alternately

$$\mathbb{P}(z_1:n|y_1:n, \mu_{1:K})$$

$$p(\mu_{1:K}|y_1:n, z_{1:n}).$$
Gibbs Sampling for Mixture Model

• We have

\[P(z_{1:n} \mid y_{1:n}, \theta) = \prod_{i=1}^{n} P(z_i \mid y_i, \theta) \]

where

\[P(z_i \mid y_i, \theta) = \frac{P(z_i \mid \theta) p(y_i \mid z_i, \theta)}{\sum_{k=1}^{K} P(z_i = k \mid \theta) p(y_i \mid z_i = k, \theta)} \]

• Let \(n_k = \sum_{i=1}^{n} 1_{\{k\}}(z_i) \), \(n_k \bar{y}_k = \sum_{i=1}^{n} y_i 1_{\{k\}}(z_i) \) then

\[\mu_k \mid z_{1:n}, y_{1:n} \sim \mathcal{N} \left(\frac{n_k \bar{y}_k}{1 + n_k}, \frac{1}{1 + n_k} \right). \]
Mixtures of Normals

Figure: 200 points sampled from $\frac{1}{2} \mathcal{N}(-2, 1) + \frac{1}{2} \mathcal{N}(2, 1)$.
Mixtures of Normals

Figure: Histogram of the parameters obtained by 10,000 iterations of Gibbs sampling.
Mixtures of Normals

Figure: Traceplot of the parameters obtained by 10,000 iterations of Gibbs sampling.
Gibbs sampling in practice

- Many posterior distributions can be automatically decomposed into conditional distributions by computer programs.

- This is the idea behind **BUGS** (Bayesian inference Using Gibbs Sampling), **JAGS** (Just another Gibbs Sampler).
Gibbs Recap

- Given a target $\pi(x) = \pi(x_1, x_2, ..., x_d)$, Gibbs sampling works by sampling from $\pi_{X_j|X_{-j}}(x_j|x_{-j})$ for $j = 1, ..., d$.

- Sampling exactly from one of these full conditionals might be a hard problem itself.

- Even if it is possible, the Gibbs sampler might converge slowly if components are highly correlated.

- If the components are not highly correlated then Gibbs sampling performs well, even when $d \to \infty$, e.g. with an error increasing “only” polynomially with d.

- Metropolis–Hastings algorithm (1953, 1970) is a more general algorithm that can bypass these problems.

- Additionally Gibbs can be recovered as a special case.
Metropolis–Hastings algorithm

- Target distribution on $\mathbb{X} = \mathbb{R}^d$ of density $\pi(x)$.
- Proposal distribution: for any $x, x' \in \mathbb{X}$, we have $q(x'|x) \geq 0$ and $\int_{\mathbb{X}} q(x'|x) \, dx' = 1$.
- Starting with $X^{(1)}$, for $t = 2, 3, ...$
 (a) Sample $X^* \sim q(\cdot|X^{(t-1)})$.
 (b) Compute

 $$\alpha(X^*|X^{(t-1)}) = \min\left(1, \frac{\pi(X^*) q(X^{(t-1)}|X^*)}{\pi(X^{(t-1)}) q(X^*|X^{(t-1)})}\right).$$

 (c) Sample $U \sim \mathcal{U}[0,1]$. If $U \leq \alpha(X^*|X^{(t-1)})$, set $X^{(t)} = X^*$, otherwise set $X^{(t)} = X^{(t-1)}$.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Figure: Metropolis–Hastings on a bivariate Gaussian target.
Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Figure: Metropolis–Hastings on a bivariate Gaussian target.
Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target.
Metropolis–Hastings algorithm

- Metropolis–Hastings only requires point-wise evaluations of \(\pi(x) \) up to a normalizing constant; indeed if \(\tilde{\pi}(x) \propto \pi(x) \) then

\[
\frac{\pi(x^*) q\left(x^{(t-1)} \mid x^*\right)}{\pi(x^{(t-1)}) q\left(x^* \mid x^{(t-1)}\right)} = \frac{\tilde{\pi}(x^*) q\left(x^{(t-1)} \mid x^*\right)}{\tilde{\pi}(x^{(t-1)}) q\left(x^* \mid x^{(t-1)}\right)}.
\]

- At each iteration \(t \), a candidate is proposed.
- The **average acceptance probability** from the current state is

\[
a\left(x^{(t-1)}\right) := \int_{\mathcal{X}} \alpha\left(x \mid x^{(t-1)}\right) q\left(x \mid x^{(t-1)}\right) dx
\]

in which case \(X^{(t)} = X \), otherwise \(X^{(t)} = X^{(t-1)} \).

- This algorithm clearly defines a Markov chain \((X^{(t)})_{t \geq 1} \).
Lemma

The kernel of the Metropolis–Hastings algorithm is given by

\[K(y \mid x) \equiv K(x, y) = \alpha(y \mid x) q(y \mid x) + (1 - a(x)) \delta_x(y). \]

Proof.

We have

\[
\begin{align*}
K(x, y) &= \int q(x^* \mid x) \{ \alpha(x^* \mid x) \delta_{x^*}(y) + (1 - \alpha(x^* \mid x)) \delta_x(y) \} \, dx^* \\
&= q(y \mid x) \alpha(y \mid x) + \left\{ \int q(x^* \mid x) (1 - \alpha(x^* \mid x)) \, dx^* \right\} \delta_x(y) \\
&= q(y \mid x) \alpha(y \mid x) + \left\{ 1 - \int q(x^* \mid x) \alpha(x^* \mid x) \, dx^* \right\} \delta_x(y) \\
&= q(y \mid x) \alpha(y \mid x) + \{ 1 - a(x) \} \delta_x(y). \end{align*}
\]
Reversibility

Proposition

The Metropolis–Hastings kernel K is π–reversible and thus admit π as invariant distribution.

Proof.

For any $x, y \in X$, with $x \neq y$

$$\pi(x)K(x, y) = \pi(x)q(y \mid x)\alpha(y \mid x)$$

$$= \pi(x)q(y \mid x) \left(1 \wedge \frac{\pi(y)q(x \mid y)}{\pi(x)q(y \mid x)}\right)$$

$$= \left(\pi(x)q(y \mid x) \wedge \pi(y)q(x \mid y)\right)$$

$$= \pi(y)q(x \mid y) \left(\frac{\pi(x)q(y \mid x)}{\pi(y)q(x \mid y)} \wedge 1\right) = \pi(y)K(y, x).$$

If $x = y$, then obviously $\pi(x)K(x, y) = \pi(y)K(y, x)$. ⊢
Reducibility and periodicity of Metropolis–Hastings

- Consider the target distribution

\[\pi(x) = \left(\mathcal{U}_{[0,1]}(x) + \mathcal{U}_{[2,3]}(x) \right) / 2 \]

and the proposal distribution

\[q(x^* | x) = \mathcal{U}_{(x-\delta, x+\delta)}(x^*) \].

- The MH chain is reducible if \(\delta \leq 1 \): the chain stays either in \([0,1]\) or \([2,3]\).

- Note that the MH chain is aperiodic if it always has a non-zero chance of staying where it is.
Some results

Proposition

If \(q(x^*|x) > 0 \) for any \(x, x^* \in \text{supp}(\pi) \) then the Metropolis-Hastings chain is irreducible, in fact every state can be reached in a single step (strongly irreducible).

Less strict conditions in (Roberts & Rosenthal, 2004).

Proposition

If the MH chain is irreducible then it is also Harris recurrent (see Tierney, 1994).
Theorem

If the Markov chain generated by the Metropolis–Hastings sampler is π–irreducible, then we have for any integrable function $\varphi : \mathbb{X} \to \mathbb{R}$:

$$
\lim_{t \to \infty} \frac{1}{t} \sum_{i=1}^{t} \varphi\left(X^{(i)}\right) = \int_{\mathbb{X}} \varphi(x) \pi(x) \, dx
$$

for every starting value $X^{(1)}$.

Random Walk Metropolis–Hastings

- In the Metropolis–Hastings, pick \(q(x^* \mid x) = g(x^* - x) \) with \(g \) being a symmetric distribution, thus

\[
X^* = X + \varepsilon, \quad \varepsilon \sim g;
\]

e.g. \(g \) is a zero-mean multivariate normal or t-student.

- Acceptance probability becomes

\[
\alpha(x^* \mid x) = \min \left(1, \frac{\pi(x^*)}{\pi(x)} \right).
\]

- We accept...
 - a move to a more probable state with probability 1;
 - a move to a less probable state with probability
 \[
 \pi(x^*) / \pi(x) < 1.
 \]
Independent Metropolis–Hastings

- **Independent proposal**: a proposal distribution $q(x^* | x)$ which does not depend on x.
 - Acceptance probability becomes
 $$
 \alpha(x^* | x) = \min \left(1, \frac{\pi(x^*)q(x)}{\pi(x)q(x^*)} \right).
 $$
 - For instance, multivariate normal or t-student distribution.
 - If $\pi(x)/q(x) < M$ for all x and some $M < \infty$, then the chain is uniformly ergodic.
 - The acceptance probability at stationarity is at least $1/M$ (Lemma 7.9 of Robert & Casella).
 - On the other hand, if such an M does not exist, the chain is not even geometrically ergodic!
Choosing a good proposal distribution

- **Goal:** design a Markov chain with small correlation $\rho(X^{(t-1)}, X^{(t)})$ between subsequent values (why?).

- **Two sources of correlation:**
 - between the current state $X^{(t-1)}$ and proposed value $X \sim q(\cdot | X^{(t-1)})$,
 - correlation induced if $X^{(t)} = X^{(t-1)}$, if proposal is rejected.

- **Trade-off:** there is a compromise between
 - proposing large moves,
 - obtaining a decent acceptance probability.

- For multivariate distributions: covariance of proposal should reflect the covariance structure of the target.
Choice of proposal

• Target distribution, we want to sample from

\[\pi(x) = \mathcal{N}(x; \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}) \].

• We use a random walk Metropolis—Hastings algorithm with

\[g(\varepsilon) = \mathcal{N}(\varepsilon; 0, \sigma^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \].

• What is the optimal choice of \(\sigma^2 \)?

• We consider three choices: \(\sigma^2 = 0.1^2, 1, 10^2 \).
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target. With \(\sigma^2 = 0.1^2 \), the acceptance rate is \(\approx 94\% \).
Figure: Metropolis–Hastings on a bivariate Gaussian target. With $\sigma^2 = 0.1^2$, the acceptance rate is $\approx 94\%$.
Figure: Metropolis–Hastings on a bivariate Gaussian target. With $\sigma^2 = 1$, the acceptance rate is $\approx 52\%$.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target. With $\sigma^2 = 1$, the acceptance rate is $\approx 52\%$.
Figure: Metropolis–Hastings on a bivariate Gaussian target. With $\sigma^2 = 10$, the acceptance rate is $\approx 1.5\%$.
Metropolis–Hastings algorithm

Figure: Metropolis–Hastings on a bivariate Gaussian target. With $\sigma^2 = 10$, the acceptance rate is $\approx 1.5\%$.
Choice of proposal

- Aim at some intermediate acceptance ratio: 20%? 40%? Some hints come from the literature on “optimal scaling”.
- Literature suggest tuning to get .234...
- Maximize the expected square jumping distance:
 \[\mathbb{E} \left[\| X_{t+1} - X_t \|^2 \right] \]
- In multivariate cases, try to mimick the covariance structure of the target distribution.

Cooking recipe: run the algorithm for \(T \) iterations, check some criterion, tune the proposal distribution accordingly, run the algorithm for \(T \) iterations again . . . “Constructing a chain that mixes well is somewhat of an art.”

All of Statistics, L. Wasserman.
The adaptive MCMC approach

- One can make the transition kernel K adaptive, i.e. use K_t at iteration t and choose K_t using the past sample (X_1,\ldots,X_{t-1}).

- The Markov chain is not homogeneous anymore: the mathematical study of the algorithm is much more complicated.

- Adaptation can be counterproductive in some cases (see Atchadé & Rosenthal, 2005)!

- Adaptive Gibbs samplers also exist.