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Normalised Importance Sampling

Standard IS has limited applications in statistics as it requires
knowing π (x) and q (x) exactly.

Assume π(x) = π̃(x)/Zπ and q(x) = q̃(x)/Zq,
π(x) > 0⇒ q(x) > 0 and and define

w̃(x) =
π̃(x)

q̃(x)
.

An alternative identity is

I = Eπ(ϕ(X )) =

∫
X
ϕ (x) w̃ (x) q(x)dx∫
X
w̃(x)q(x)dx

.
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SLLN for NIS

Proposition (SLLN for NIS)

Let X1, ...,Xn
i.i.d.∼ q and assume that Eq(|ϕ(X )|w (X )) <∞.

Then

ÎNIS
n =

∑n
i=1 ϕ(Xi )w̃(Xi )∑n

i=1 w̃(Xi )

is strongly consistent.

Proof.
Divide numerator and denominator by n. Both converge almost
surely by the strong law of large numbers.

BUT, for finite n ÎNIS
n is biased, see notes Chapter 3.
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CLT for NIS

Proposition
If Vq(ϕ(X )w(X )) <∞ and Vq(w(X )) <∞ then

√
n(Î NIS

n − I )⇒ N (0, σ2
NIS),

where

σ2
NIS := Vq

([
ϕ(X )w(X ))− Iw(X )

])
=

∫
π(x)2 (ϕ(x)− I )2

q(x)
dx .
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Proof

Proof.
First notice that with X1, . . . ,Xn i.i.d. ∼ q

√
n(Î NIS

n − I ) =

1√
n

∑n
i=1 w̃(Xi )

[
ϕ(Xi )− I

]
1
n

∑n
i=1 w̃(Xi )

where since w̃(x) = π̃/q̃

Eq

[
w̃(Xn)(ϕ(Xi )− I )

]
= 0.

Since Vq(ϕ(X )w(X )) <∞ by standard CLT

1√
n

n∑
i=1

w̃(Xi )
[
ϕ(Xi )− I

]
⇒ N

(
0,Vq

(
w̃(X1)[ϕ(X1)− I ]

))
.
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Proof ctd...

Proof.
The strong law of large numbers applied to the denominator

1
n

n∑
i=1

w̃(Xi )→ Eq[w̃(X1)] = Zπ/Zq, a.s.

By Slutsky’s theorem, combining the two

√
n(Î NIS

n − I )⇒ N
(
0,Vq

(
w̃(X1)[ϕ(X1)− I ]

)Z 2
q

Z 2
π

)
∼ N

(
0, σ2

NIS

)
.

Alternatively, use Delta method.
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Toy Example: t-distribution

• We want to compute I = Eπ(|X |) where π (x) ∝
(
1+ x2/3

)−2

(t3-distribution).
(a) Directly sample from π.

(b) Use q1 (x) = gt1 (x) ∝
(
1+ x2)−1 (t1-distribution).

(c) Use q2 (x) ∝ exp
(
−x2/2

)
(normal).
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Toy Example: t-distribution

π q1 q2
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Figure: Sample weights obtained for 1000 realisations of Xi , from the
different proposal distributions.
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Toy Example: t-distribution
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Figure: Estimates În of I obtained after 1 to 1500 samples. The grey
shaded areas correpond to the range of 100 independent replications.
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Variance of importance sampling estimators
• Standard Importance Sampling: X1, . . . ,Xn

iid∼ q,

Î ISn =
1
n

n∑
i=1

ϕ(Xi )w(Xi ).

• Asymptotic Variance:

Vas

(
Î ISn

)
= Eq

[
(ϕ(X )w(X )− Eq (ϕ(X )w(X )))2

]
≈ 1

n

n∑
i=1

(
ϕ(Xi )w(Xi )− Î ISn

)2
.

• Thus the asymptotic variance can be estimated consistently with

1
n

n∑
i=1

(
ϕ(Xi )w(Xi )− Î ISn

)2
.
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Variance of importance sampling estimators
• Normalised Importance Sampling: X1, . . . ,Xn

iid∼ q,

ÎNIS
n =

∑n
i=1 ϕ(Xi )w̃(Xi )∑n

i=1 w̃(Xi )
.

• Asymptotic Variance:

Vas

(
ÎNIS
n

)
=
Eq

[
(ϕ(X )w(X )− I × w(X ))2

]
Eq [w(X )]2

.

• Thus the asymptotic variance can be estimated consistently with

1
n

∑N
i=1 w̃(Xi )

2
(
ϕ(Xi )− ÎNIS

n

)2

(
1
n

∑N
i=1 w̃(Xi )

)2 .
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Diagnostics

• Importance sampling works well when all weights roughly equal.
• If dominated by one w̃(Xj),

ÎNIS
n =

∑n
i=1 ϕ(Xi )w̃(Xi )∑n

i=1 w̃(Xi )
≈ w̃(Xj)ϕ(Xj).

The “effective sample size” is one.

• To how many unweighted samples correspond our weighted samples
of size n? Solve for ne in

1
n
Vas

(
ÎNIS
n

)
=
σ2

ne
,

where σ2/ne corresponds to the variance of an unweighted sample
of size ne .
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Diagnostics

• We solve by matching ϕ(Xi )− ÎNIS with ϕ(Xi )− I ≈ σ as if they
were i.i.d samples:

1
n

1
n

∑n
i=1 w̃(Xi )

2
(
ϕ(Xi )− ÎNIS

n

)2

( 1
n

∑n
i=1 w̃(Xi )

)2 ≈ σ2

ne

i.e.
1
n

1
n

∑n
i=1 w̃(Xi )

2( 1
n

∑n
i=1 w̃(Xi )

)2 =
1
ne
.

• The solution is

ne =
(
∑n

i=1 w̃(Xi ))
2∑n

i=1 w̃(Xi )2
,

and is called the effective sample size.
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Rejection and Importance Sampling in High Dimensions

• Toy example: Let X = R
d and

π (x) =
1

(2π)d/2
exp

(
−
∑d

i=1 x
2
i

2

)

and

q (x) =
1

(2πσ2)d/2
exp

(
−
∑d

i=1 x
2
i

2σ2

)
.

• How do Rejection sampling and Importance sampling scale in this
context?

14 / 51



Performance of Rejection Sampling

• We have

w (x) =
π (x)

q (x)
= σd exp

(
−
∑d

i=1 x
2
i

2

(
1− 1

σ2

))
≤ σd

for σ > 1.
• Acceptance probability is

P (X accepted) =
1
σd
→ 0 as d →∞,

i.e. exponential degradation of performance.
• For d = 100, σ = 1.2, we have

P (X accepted) ≈ 1.2× 10−8.
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Performance of Importance Sampling

• We have

w (x) = σd exp

(
−
∑d

i=1 x
2
i

2

(
1− 1

σ2

))
.

• Variance of the weights:

Vq [w (X )] =

(
σ4

2σ2 − 1

)d/2

− 1

where σ4/
(
2σ2 − 1

)
> 1 for any σ2 > 1/2.

• For d = 100, σ = 1.2, we have

Vq [w (X )] ≈ 1.8× 104.
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Wait a minute. . .

Lecture 1:
• Simpson’s rule for approximating integrals: error in O(n−1/d).

Lecture 2:
• Monte Carlo for approximating integrals: error in O(n−1/2) with

rate independent of d .

And now:
• Importance Sampling standard deviation in the Gaussian example in
exp(d)n−1/2.

The rate is indeed independent of d but the “constant” (in n)
explodes exponentially (in d).
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Markov chain Monte Carlo

• Revolutionary idea introduced by Metropolis et al., J. Chemical
Physics, 1953.

• Key idea: Given a target distribution π, build a Markov chain
(Xt)t≥1 such that, as t →∞, Xt ∼ π and

1
n

n∑
t=1

ϕ (Xt)→
∫
ϕ (x)π (x) dx

when n→∞ e.g. almost surely.

• Also central limit theorems with a rate in 1/
√
n.

• In some cases the constant (in n) does not explode exponentially
with the dimension d , but polynomially.
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Markov chains - discrete space

• Let X be discrete, e.g. X = Z.

• (Xt)t≥1 is a Markov chain if

P(Xt = xt |X1 = x1, ...,Xt−1 = xt−1) =P(Xt = xt |Xt−1 = xt−1).

The future is conditionally independent of the past given the
present.

• Homogeneous Markov chains:

∀m ∈ N : P(Xt = y |Xt−1 = x) = P(Xt+m = y |Xt+m−1 = x).

• The Markov transition kernel is a stochastic matrix

K (i , j) = Kij = P(Xt = j |Xt−1 = i).
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Markov chains - discrete space
• Let µt(x) = P (Xt = x), the chain rule yields

P(X1 = x1,X2 = x2, ...,Xt = xt) = µ1(x1)
t∏

i=2

Kxi−1xi .

• The m-transition matrix Km as

Km
ij = P(Xt+m = j |Xt = i).

• Chapman-Kolmogorov equation:

Km+n
ij =

∑
k∈X

Km
ik K

n
kj .

• We obtain
µt+1(j) =

∑
i

µt(i)Kij

i.e. using “linear algebra notation”,

µt+1 = µtK .
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Roadmap

• We will see that we can choose the transition matrix K such that if
µ0 = π then µt = π for all t.

• In practice we will have µ0 6= π;
• We will see that under certain conditions, not matter what µ0 is,
µt → π in total variation.

• This is enough to guarantee us a law of large numbers and a
central limit theorem;

• Making this convergence precise, e.g. in terms of the dimension, is
still an active research area.
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Irreducibility and aperiodicity

Definition
A Markov chain is said to be irreducible if all the states
communicate with each other, that is

∀x , y ∈ X min
{
t : K t

xy > 0
}
<∞.

A state x has period d(x) defined as

d(x) = gcd {s ≥ 1 : K s
xx > 0} .

An irreducible chain is aperiodic if all states have period 1.

Example: Kθ =
(
θ 1− θ
1− θ θ

)
is irreducible if θ ∈ [0, 1) and

aperiodic if θ ∈ (0, 1). If θ = 0, the gcd is 2.
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Transience and recurrence
Introduce the number of visits to x :

ηx :=
∞∑
k=1

1{Xk = x}.

Definition
A state x is termed transient if:

Ex (ηx) <∞,

where Ex refers to the law of the chain starting from x .
A state is called recurrent otherwise and

Ex (ηx) =∞.

If a finite state chain is irreducible, then either all states are
recurrent or transient.
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Invariant distribution
Definition
A distribution π is invariant for a Markov kernel K , if

πK = π.

Note: if there exists t such that Xt ∼ π, then

Xt+s ∼ π

for all s ∈ N.
Example: for any θ ∈ [0, 1]

Kθ =

(
θ 1− θ
1− θ θ

)
admits the invariant distribution

π =
( 1

2
1
2

)
.
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Detailed balance

Definition
A Markov kernel K satisfies detailed balance for π if

∀x , y ∈ X : π(x)Kxy = π(y)Kyx .

Lemma
If K satisfies detailed balance for π then K is π-invariant.

If K satisfies detailed balance for π then the Markov chain is
reversible, i.e. at stationarity,

∀x , y ∈ X : P(Xt = x ,Xt+1 = y) = P(Xt = x ,Xt−1 = y).
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Lack of reversibility

• Let P =

 1/3 1/3 1/3
1 0 0
0 1 0

.

• Check πP = π for π = (1/2, 1/3, 1/6).
• P cannot be π reversible as

1→ 3→ 2→ 1

is a possible sequence whereas

1→ 2→ 3→ 1

is not (as P2,3 = 0).
• Detailed balance does not hold as π2P23 = 0 6= π3P32.
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Remarks

• All finite space Markov chains have at least one stationary
distribution but not all stationary distributions are also limiting
distributions.

•

P =


0.4 0.6 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.2 0.8


Two left eigenvectors of eigenvalue 1:

π1 = (1/4, 3/4, 0, 0) ,
π2 = (0, 0, 1/4, 3/4)

depending on the initial state, two different stationary distributions.
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Equilibrium

Proposition
If a discrete space Markov chain is aperiodic and irreducible and
admits an invariant distribution π(·), then

∀x ∈ X Pµ (Xt = x) −−−→
t→∞

π(x),

for any starting distribution µ.

• In the Monte Carlo perspective, we will be primarily interested in
convergence of empirical averages, such as

În =
1
n

n∑
t=1

ϕ (Xt)
a.s.−−−→

n→∞
I =

∑
x∈X

ϕ (x)π(x).

• Before turning to these “ergodic theorems”, let us consider
continuous spaces.
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Markov chains - continuous space
• The state space X is now continuous, e.g. Rd .

• (Xt)t≥1 is a Markov chain if for any (measurable) set A,

P(Xt ∈ A|X1 = x1,X2 = x2, ...,Xt−1 = xt−1)

= P(Xt ∈ A|Xt−1 = xt−1).

The future is conditionally independent of the past given the
present.

• We have

P(Xt ∈ A|Xt−1 = x) =

∫
A
K (x , y) dy = K (x ,A) ,

that is conditional on Xt−1 = x , Xt is a random variable which
admits a probability density function K (x , ·).

• K : X2 → R is the kernel of the Markov chain.
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Markov chains - continuous space
• Denoting µ1 the pdf of X1, we obtain directly

P(X1 ∈ A1, ...,Xt ∈ At)

=

∫
A1×···×At

µ1 (x1)
t∏

k=2

K (xk−1, xk) dx1 · · · dxt .

• Denoting by µt the distribution of Xt , Chapman-Kolmogorov
equation reads

µt (y) =

∫
X

µt−1(x)K (x , y)dx

and similarly for m > 1

µt+m (y) =

∫
X

µt(x)K
m(x , y)dx

where

Km (xt , xt+m) =

∫
Xm−1

t+m∏
k=t+1

K (xk−1, xk) dxt+1 · · · dxt+m−1.
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Example
• Consider the autoregressive (AR) model

Xt = ρXt−1 + Vt

where Vt
i.i.d.∼ N

(
0, τ2). This defines a Markov chain such that

K (x , y) =
1√
2πτ2

exp

(
− 1
2τ2 (y − ρx)2

)
.

• We also have

Xt+m = ρmXt +
m∑

k=1

ρm−kVt+k

so in the Gaussian case

Km (x , y) =
1√
2πτ2

m

exp

(
−1
2
(y − ρmx)2

τ2
m

)

with τ2
m = τ2∑m

k=1
(
ρ2)m−k = τ2 1−ρ2m

1−ρ2 .
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Irreducibility and aperiodicity

Definition
Given a probability measure µ over X, a Markov chain is
µ-irreducible if

∀x ∈ X ∀A : µ(A) > 0 ∃t ∈ N K t (x ,A) > 0.

A µ-irreducible Markov chain of transition kernel K is periodic if
there exists some partition of the state space X1, ...,Xd for d ≥ 2,
such that

∀i , j , t, s : P (Xt+s ∈ Xj |Xt ∈ Xi ) =

{
1 j = i + s mod d
0 otherwise.

.

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence
For any measurable set A of X, let

ηA =
∞∑
k=1

1A (Xk) ,

the number of visits to the set A.

Definition
A µ-irreducible Markov chain is recurrent if for any measurable set
A ⊂ X : µ (A) > 0, then

∀x ∈ A Ex (ηA) =∞.

A µ-irreducible Markov chain is Harris recurrent if for any
measurable set A ⊂ X : µ (A) > 0, then

∀x ∈ X Px (ηA =∞) = 1.

Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

Definition
A distribution of density π is invariant or stationary for a Markov
kernel K , if ∫

X

π (x)K (x , y) dx = π (y) .

A Markov kernel K is π-reversible if

∀f
∫∫

f (x , y)π (x)K (x , y) dxdy

=

∫∫
f (y , x)π (x)K (x , y) dxdy

where f is a bounded measurable function.
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Detailed balance

In practice it is easier to check the detailed balance condition:

∀x , y ∈ X π(x)K (x , y) = π(y)K (y , x)

Lemma
If detailed balance holds, then π is invariant for K and K is
π-reversible.

Example: the Gaussian AR process is π-reversible, π-invariant for

π (x) = N
(
x ; 0,

τ2

1− ρ2

)
when |ρ| < 1.

36 / 51



Law of Large Numbers

Theorem
Suppose the Markov chain {Xi ; i ≥ 0} is π-irreducible, with
invariant distribution π, and suppose that X0 = x .
Then for any π-integrable function ϕ : X→ R:

lim
t→∞

1
t

t∑
i=1

ϕ (Xi ) =

∫
X

ϕ (w)π (w) dw

almost surely, for π− almost every x .

If the chain in addition is Harris recurrent then this holds for every
starting value x .
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Convergence

Theorem
Suppose the kernel K is π-irreducible, π-invariant, aperiodic. Then,
we have

lim
t→∞

∫
X

∣∣K t (x , y)− π (y)
∣∣ dy = 0

for π−almost all starting values x .

Under some additional conditions, one can prove that there exists a
ρ < 1 and a function M : X→ R+ such that for all measurable
sets A and all n

|Kn(x ,A)− π(A)| ≤ M(x)ρn.

The chain is then said to be geometrically ergodic.
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Central Limit Theorem

Theorem
Under regularity conditions, for a Harris recurrent, π-invariant
Markov chain, we can prove

√
t

[
1
t

t∑
i=1

ϕ (Xi )−
∫
X

ϕ (x)π (x) dx

]
D−−−→

t→∞
N
(
0, σ2 (ϕ)

)
,

where the asymptotic variance can be written

σ2 (ϕ) = Vπ [ϕ (X1)] + 2
∞∑
k=2

Covπ [ϕ (X1) , ϕ (Xk)] .

This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which the
variance would be Vπ(ϕ(X )).
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Central Limit Theorem

Example: for the AR Gaussian model,
π (x) = N

(
x ; 0, τ2/(1− ρ2)

)
for |ρ| < 1 and

Cov (X1,Xk) = ρk−1V [X1] = ρk−1 τ2

1− ρ2 .

Therefore with ϕ (x) = x ,

σ2(ϕ) =
τ2

1− ρ2

(
1+ 2

∞∑
k=1

ρk

)
=

τ2

1− ρ2
1+ ρ

1− ρ
=

τ2

(1− ρ)2
,

which increases when ρ→ 1.
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Markov chain Monte Carlo

• We are interested in sampling from a distribution π, for instance a
posterior distribution in a Bayesian framework.

• Markov chains with π as invariant distribution can be constructed
to approximate expectations with respect to π.

• For example, the Gibbs sampler generates a Markov chain targeting
π defined on Rd using the full conditionals

π(xi | x1, . . . , xi−1, xi+1, . . . , xd).
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Gibbs Sampling

• Assume you are interested in sampling from

π (x) = π (x1, x2, ..., xd) , x ∈ Rd .

• Notation: x−i := (x1, ..., xi−1, xi+1, ..., xd).

Systematic scan Gibbs sampler. Let
(
X

(1)
1 , ...,X

(1)
d

)
be the

initial state then iterate for t = 2, 3, ...

1. Sample X
(t)
1 ∼ πX1|X−1

(
·|X (t−1)

2 , ...,X
(t−1)
d

)
.

...
j. Sample X

(t)
j ∼ πXj |X−j

(
·|X (t)

1 , ...,X
(t)
j−1,X

(t−1)
j+1 , ...,X

(t−1)
d

)
.

...
d. Sample X

(t)
d ∼ πXd |X−d

(
·|X (t)

1 , ...,X
(t)
d−1

)
.
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Gibbs Sampling

A few questions one can ask about this algorithm:
• Is the joint distribution π uniquely specified by the conditional

distributions πXi |X−i
?

• Does the Gibbs sampler provide a Markov chain with the correct
stationary distribution π?

• If yes, does the Markov chain converge towards this invariant
distribution?

• It will turn out to be the case under some mild conditions.
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Hammersley-Clifford Theorem

Theorem
Consider a distribution whose density π (x1, x2, ..., xd) is such that

supp (π) = supp
(
⊗d

i=1πXi

)
.

Then for any (z1, ..., zd) ∈ supp(π), we have

π (x1, x2, ..., xd) ∝
d∏

j=1

πXj |X−j
(xj | x1:j−1, zj+1:d)

πXj |X−j
(zj | x1:j−1, zj+1:d)

.

The condition above is known as the positivity condition.

Equivalently, if πXi
(xi ) > 0 for i = 1, . . . , d , then

π(x1, . . . , xd) > 0.

Sufficient for the Gibbs sampler to be irreducible.
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Proof of Hammersley-Clifford Theorem

Proof.
We have

π(x1:d−1, xd) = πXd |X−d
(xd | x1:d−1)π(x1:d−1),

π(x1:d−1, zd) = πXd |X−d
(zd | x1:d−1)π(x1:d−1).

Therefore

π(x1:d) = π(x1:d−1, zd)
π(x1:d−1, xd)

π(x1:d−1, zd)

= π(x1:d−1, zd)
π(x1:d−1, xd)/π(x1:d−1)

π(x1:d−1, zd)/π(x1:d−1)

= π(x1:d−1, zd)
πXd |X1:d−1(xd | x1:d−1)

πXd |X1:d−1(zd | x1:d−1)
.
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Proof.
Similarly, we have

π(x1:d−1, zd) = π(x1:d−2, zd−1, zd)
π(x1:d−1, zd)

π(x1:d−2, zd−1, zd)

= π(x1:d−2, zd−1, zd)
π(x1:d−1, zd)/π(x1:d−2, zd)

π(x1:d−2, zd−1, zd)/π(x1:d−2, zd)

= π(x1:d−2, zd−1, zd)
πXd−1|X−(d−1)(xd−1 | x1:d−2, zd)

πXd−1|X−(d−1)(zd−1 | x1:d−2, zd)

hence

π (x1:d) = π(x1:d−2, zd−1, zd)
πXd−1|X−(d−1)

(xd−1| x1:d−2, zd)

πXd−1|X−(d−1)
(zd−1| x1:d−2, zd)

×
πXd |X−d

(xd | x1:d−1)

πXd |X−d
(zd | x1:d−1)
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Proof.
By z ∈ supp(π) we have that πXi

(zi ) > 0 for all i . Also, we are

allowed to suppose that πXi
(xi ) > 0 for all i . Thus all the

conditional probabilities we introduce are positive since

πXj |X−j (xj | x1, . . . , xj−1, zj+1, . . . , zd)

=
π(x1, . . . , xj−1, xj , zj+1, . . . , zd)

π(x1, . . . , xj−1, zj , zj+1, . . . , zd)
> 0.

By iterating we have the theorem.
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Example: Non-Integrable Target
• Consider the following conditionals on R+

πX1|X2 (x1| x2) = x2 exp (−x2x1)

πX2|X1 (x2| x1) = x1 exp (−x1x2) .

We might expect that these full conditionals define a joint
probability density π (x1, x2).

• Hammersley-Clifford would give

π (x1, x2, ..., xd) ∝
πX1|X2 (x1| z2)
πX1|X2 (z1| z2)

πX2|X1 (x2| x1)

πX2|X1 (z2| x1)

=
z2 exp (−z2x1) x1 exp (−x1x2)

z2 exp (−z2z1) x1 exp (−x1z2)
∝ exp (−x1x2) .

• However
∫∫

exp (−x1x2) dx1dx2 =∞ so
πX1|X2 (x1| x2) = x2 exp (−x2x1) and
πX2|X1 (x1| x2) = x1 exp (−x1x2) are not compatible.
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Example: Positivity condition violated
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Figure: Gibbs sampling targeting π(x , y) ∝ 1[−1,0]×[−1,0]∪[0,1]×[0,1](x , y).
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Invariance of the Gibbs sampler I

The kernel of the Gibbs sampler (case d = 2) is

K (x (t−1), x (t)) = πX1|X2(x
(t)
1 | x (t−1)

2 )πX2|X1(x
(t)
2 | x (t)1 )

Case d > 2:

K (x (t−1), x (t)) =
d∏

j=1

πXj |X−j
(x

(t)
j | x (t)1:j−1, x

(t−1)
j+1:d )

Proposition
The systematic scan Gibbs sampler kernel admits π as invariant
distribution.
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Invariance of the Gibbs sampler II

Proof for d = 2.
We have∫

K (x , y)π(x)dx =

∫
π(y2 | y1)π(y1 | x2)π(x1, x2)dx1dx2

= π(y2 | y1)

∫
π(y1 | x2)π(x2)dx2

= π(y2 | y1)π(y1) = π(y1, y2) = π(y).
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