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Normalised Importance Sampling

Standard IS has limited applications in statistics as it requires
knowing 7 (x) and g (x) exactly.

Assume 7(x) = 7(x)/Z; and q(x) = q(x)/Z,
m(x) > 0= g(x) > 0 and and define

An alternative identity is

_ Jxp () w(x) g(x)dx

I = Ex(0(X)) Js w(x)q(x)dx
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SLLN for NIS

Proposition (SLLN for NIS)

Let X1, ..., Xo " q and assume that Eq(|p(X)| w (X)) < 0.

Then ; _
s _ iz (X w(Xi)
! >ty w(X))

is strongly consistent.

Proof.

Divide numerator and denominator by n. Both converge almost
surely by the strong law of large numbers.

O

v

BUT, for finite n 7;'7\”5 is biased, see notes Chapter 3.
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CLT for NIS

Proposition
If Vq(p(X)w(X)) < 0o and Vg(w(X)) < oo then

V(N — 1) = N(0,0%s),
where

s = Vo ([e(X)w(X)) — m(X)])
-/ (X (o) = 12 |

B q(x)

X.
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Proof
Proof.

First notice that with Xi,..., Xpiid. ~q
L, W) [0 — 1]
5 iy W(X;)

ﬁ(ENIS - I)
where since w(x) = 7/q

Eq [#(Xa) (X)) — )] = 0.

Since Vg ((X)w(X)) < oo by standard CLT

% ; WX [P (X)) — 1] = N (0, Ve (#0X)[(X) = 11) ).
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Proof ctd...

Proof.

The strong law of large numbers applied to the denominator
1 n
- D w(Xi) = Eglw(X)] = Ze/Z,,  ass.
i=1
By Slutsky's theorem, combining the two

VANS — 1) = A7 (0., (F0)X) — 1) 22)

-9
zz

Alternatively, use Delta method.
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Toy Example: t-distribution

e We want to compute | = E(|X|) where 7 (x) o (1 + X2/3)72
(ts-distribution).

(a) Directly sample from 7.
(b) Use g1 (x) = g, (x) ox (1+ x2)_1 (ti-distribution).
(c) Use g2 (x) o exp (—x2/2) (normal).

0.4
0.3
y0.2
0.1
00) =——— i S—
-5.0 -2.5 0.0 25 5.0

Functions —xm(x) —q1(x) —g2(x) — 1(x)
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Toy Example: t-distribution

m [F1 92
4
3
weights 2
0 uLMﬂu .- -
N T e e T T
samples

Figure: Sample weights obtained for 1000 realisations of X;, from the
different proposal distributions.
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Toy Example: t-distribution

q2
10.0
estimate 1.0 F
01 i i U . i i U \ i i U \
0 500 1000 15000 500 1000 15000 500 1000 1500

number of samples

Figure: Estimates I, of I obtained after 1 to 1500 samples. The grey
shaded areas correpond to the range of 100 independent replications.
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Variance of importance sampling estimators

e Standard Importance Sampling: Xi,..., X, s q,

1 n

ne

s == Xi)w(X
" n;:l«p( )w

e Asymptotic Variance:

(n>

e Thus the asymptotic variance can be estimated consistently with

LS (wtxmwx) 1)’
i=1
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Variance of importance sampling estimators
iid

e Normalised Importance Sampling: X1,..., X, ~ q,
TNIS _ ZI 1 <10(X )W(X)
= .

Z/ 1 W(XI)

e Asymptotic Variance:

Eq [(e(X)w(X) — 1 x w(X))’

v () = Eq [wOX)P

e Thus the asymptotic variance can be estimated consistently with

S w2 (w00 - 1)
2 E0) N
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Diagnostics

e Importance sampling works well when all weights roughly equal.
o If dominated by one w(Xj),

INIS _ i p(X)w(X;) ~ w(X:
G SO B

The "effective sample size” is one.

e To how many unweighted samples correspond our weighted samples
of size n? Solve for ne in

1 o2
*\/as (7;'7\“5) =
n Ne

where 02 /n. corresponds to the variance of an unweighted sample
of size ne.
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Diagnostics

e We solve by matching ¢(X;) — INIS with ©(Xi) — | = o as if they
were i.i.d samples:

1 = w(X)? (so(Xi) — AL\“S)2 o
1 (7 20 w(X))

e The solution is

and is called the effective sample size.

13 / 51



Rejection and Importance Sampling in High Dimensions

e Toy example: Let X = RY and

1 d X
7 (x) = 7(277)"/2 exp (—Z’_; ! )

— 1 S
700 = nory T <—w -

and

e How do Rejection sampling and Importance sampling scale in this
context?
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Performance of Rejection Sampling

o We have

for o > 1.
e Acceptance probability is

1
P (X accepted) = — — 0 as d — oo,
g

i.e. exponential degradation of performance.
e For d =100, 0 = 1.2, we have

P (X accepted) ~ 1.2 x 1078,
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Performance of Importance Sampling

o We have

e Variance of the weights:

Vg [w (X)] = (%;’4_1)(1/2 1

where 0%/ (202 — 1) > 1 for any 62 > 1/2.
e For d =100, o = 1.2, we have

V, [w (X)] =~ 1.8 x 10%.
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Wait a minute. ..

Lecture 1:

e Simpson's rule for approximating integrals: error in O(n=1/9).

Lecture 2:

e Monte Carlo for approximating integrals: error in O(n~1/2) with
rate independent of d.

And now:

e Importance Sampling standard deviation in the Gaussian example in
exp(d)n~1/2.

The rate is indeed independent of d but the “constant” (in n)
explodes exponentially (in d).
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Markov chain Monte Carlo

e Revolutionary idea introduced by Metropolis et al., J. Chemical
Physics, 1953.

e Key idea: Given a target distribution 7, build a Markov chain
(Xt)t21 such that, as t — 0o, X; ~ 7 and

e > [ o
t=1

when n — oo e.g. almost surely.
e Also central limit theorems with a rate in 1/y/n.

e In some cases the constant (in n) does not explode exponentially
with the dimension d, but polynomially.
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Markov chains - discrete space

e Let X be discrete, e.g. X = Z.

® (Xt);>; is a Markov chain if
]P(Xt = Xt| X]_ = X1, ...,Xt-f]_ = th]_) :]P(Xt = Xt| thl = thl).

The future is conditionally independent of the past given the
present.

e Homogeneous Markov chains:

e The Markov transition kernel is a stochastic matrix

K(i,j) = Kij = P(X; = j| Xe—1 = ).
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Markov chains - discrete space
o Let ps(x) = P (X = x), the chain rule yields

t

P(X1 = x1,Xo = x2, ..., Xt = x¢) = p1(x1) H Ky _1x;-
=2

e The m-transition matrix K™ as
K" = P(Xerm = j| Xe = i).
e Chapman-Kolmogorov equation:

m+n __ misn
KPtn=> KiK.
keX

e \We obtain
pera() =D (D K;
i
i.e. using “linear algebra notation”,

per1 = K.

21 /51



Roadmap

o We will see that we can choose the transition matrix K such that if
to = m then py = m for all t.

e In practice we will have pg # 7;

e We will see that under certain conditions, not matter what pyg is,
i1t — 7 in total variation.

e This is enough to guarantee us a law of large numbers and a
central limit theorem;

e Making this convergence precise, e.g. in terms of the dimension, is
still an active research area.
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Irreducibility and aperiodicity

Definition
A Markov chain is said to be irreducible if all the states
communicate with each other, that is

Vx,y € X min{t:K)fy>0} < 00.
A state x has period d(x) defined as

d(x) =gcd{s >1: K; >0}.

An irreducible chain is aperiodic if all states have period 1.

9 1-6 ). . Qg
1-0 o ) is irreducible if € [0,1) and

aperiodic if 8 € (0,1). If # =0, the ged is 2.

Example: Ky =
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Transience and recurrence

Introduce the number of visits to x:

Nx = Z 1{ Xk = x}.

k=1
Definition
A state x is termed transient if:
Ex (WX) < 00,

where T, refers to the law of the chain starting from x.
A state is called recurrent otherwise and

Ey (nx) = oc.

If a finite state chain is irreducible, then either all states are
recurrent or transient.
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Invariant distribution

Definition
A distribution 7 is invariant for a Markov kernel K, if

K = .

Note: if there exists t such that X; ~ , then
Xips~T

for all s € IN.
Example: for any 6 € [0, 1]

0 1-6
Ke—(1—e 0 >

admits the invariant distribution

N[
S—

"= (4
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Detailed balance

Definition

A Markov kernel K satisfies detailed balance for 7 if

Vx,y € X1 m(x)Kyy = m(y)Kyx.

Lemma

If K satisfies detailed balance for m then K is w-invariant.

If K satisfies detailed balance for = then the Markov chain is
reversible, i.e. at stationarity,

VX,yGX: IP(XI‘:X’XFF]_:y):P(Xt:X,th]_:y).
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Lack of reversibility

1/3 1/3 1/3
e Let P= 1 0 0
0 1 0
o Check 7P = m for m = (1/2,1/3,1/6).
e P cannot be 7 reversible as
1-3—-2->1
is a possible sequence whereas
1-2—-3—-1
is not (as Pp3 = 0).
e Detailed balance does not hold as mPy3 = 0 #£ m3P30.
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Remarks

e All finite space Markov chains have at least one stationary
distribution but not all stationary distributions are also limiting
distributions.

04 06 O 0
02 08 O 0
0 0 0.4 06
0 0 0.2 0.8

P =

Two left eigenvectors of eigenvalue 1:

m = (1/4,3/4,0,0),
m = (0,0,1/4,3/4)

depending on the initial state, two different stationary distributions.
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Equilibrium

Proposition
If a discrete space Markov chain is aperiodic and irreducible and
admits an invariant distribution 7(-), then

Vx e X P, (Xe=x) — 7m(x),

t—o0

for any starting distribution .

e In the Monte Carlo perspective, we will be primarily interested in
convergence of empirical averages, such as

=D o) 21 = 3 e ().
t=1

xeX

e Before turning to these “ergodic theorems”, let us consider
continuous spaces.
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Markov chains - continuous space
e The state space X is now continuous, e.g. RA.
® (Xt);>1 is a Markov chain if for any (measurable) set A,
IP(Xt S A‘ X1 =x1,X0 =x0, ..., Xp_1 = Xt—l)
= IP(Xt S A| Xt—]. = Xt—]_)-
The future is conditionally independent of the past given the
present.

o We have

M&emmlzm:/mew:Kmm,
A

that is conditional on X;_1 = x, X; is a random variable which
admits a probability density function K (x, ).

e K : X2 — R is the kernel of the Markov chain.
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Markov chains - continuous space
e Denoting p; the pdf of X1, we obtain directly

P(X1 € A1, ..., Xt € Ap)

t
:/ 1251 (Xl)HK(Xk,]_,Xk) dX1~--dXt.
A1 XX At k=2

e Denoting by pu; the distribution of X;, Chapman-Kolmogorov
equation reads

pe(r) = [ nea(IK(x )
and similarly for m > 1

esm (y) = /X e(x)K™(x, y)dx

where
t+m
K™ (Xt7Xt+m) = / H K (Xk—17 Xk) dXep1 - dXepm—1.
Xm=t e
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Example

e Consider the autoregressive (AR) model
Xe = pXe—1 + Vi

where V; Hid- N (0,7'2). This defines a Markov chain such that

K(x,y) = \/2;7 exp <—2i2 (v — pX)2> :

e We also have .
Xevm = p"Xe + Z P Visk
k=1
so in the Gaussian case
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Irreducibility and aperiodicity

Definition
Given a probability measure ;1 over X, a Markov chain is
p-irreducible if

VxeX VA:u(A)>0 JteN K'(x,A)>0.

A p-irreducible Markov chain of transition kernel K is periodic if
there exists some partition of the state space Xy, ..., Xy for d > 2,
such that

1 j=i+smodd

Vijytys: P(Xers € Xj| Xe € X) = { 0 otherwise.

Otherwise the chain is aperiodic.
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Recurrence and Harris Recurrence
For any measurable set A of X, let

na=Y 1a(X),
k=1

the number of visits to the set A.

Definition
A p-irreducible Markov chain is recurrent if for any measurable set
ACX:p(A) >0, then

Vx € A Ex(na) = oc.

A p-irreducible Markov chain is Harris recurrent if for any
measurable set A C X : u(A) > 0, then

Harris recurrence is stronger than recurrence.
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Invariant Distribution and Reversibility

Definition
A distribution of density 7 is invariant or stationary for a Markov
kernel K, if

| K ax=n ).
A Markov kernel K is m-reversible if
vf / / F(x, ) (x) K (x, ) dxdy
- / / Fy, ) (x) K (x, y) dxdy

where f is a bounded measurable function.
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Detailed balance
In practice it is easier to check the detailed balance condition:

Vx,y € X m(x)K(x,y) =n(y)K(y,x)

If detailed balance holds, then 7 is invariant for K and K is
mw-reversible.

Lemma }

Example: the Gaussian AR process is w-reversible, m-invariant for
2
7T(X) :N <X;O, ]:;)2)
when |p| < 1.
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Law of Large Numbers

Theorem

Suppose the Markov chain {X;; i > 0} is w-irreducible, with
invariant distribution 7, and suppose that Xy = x.
Then for any m-integrable function ¢ : X — R:

1
im0 = [ o) (n)an
almost surely, for m— almost every x.

If the chain in addition is Harris recurrent then this holds for every
starting value x.
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Convergence

Theorem

Suppose the kernel K is m-irreducible, w-invariant, aperiodic. Then,
we have

t—o0

lim /X}Kt(x,y)—ﬂ(y)‘dy:0

for m—almost all starting values x.

Under some additional conditions, one can prove that there exists a
p < 1and a function M : X — R such that for all measurable
sets A and all n

[K"(x, A) = m(A)] < M(x)p".

The chain is then said to be geometrically ergodic.
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Central Limit Theorem
Theorem

Under regularity conditions, for a Harris recurrent, m-invariant
Markov chain, we can prove

t—o0

1< D
Vi [tzw(xo—/xw(x)w(x)dx] LN (0.02(5).
i=1
where the asymptotic variance can be written

0% (¢) = Valp (X)) +2)_ Covz [p(X1) , 0 (Xi)] -
k=2

This formula shows that (positive) correlations increase the
asymptotic variance, compared to i.i.d. samples for which the
variance would be V. (p(X)).
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Central Limit Theorem

Example: for the AR Gaussian model,
™ (x) :N(X;Oﬂ'z/(l — p2)) for [p| < 1 and

72

Cov (X1, Xk) = pF IV [Xq] = p*t T

5"

Therefore with ¢ (x) = x,

1+p 72
1+2
L () T -

which increases when p — 1.

o?(p) =
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Markov chain Monte Carlo

e We are interested in sampling from a distribution 7, for instance a
posterior distribution in a Bayesian framework.

e Markov chains with 7 as invariant distribution can be constructed
to approximate expectations with respect to .

e For example, the Gibbs sampler generates a Markov chain targeting
7 defined on RY using the full conditionals

7T(X,' ‘ Xlyeo oy Xi—1y Xi4+1y .-« ,Xd).
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Gibbs Sampling
e Assume you are interested in sampling from

7(x) =7 (x1,x2, ..., xq), x€R

e Notation: X_;j := (X1, e, Xj—1, Xit 1y - Xd )-

Systematic scan Gibbs sampler. Let (Xl(l), ...,Xcsl)) be the

initial state then iterate for t = 2,3, ...

1. Sample X{? ~ m i, (1XET x(EY).

. _1 _1
J- Sample Xj(t) ~ T x|x ("Xl(t)w"))(j(i)l?)(j(il )a ...,X(St )) :

d. Sample X(St) ~ XX (\ Xl(t), ---,X(st_)l) .
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Gibbs Sampling

A few questions one can ask about this algorithm:

e |s the joint distribution 7 uniquely specified by the conditional
distributions 7x;x_,?

e Does the Gibbs sampler provide a Markov chain with the correct
stationary distribution 77

e If yes, does the Markov chain converge towards this invariant
distribution?

o |t will turn out to be the case under some mild conditions.
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Hammersley-Clifford Theorem

Theorem
Consider a distribution whose density 7 (x1,x2, ..., Xq) is such that

supp () = supp (®,‘-’:17Tx,-> :

Then for any (z1,...,z4) € supp(m), we have

(Xl X1;j-15 Zj+1:0)

d 7

I | Xi|X-j
7T(X17X2,...,XC,') X .

=1 XX (z| x1j-1, Zj41.)

The condition above is known as the positivity condition.

Equivalently, if wx,(x;) >0 for i =1,...,d, then
m(x1,...,xqg) > 0.

Sufficient for the Gibbs sampler to be irreducible.
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Proof of Hammersley-Clifford Theorem

Proof.
We have
T(X1:d—1, Xd) = T xyx_y (Xa| X1:d—-1)7(x1:0-1),
T(X1:d—1,2d) = Tx,x_y(2d| X1:9-1)7(x1:0-1)-
Therefore

m(X1:d—1, Xd)
7(X1:d—1, Zd)
m(X1:d—1, Xd)/T(X1:d-1)

7T(X1;d) = W(Xl:dfla Zd)

e 7T(X1;d717 Zd) 7T(X]_:d—]-’ Zd)/']T(X]_d—l)

7er|X1:d—1(Xd | Xlid—l)
7er|X1:d—1(Zd | X1:d-1)

= 7(X1:d—1, Zd)
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Proof.
Similarly, we have
7r(Xl:d—172d)
T(X1:d—25 Zd—1, Zd)
T(X1:d—1, 2d)/T(X1:d—25 Zd)

7r(Xl:d717 Zd) = 7T(X1:d72a Zd—1, Zd)

= mbaa-2: 21, Zd)Tr(Xlzdf27 Zd-1,24)/m(X1:d—2, 2d)

TXy_1|X—(d=1) (Xd—1 | X1:d—2, Zd)

= X1:d—25Zd—1, Z,
7T( 1:d—2,4d—1, d)7TXd_1|X7(d71)(Zd71 |X]_:d_2,zd)

hence
T Xy 1]X_ g1y (Xd—1| X1:d—2, Zd)

™ (Xl:d) = 71-(X13d_2’ Zd—1; Zd)7TXd71|X_(d_1) (Zd—1’ X1:d—2; Zd)

T xy1X_y (Xd| X1:0-1)
T xy1X_g (Zd] X1:d-1)
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Proof.

By z € supp(m) we have that 7x,(z) > 0 for all i. Also, we are

allowed to suppose that mx,(x;) > 0 for all i. Thus all the

conditional probabilities we introduce are positive since

7TXj|X—J'(Xj ’Xl,...,)g,172j+1,...,2d)
- 7T(X1,...,Xjfl,Xj,ZjJrl,...,Zd) >0
ﬂ-(Xl)'"7Xj—1azjazj+1a"-7zd)

By iterating we have the theorem.
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Example: Non-Integrable Target

e Consider the following conditionals on R™
x| (X1] x2) = x2 exp (—x2x1)
T X |X: (x2| x1) = x1 exp (—x1x2) .

We might expect that these full conditionals define a joint
probability density 7 (x1, x2).

e Hammersley-Clifford would give

T X1| Xz (x1] z2) T Xa| Xy (x2| x1)
T X1 | X2 (z1] 22) T Xa| X1 (z2] x1)
)
)

T (X1, X2, ey Xd) X

x1 exp (—x1x2)
2 exp (—2z2z1) x1 exp (—x122)

2 exp (—2z2x1

ox exp (—x1x2) .

o However [[ exp(—xix2)dxidx; = 00 so
T X1 1% (X1] X2) = x2 exp (—x2x1) and
T xo|x, (X1]X2) = x1 exp (—x1x2) are not compatible.
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Example: Positivity condition violated

2 -
1 -
>0
—1-
-2-
-2 -1 0 1 2
X

Figure: Gibbs sampling targeting 7(x, y) o¢ 1[_1 ojx[~1,0]u0,1]x[0,1] (X, ¥)-
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Invariance of the Gibbs sampler |

The kernel of the Gibbs sampler (case d = 2) is
KO0 = 1, (0 16 )i (07 167)

Case d > 2:

d
K(x(t—l),x(f)) = HWXJ\X—J'()S'(t) | X{?—l’)%(jzld))
j=1

Proposition

The systematic scan Gibbs sampler kernel admits w as invariant
distribution.
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Invariance of the Gibbs sampler Il

Proof for d = 2.
We have

/ K(x, y)m(x)dx = / 72 | yi)m(oa | o), x2)dba s

(2 | 1) / w1 | x2)m(e)de

=7(y2 [ yi)m(y1) = 7(y1, y2) = 7(y)-
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