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Markov chains - discrete space
e Let X be discrete, e.g. X=2Z.

e (X;),>1 is a Markov chain if
P(Xe=x/ X =%1,.0 Xpo) = %2 1) =P( Xy = x| Xy =%, 1).

The future is conditionally independent of the past given
the present.

e Homogeneous Markov chains:

VmeN:P(X; = y|Xt_| =x) =P(X¢ym = y|Xt+m—] = X).

e The Markov transition kernel is a stochastic matrix

K(l,]) =Kij =|]:D(X[=j|Xt_1 =1).
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Markov chains - discrete space
o Let pi(x)=P(X;=x), the chain rule yields

t
P(X) =x1,Xy = X0, Xp =x) =) (x) [ [ Ke,_ x,-

i=2
e The m-transition matrix K as
K{;.’ =P(Xiem = j| X¢ = D).
e Chapman-Kolmogorov equation:
K= ZKZYZK]C]
e We obtain
M1 ()= Zﬂt(i)Kij
i
i.e. using "linear algebra notation”,

Ml = HeK
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Roadmap

o We will see that we can choose the transition matrix K such
that if yg=m then p;=n for all t.

e In practice we will have pg #m;

o We will see that under certain conditions, not matter what
Mo is, 4 — 7 in total variation.

e This is enough to guarantee us a law of large numbers and
a central limit theorem;

e Making this convergence precise, e.g. in terms of the
dimension, is still an active research area.
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Irreducibility and aperiodicity

Definition

A Markov chain is said to be irreducible if all the states
communicate with each other, that is

Vx,yeX min{t:K)’éy>O}<oo.
A state x has period d(x) defined as
d(x)=ged{s=1:K;,>0}.
An irreducible chain is aperiodic if all states have period 1.

?_9 ;_9 is irreducible if 6€[0,1) and

aperiodic if 6€(0,1). If 6=0, the gcd is 2.

v

Example: Kp =
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Transience and recurrence
Introduce the number of visits to x:

Nxi= Y WX =x}
k=1

Definition
A state x is termed transient if:

Ex (7x) < oo,

where E, refers to the law of the chain starting from x.
A state is called recurrent otherwise and

Ex (nx) = co.

Proposition

If a finite state chain is irreducible, then either all states are
recurrent or transient. In addition all states have the same
period.
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Invariant distribution

A distribution 7 is invariant, or stationary. for a Markov

kernel K, if
nK =m.

Note: if there exists ¢ such that X; ~m, then

Xpys~T

for all seN.
Example: for any 0¢€ [0, 1]

o -6
K":( -0 0 )

admits the invariant distribution

71/ 67



Detailed balance

A Markov kernel K satisfies detailed balance for n if

Vx,yeX: m(x)Kyy =nm(y)Kyx.

Lemma
If K satisfies detailed balance for n then K is m-invariant.

If K satisfies detailed balance for n then the Markov chain
is reversible, i.e. at stationarity,

Vx,yeX: PX;=xX,1==PX;=x,X,_1 =».
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Lack of reversibility

1/3 1/3 1/3
LetP:(l 0 0 )
0 | 0

Check nP=m for m=(1/2,1/3,1/6).
P cannot be 7 reversible as

| -3-2-1
is a possible sequence whereas
| -2-3-1

is not (as Py 3=0).
e Detailed balance does not hold as myPy3=0#m3P3;.
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Remarks

e All finite space Markov chains have at least one stationary
distribution but not all stationary distributions are also
limiting distributions.

04 06 0 O
02 08 0 o0
“lo 0 04 06

0O 0 02 08

Two left eigenvectors of eigenvalue 1:

(1/4,3/4,0,0),
(0,0,1/4,3/4)

T

72

depending on the initial state, two different stationary
distributions.
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Equilibrium

If a discrete space Markov chain is aperiodic and irreducible
and admits an invariant distribution n(-), then

VXeEX Pu(X;=x) 7(x),

t—o0

for any starting distribution u.

e In the Monte Carlo perspective, we will be primarily
interested in convergence of empirical averages, such as

n

Y Xy %’ I=) @@nx).

t=1 xeX

~
Ii=—
n

e Before turning to these “ergodic theorems”, let us consider
continuous spaces.
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Markov chains - continuous space
e The state space X is now continuous, e.g. R%.
e (X{);» is a Markov chain if for any (measurable) set A,

P(Xt€A|X| =JC|,X2 =X2,...,Xt_| =x[_|)
=P(X; € AlX,_ | =X,_|).

The future is conditionally independent of the past given
the present.

e We have
P(X; € Al X,_| :x):fK(x,y)dy:K(x,A),
A

that is conditional on X, ; =x, X; is a random variable
which admits a probability density function K (x,).
e K:X2 R is the kernel of the Markov chain.
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Markov chains - continuous space
e Denoting p; the pdf of X;, we obtain directly

[P’(XI €A1,...,Xt€At)
t
=f p (x0) TT K (xmy, xi) doxy -+ doxy
Ajxx Ay k=2

e Denoting by p; the distribution of X;, Chapman-Kolmogorov
equation reads

e (y) = fx He 1 (DK, )dx

and similarly for m> 1

uHm(y):qut(x)K’”(x,y)dx

where
t+m
K™ (xt, Xrem) = o [T Ko, x)dxgyy - dxpgpmot-
" k=141
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Example
e Consider the autoregressive (AR) model

Xt = pXt—I + Vt

where Vti‘Ld‘JV(O,#). This defines a Markov chain such

that
|

I 2

K(x,y)=
e We also have

m
Xeem=p"Xe+ ) " Visk

k=1
so in the Gaussian case
2
| | (y—p™
Km (x, y) = exp (_iu)
2712, Tm
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Irreducibility and aperiodicity

Definition

Given a probability measure p over X, a Markov chain is
u-irreducible if

VxeX VA:uA)>0 3FreN K'(x,A4)>0.

A p-irreducible Markov chain of transition kernel K is
periodic if there exists some partition of the state space
X1,...Xq for d=2, such that

I j=i+s mod d

Vi, j,t,s: IP(XHSEX]"XtEXi):{ 0 otherwise

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence
For any measurable set A of X, let

o0
na=y 14Xy,
k=1
the number of visits to the set A.

Definition

A p-irreducible Markov chain is recurrent if for any
measurable set AcX:u(A) >0, then

VxeA Ex(na)=oo.

A p-irreducible Markov chain is Harris recurrent if for any
measurable set AcX:u(A) >0, then

VxeX Py(na=oo)=1.

Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

A distribution of density = is invariant or stationary for a
Markov kernel K, if

fxﬂ(x)K(x,y)dx:n(y).

A Markov kernel K is m-reversible if

vf fff(x,y)n(x)]((x,y)dxdy

:f f(y,x)n(x)K(X,J/) dxdy

where f is a bounded measurable function.
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Detailed balance

In practice it is easier to check the detailed balance
condition:

Vx,yeX m(x)K(x,y)=n(y)K(y,x)

If detailed balance holds, then n is invariant for K and K is
n-reversible.

Example: the Gaussian AR process is m-reversible, z-invariant

for

72

T[(X) = ./V(X;O, m)

when |p|< 1.
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Law of Large Numbers

Theorem

Suppose the Markov chain {X;;i =0} is m—irreducible, with
invariant distribution n, and suppose that Xg = x.
Then for any m-integrable function ¢:X —R:

t
liml Z @ (X;) :f @ (w)m(w)dw
fmeo f 5 X

almost surely, for m—almost every x.

If the chain in addition is Harris recurrent then this holds for
every starting value x.

v
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Convergence

Suppose the kemnel K is m-irreducible, m-invariant, aperiodic.
Then, we have

for m—almost all starting values x.

Under some additional conditions, one can prove that there
exists a p< 1 and a function M:X—R"* such that for all
measurable sets A and all n

K" (x, A) —(A)| < M(x)p".

The chain is then said to be geometrically ergodic.
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Central Limit Theorem

Under regularity conditions, for a Harris recurrent,
n-invariant Markov chain, we can prove

t

|
" th(Xi)—fxtp(x)n(x)dx

i=1

Vit

Z JV(O,UZ ((p)),

t—o00

where the asymptotic variance can be written

02 () =V [ (X))] +2 kic% [0 (X)), 0 (X0)].

This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which
the variance would be V,(¢p(X)).
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Central Limit Theorem

Example: for the AR Gaussian model,
7 (X) :,/V(x;O,Tz/(l —pz)) for |p|< 1 and

2
_ 0T
Cov (X1, Xi) = p* v [x;] = p*! [—p2’
Therefore with ¢ (x) = x,
2 00 2 2
2 T k ™ l+p T
g () = 1 +2 = = ,
v l—pz( k;p) I-p2l-p (1-p)3?

which increases when p— 1.
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Markov chain Monte Carlo

e We are interested in sampling from a distribution x, for
instance a posterior distribution in a Bayesian framework.

e Markov chains with 7 as invariant distribution can be
constructed to approximate expectations with respect to .

e For example, the Gibbs sampler generates a Markov chain
targeting 7 defined on R? using the full conditionals

T | X 5oy X5 X e or Xd)-
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Gibbs Sampling
e Assume you are interested in sampling from

n(x)=m(x),X9,...,. Xq), X€ R%.

e Notation: x_;:= (X1, X;_ 1, Xjp 1w Xd)-

Systematic scan Gibbs sampler. Let (Xl(l),...,X(gl)) be the
initial state then iterate for r=2,3,...

1. Sample X1~y (X471, x4).

- (1) (1) (0 (=1) (=1
jo Sample X~ 7y (X0, XXX ).

d. Sample X ~7!Xd|X,d(-IXV),...,X;?]).
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Gibbs Sampling

A few questions one can ask about this algorithm:

e Is the joint distribution 7= uniquely specified by the
conditional distributions mx,x ,?

e Does the Gibbs sampler provide a Markov chain with the
correct stationary distribution 77

e If yes, does the Markov chain converge towards this
invariant distribution?

e [t will turn out to be the case under some mild
conditions.
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Hammersley-Clifford Theorem

Consider a distribution with continuous density m(xy,xy,...,Xa)
such that

d
supp(m) = supp (® JTX[) .

i=1

Then for any (zy,..., zq4) € supp(n), we have

XX (xj|x|:j—l»zj+1;d)

d
(X, X2, 00y Xg) X H .
J=1 x| x; (Z]|x| j-11%j+1: d)

The condition above is known as the positivity condition.

Equivalently, if nx,(x;)>0 for i=1,...,d, then
(xy,...,xq)>0.
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Proof of Hammersley-Clifford Theorem

We have
T(X).q-1,Xa) =T xy1x_q(Xal X1 .q- )T (X].q-1),
T(X).q-1,2a) =T x41x_4(Zal X1.q-1)7(X).q-1).
Therefore

n(X|.g-1,%Xa)
T(X).q-1)2d)
(X g1, Xa) [ (X).q-1)

n(xy.q) =7(X).9-1,2a)

=7m(X1.7_1,24)
A (X o1 2 ()

XX 1oy Kd 1 X1.q-1)

=7n(X1.q-1,2d) :
XXy Zal X1.a-1)

27 | 67



Proof.

Similarly, we have
T(X).q-1,2a)
T(X|.q-2,Zq-15Zd)
T(X1.q-1,2a) I T(X).4-2,24)

T(X).q-1,2a) =7(X|.q-2,24-152d)

=7(X1.0_9,27_1,2d)
1:d-2>2d~| T(X).q-2,24-1,2a) | (X|.q-2,2a)

Ty, x-@-h(Xg-1 1X1.4-2,24)

=n(X1.q-2,24-15%a)
Tx, 1x-a-0(Za_11X1.4-2,2d)
hence

T[Xd_] |X—(d—|) (xd—l |xl :d—2'zd)
”(xl :d) =7(X1.q-2,24-1,%d)

X1 | Xty (Zd—l |x| :d—z’zd)
XX g (Xal X).q-1)
X
X% a (2al X1.4-1)
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Proof.

By zesupp(n) we have that mx,(z;)>0 for all i. Also, we

are allowed to suppose that mx,(x;) >0 for all i. Thus all
the conditional probabilities we introduce are positive since
JTlex—j(x]'|XI,...,Xj_l,Zj+],...,Zd)

> 0.

T(X)yee s Xj 15 Xj3Zj g ] se-rZd)

n(xl,...,xj,l,zj,zjﬂ,...,zd)

By iterating we have the theorem.
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Example: Non-Integrable Target

e Consider the following conditionals on R*

nXl|X2(x| | x9) = xg exp (—xpx;)
x| X, (x2|x|)=x] exp (—x xp).
We might expect that these full conditionals define a joint
probability density 7 (x|,x3).
e Hammersley-Clifford would give

”X||X2(x||22)”X2|X1 (x2|x|)
T XX, (21 |Z2) T x,|X (Zzixl)
_ 22 exp (—zx1) x| exp (—x) xp)
 zgexp(-zp2) x; exp(—x; 29)

w(xy,X9, . Xg) X

o exp (—x; x3).

e However [[exp(—x|xp)dx;dx)=o00 so

ﬂx]|x2(x1|x2)=xzexp(—x2x1) and
7 x,|x, (X1]x2) = x| exp(~x| x7) are not compatible.
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Example: Positivity condition violated

2 -
1-
>0
—1-
-2-
-2 -1 0 1 2
X

Figure: Gibbs sampling targeting
(%, y) ¢ L 1,0)x[-1,01u10, 11x10, 11 (X })-

Positivity condition is sufficient for the Gibbs sampler to be
irreducible.
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Invariance of the Gibbs sampler |

The kernel of the Gibbs sampler (case d=2) is
K0, x0) = 1, 1, 0 x5 ™ Dy, ) 1 249)

Case d>2:

d
(t=1) (Y _ 0,0 (t=1
K% )—HI”XHX—J'(xj XX )
]:

Proposition

The systematic scan Gibbs sampler kernel admits n as
invariant distribution.
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Invariance of the Gibbs sampler Il

Proof for d=2.

Let x=(x;,xy) and y=(y,2). Then we have

fK(x,y)n(x)dx:/n(yz [y | x9)m(x),x9)dx | dxy

=721 y) [ 701 L))
=y 1y n(y)) =n(yy,y2) =n(y).
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Irreducibility and Recurrence

Assume 7w satisfies the positivity condition, then the Gibbs
sampler yields a m—irreducible and recurrent Markov chain.

| A

Proof.

Recurrence. Will follow from irreducibility and the fact that
7 is invariant, 2

Irreducibility. Let X cR?, such that 7(X)=1. Write K for
the kernel and let Ac X such that 7#(A)>0. Then for any
xeX

K(x,A):f K(x,y)dy
A

:L”XHX,](JH [ X9,...,xq) x -+

XXX gVal Yire-r Va—1)dy.

aMeyn and Tweedie, Markov chains and stochastic stability, Prop'n 10.1.1.

o
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Proof.

Thus if for some xeX and A with 7(A) >0 we have
K(x,A) =0, we must have that

Ty ix-1 V11X, %a) X X % (Va | Y1 oee s Ya-1) =0,

for almost all y=(y,...,yq4) € A.

Therefore, by the Hammersley-Clifford theorem, we must
also have that

TX;|x_; (J’j|J’I:j—I ’xj+l:d)

d
w(y1,y2,mya)ox ] =0,

j=1 7TX,-|X,,-(xj|)’I:j—I»xj+l:d)

for almost all y=(y,...,y4) € A and thus 7(A) =0 obtaining
a contradiction.
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LLN for Gibbs Sampler

If the positivity condition is satisfied then for any
n-integrable function ¢:X —R:

¢ @) =
11m7;¢(X )—fx(p(x)n(x)dx

i=1

for n—almost all starting values X(1).
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Example: Bivariate Normal Distribution

o Let X:=(Xy,Xp)~ AN (1,%) where pu=(u,uy) and

(70 )
p 03

e The Gibbs sampler proceeds as follows in this case
(a) Sample XY) ~=/V(H| +p/0% (X(t_ )—uz) 02—p2/a )

(b) Sample Xét)~ﬂ(p2+p/a%( — U ) o2-p%lo )
e By proceeding this way, we generate a Markov chain X"

whose successive samples are correlated. If successive values
of X are strongly correlated, then we say that the Markov

chain mixes slowly.
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Bivariate Normal Distribution

>0 -

Figure: Case where p=0.1, first 100 steps.
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Bivariate Normal Distribution

>0 -

Figure: Case where p=0.99, first 100 steps.
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Bivariate Normal Distribution

2 -2 0
X

-2

0
X

(a) Figure A

(b) Figure B

Figure: Histogram of the first component of the chain after 1000
iterations. Small p on the left, large p on the right.
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Bivariate Normal Distribution

-2 0 2
X

(b) b

Figure: Histogram of the first component of the chain after
10000 iterations. Small p on the left, large p on the right. 41 /67



Bivariate Normal Distribution

-2 0 2
X

(a) Figure A

-2 0 2
X

(b) Figure B

Figure: Histogram of the first component of the chain after
100000 iterations. Small p on the left, large p on the right. 42/ 67



Gibbs Sampling and Auxiliary Variables

e Gibbs sampling requires sampling from x|

e In many scenarios, we can include a set of auxiliary
variables Zj,..,Z, and have an “extended” distribution of
joint density 7 (xy,...,X4,2],....zp) such that

fﬁ(xl yeer Xy 21 ,...,Zp) dZ] ...dZd =7 (xl ,...,xd) .

which is such that its full conditionals are easy to sample.

e Mixture models, Capture-recapture models, Tobit models,
Probit models etc.
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Mixtures of Normals

densit;
0.2 0.3
! !
N
o \
/ g

e Independent data yi,...,¥n

Yil0 ~ i e (02
k=

where 0 = (pl e DK M ,...,pK,a%,...,oI%).
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Bayesian Model

e Likelihood function

n n K . 2
Pyl €)= [T p(yil0) = T1 ZLeXp(—(yl i) ) :

| i=1 |\ k=1 /2702 207

k
Let's fix K=2, 0% =1 and py=1/K for all k.
e Prior model

1

K
p© =11 pr(u)
k=1

where
fic ~ N (ak, Br) -
Let us fix ap=0,8r=1 for all k.
e Not obvious how to sample p(u; g, ¥1,.-,¥n)-
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Auxiliary Variables for Mixture Models

e Associate to each Y; an auxiliary variable Z; € {l,..,K} such
that

P(Z =kl0)=pr and Y| Zi = k,9~w(pk,a£)

so that «
p(7il0) = Y. P(Zi= kN (yis . oF)
k=1

e The extended posterior is given by

n

p(60,21,.rzn| Y15 yn) < pO) [ P(2i10) p(yi] 2:,0).
i=1
e Gibbs samples alternately
P(21.0] Y10 121
p(/v‘]:K|y1:n’Z|:n)'
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Gibbs Sampling for Mixture Model

¢ We have ;
|]:D(len|yl:n*6): HP(ZiU’ire)
i=1

where

P(zil0) p(yi| zi,6)
Y P(zi=kl6) p(yi] 2 = k,0)

P(zilyi,0) =

o Let np=%" | i (z)), mkyp =L, il (zi) then

Yy I )

s Vo ~ N ,
'uk|zl.n Yiin (|+nk 1+nk
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Mixtures of Normals

0.24

y

densit

0.0+
-2.5 0.0 2.5 5.0

-5.0 _
observations

Figure: 200 points sampled from IE(/V(—2, ])+%=/V(2, .
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Mixtures of Normals

3,
>
B2
c
)
O1-
O’ I
-2 0 2
M1
3,
>
227
)
'CSl,
07 I
-2 0 2
H2

Figure: Histogram of the parameters obtained by 10,000
iterations of Gibbs sampling.
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Mixtures of Normals

1 -
S
=40
>
_1 -
_2 -
0 2500 5000 7500 10000
iteration

variable —H1—H2

Figure: Traceplot of the parameters obtained by 10,000
iterations of Gibbs sampling.
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Gibbs sampling in practice

e Many posterior distributions can be automatically
decomposed into conditional distributions by computer
programs.

e This is the idea behind BUGS (Bayesian inference Using
Gibbs Sampling), JAGS (Just another Gibbs Sampler).
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Gibbs Recap

Given a target 7 (x) =7 (x],xy,.., x4), Gibbs sampling works
by sampling from 7y |x_, (x;[x-;) for j=1,..d.

Sampling exactly from one of these full conditionals might
be a hard problem itself.

Even if it is possible, the Gibbs sampler might converge
slowly if components are highly correlated.

If the components are not highly correlated then Gibbs
sampling performs well, even when d — oo, e.g. with an
error increasing “only” polynomially with d.

Metropolis—Hastings algorithm (1953, 1970) is a more
general algorithm that can bypass these problems.

Additionally Gibbs can be recovered as a special case.
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Metropolis—Hastings algorithm

e Target distribution on X=R% of density 7 (x).

e Proposal distribution: for any x,x’'€X, we have g(x'|x)=0
and [y q(x'|x)dx'=1.

e Starting with x(1), for r=2,3,...
(a) Sample X*~q(-|X(t")).
(b) Compute

ﬂ(X*)q(X(t_])’X*)
n(x(t—l))q(X*|X(t—l)) )

a(X*|X(t_I)) =min]| I,

(c) Sample U~o,1y- If Usa(X*|X(’")), set X = xX*,
otherwise set X = x(=1)
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Metropolis—Hastings algorithm

y 07

Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm

y 07

Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm

y 07

Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm

y 07

Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.

54 / 67



Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm
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Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm

y 07

Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm

y 07

Figure: Metropolis—Hastings on a bivariate Gaussian target.
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Metropolis—Hastings algorithm

Metropolis—Hastings only requires point-wise evaluations of
7 (x) up to a normalizing constant; indeed if 7 (x) x 7 (x)
x*) ﬁ(x*)q(x(t—l)

then
Jt(x*)q(x(t_]) x*)
H(x(t—l))q(x*|x(t—l)) - ﬁ(x(t—l))q(x*|x(t—l))'

At each iteration t, a candidate is proposed.
The average acceptance probability from the current state is

a(x(t")) ::fxa(xlx(t_l))q(xlx(t_]))dx

in which case X® = X, otherwise X® = x(=D,
This algorithm clearly defines a Markov chain (X)), .
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Transition Kernel and Reversibility

The kemnel of the Metropolis—Hastings algorithm is given by

Kyl =K,y =alylx)glylx)+( —ax)d().

We have
K(x,y)

=fq(x* ) {a(x™ | )8+ (1) + (1 —a(x* | )6 (y)}dx*
= q(ylx)a(ylx)+{fq(x* ) (1 —a(x™| x))dx*}éx(y)

zq(ylx)a(ylx)+{l —fq(x*lx)a(x* Ix)dx*}ﬁx(y)

=q(y | ay|x)+{l —ax)}6(y). [l

v
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Reversibility

The Metropolis—Hastings kernel K is n—reversible and thus
admit n as invariant distribution.

For any x,yeX, with x#y

m(xX)K(x,y)=nx)q(ylx)aly|x)

A ﬂ(y)q(xly))

_ |
7(x)q(y | X)( (x)q(y | x)

= (n(x)q(y [xX)A7m(y)q(x| y))

n(x)q(y|x) A

1): K.
n(y)qx|y) K

ZH(Y)OI(XIJ/)(

If x=y, then obviously m(x)K(x,y)=7r()K(y,x). [
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Reducibility and periodicity of Metropolis—Hastings

e Consider the target distribution

7 () = (%)0,1) (0 + 2,3 ()] 12
and the proposal distribution

q (X* | X) = U (x-5,x+5) (X*) .

e The MH chain is reducible if §<1: the chain stays either in
[0,1] or [2,3].

e Note that the MH chain is aperiodic if it always has a
non-zero chance of staying where it is.
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Some results

Proposition

If q(x*|x)>0 for any x,x* €supp(n) then the
Metropolis-Hastings chain is irreducible, in fact every state
can be reached in a single step (strongly irreducible).

Less strict conditions in (Roberts & Rosenthal, 2004).

Proposition
If the MH chain is irreducible then it is also Harris
recurrent(see Tiemney, 1994).
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LLN for MH

If the Markov chain generated by the Metropolis—Hastings
sampler is n—irreducible, then we have for any integrable
function ¢:X—R:

lim — Z(p(X(’)) f(p(x)n(x)dx

t—oo

for every starting value X(1).
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Random Walk Metropolis—Hastings

e In the Metropolis—Hastings, pick g(x*|x)=g(x* —x) with g
being a symmetric distribution, thus

X =X+¢, e~g

e.g. g is a zero-mean multivariate normal or t-student.

e Acceptance probability becomes

n(x*))

a(x* | x) :min(l,—
7(x)

e We accept...

e a move to a more probable state with probability 1;
e a move to a less probable state with probability

ax®)Inx) < 1.
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Independent Metropolis—Hastings

¢ Independent proposal: a proposal distribution g(x*|x) which
does not depend on x.

e Acceptance probability becomes

Jr(x*)q(x))

* _ .
ax*|x) = mln(] ey

e For instance, multivariate normal or t-student
distribution.

o If n(x)/q(x)<M for all x and some M <oo, then the chain is
uniformly ergodic.

e The acceptance probability at stationarity is at least /M
(Lemma 7.9 of Robert & Casella).

e On the other hand, if such an M does not exist, the chain
is not even geometrically ergodic!
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Choosing a good proposal distribution

e Goal: design a Markov chain with small correlation
p(X(“'),X”)) between subsequent values (why?).

e Two sources of correlation:
e between the current state X(*~!) and proposed value

X ~q(-1x0=D),
e correlation induced if X® = x(=1) if proposal is
rejected.

e Trade-off: there is a compromise between
e proposing large moves,
e obtaining a decent acceptance probability.

e For multivariate distributions: covariance of proposal should
reflect the covariance structure of the target.
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Choice of proposal

Target distribution, we want to sample from
I 0.5))
05 1))

We use a random walk Metropolis—Hastings algorithm with

0

7T (X) :JV(x; (O

ge)= JV(E;0,0'z ((]) ?))

What is the optimal choice of 022
We consider three choices: o2=0.12,1,102.
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Metropolis—Hastings algorithm

2 o
X1 0
_2,
0 2500 5000 7500 10000
step
Ul
2 o
X5 0
_2,
0 2500 5000 7500 10000
step

Figure: Metropolis—Hastings on a bivariate Gaussian target. With
02=0.12, the acceptance rate is ~94%.
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Metropolis—Hastings algorithm

0.4
0.3
density 0.2-
0.1
0.0

0.4
0.31
density 0.2-
0.1

0.0

Figure: Metropolis—Hastings on a bivariate Gaussian target. With
d2=0.12, the acceptance rate is =~ 94%.
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Metropolis—Hastings algorithm

0 2500 5000 7500 10000
step

0 2500 5000 7500 10000
step

Figure: Metropolis—Hastings on a bivariate Gaussian target. With
g2=1, the acceptance rate is = 52%.
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Metropolis—Hastings algorithm

0.4
0.3
density 0.2+
0.1
0.0
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Figure: Metropolis—Hastings on a bivariate Gaussian target. With
g2=1, the acceptance rate is = 52%.
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Metropolis—Hastings algorithm

2.
X1 0
iy
0 2500 5000 7500 10000
step
9.
X5 0
oy
0 2500 5000 7500 10000
step

Figure: Metropolis—Hastings on a bivariate Gaussian target. With
a2=10, the acceptance rate is = 1.5%.
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Metropolis—Hastings algorithm

0.6+

. 0.4
density

0.2+

0.0

0.8

0.6

density 0-41
0.2

0.0

Figure: Metropolis—Hastings on a bivariate Gaussian target. With
a2=10, the acceptance rate is = 1.5%.
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Choice of proposal

e Aim at some intermediate acceptance ratio: 20%? 40%?
Some hints come from the literature on “optimal scaling”.

e Literature suggest tuning to get .234...

e Maximize the expected square jumping distance:

E|I1X,0 — X2

e In multivariate cases, try to mimick the covariance structure
of the target distribution.
Cooking recipe: run the algorithm for T iterations, check
some criterion, tune the proposal distribution accordingly, run
the algorithm for T iterations again . ..
"Constructing a chain that mixes well is somewhat of an
art.”
All of Statistics, L. Wasserman.
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The adaptive MCMC approach

e One can make the transition kernel K adaptive, i.e. use K;
at iteration ¢ and choose K; using the past sample
Xphe0 X, 1),

e The Markov chain is not homogeneous anymore: the
mathematical study of the algorithm is much more
complicated.

e Adaptation can be counterproductive in some cases (see

Atchadé & Rosenthal, 2005)!

e Adaptive Gibbs samplers also exist.
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