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Transformation Method: pushforward

Let Y, X be two topological spaces equipped with their Borel
o-algebras.

Suppose that f : Y — X is Borel measurable;

Suppose that q is a Borel probability measure on Y and let Y ~ gq.

Write 7 for the distribution of X = f(Y'), a Borel probability
measure on X.

Then 7 is the push-forward of q under f, written

It's defined as
m(B) = (f)u(B) = q (f"1(B)), forall B € B(X).

In terms of expectations

/hogpdq:/hdf*,u.
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Transformation Method: change of variables formula

When dg(x) = g(x)dx, and ¢ is a bijection, then 7 also has a
density given by the change of variables formula

m(x) = qo ¢~ (x) |det(Dp™")(x)] -
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Transformation Method - Box-Muller Algorithm

Gaussian distribution. Let U; ~ Upp 1 and Us ~ Upp 1 be
independent and set

R = \/—2 |Og(U1), Y= 27TU2.

Clearly R, ¥ independent and R? ~ Exp(1/2), ¥ ~ Upp 2 With

joint density
11

q(r2, V) = 5=3 exp(—r2/2).

Set X = Rcos(¥), Y = Rsin(9) a bijection.
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Transformation Method - Box-Muller Algorithm

By standard facts:

o(r?,9)
f — fro.(r(x,¥),0 det ——
X,y (X, y) = fr2 9(r (x, y), (X’y))‘ ¢ 8(X,y)‘
d(x,y) |1
= frag(r?(x,9). 0(x. )| det S22
11 2 4 y2 1 x% 4 y?
“2: Pl Ty Regreel Tl
since ()
[ele}] H
der 206) ) _[S5e rsind) _ 1
a(r2,9) % rcos 2

thus (X, Y) are independent standard normal.
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Transformation Method - Multivariate Normal

Let Z = (Z1,.... Zg) =& N(0, 1).
Let L be a real invertible d x d matrix satisfying L LT = ¥, and
X=LZ+ u. Then X ~ N (p, X).

We have indeed g (z) = (2r)~9/? exp (=3z7z) and
7 (x) = q(z)|det 0z /0x]|
where 9z/0x = L~ and det (L) = det (X)'/?. Additionally,
INT

=) (N L (x = p)
= (x—p) T (x—p).
In practice, use a Cholesky factorization ¥ = L LT where L is a
lower triangular matrix.
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Sampling via Composition

Assume we have a joint pdf T with marginal ; i.e.

1) = [ xy () dy
where 7 (x, y) can always be decomposed as
X,y (x,y) =Ty (y)Txy (x| y)-

It might be easy to sample from 7 (x, y) whereas it is
difficult/impossible to compute 7 (x) .

In this case, it is sufficient to sample
Y ~ Ty then X|Y ~Txy (| Y)

so (X,Y) ~7x,y and hence X ~ 7.
Latent variable models; HMMs;
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Finite Mixture of Distributions

Assume one wants to sample from
P

T (x) = E aj.mi(x)
i=1

where a; >0, Y7 oy =1and m; (x) >0, [ 7 (x)dx = 1.

We can introduce Y € {1, ..., p} and

fx’y(X,y) =y X Ty (X)

To sample from 7 (x), first sample Y from a discrete distribution
such that P (Y = k) = a then

X|(Y =y)~my.
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Rejection Sampling

Basic idea: Sample from instrumental proposal g # m; correct
through rejection step to obtain a sample from 7.

Algorithm (Rejection Sampling). Given two densities 7, g with
m(x) < M g (x) for all x, we can generate a sample from 7 by

1. Draw X ~ q, draw U ~ Upp 1]-

2. Accept X = x as a sample from = if

7 (x)
U< ,
M q(x)
otherwise go to step 1.
Proposition
The distribution of the samples accepted by rejection sampling is 7T.J
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Rejection Sampling

Proof.

P(X € A X ted
P (X € Al X accepted) = ( accepted)

P (X accepted)

where

P (X € A, X accepted)

//uA(x <u< (())>q(x)dudx
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Rejection Sampling

e Often we only know 7 and g up to some normalising constants; i.e.

n=n/Z; and q=4q/Zq4

where 7, g are known but Z;, Z, are unknown.
You still need to be able to sample from q(-).

e If you can upper bound:

7 (x)/3(x) < M,

then using 7, g and M in the algorithm is correct.

o Indeed we have

T(x)  ~  m(x) _ ~Zg
< MZ

=M.
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Rejection Sampling

Let T denote the number of pairs (X, U) that have to be
generated until X is accepted for the first time.

Lemma

T is geometrically distributed with parameter 1/M and in particular
E(T)= M.

In the unnormalised case, this yields

1 Z
P (X accepted) = — = ——,
( == e
Z,M
E(T)=M==2
() Zﬂ-’

and it can be used to provide unbiased estimates of Z;/Z, and
Zq/Zy.
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Examples:Uniform from bounded subset of R

e Let B C RP, a bounded subset of RP:
m(x) x g (x).

Let R be a rectangle containing B C R and

q(x) x I (x).

e Then we can use M = 1 and

7/ (Ma(x)) =18 (x).

e The probability of accepting a sample is then Z;/Z,.
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Example: Normal density

e Let @ (x) = exp (—2x?) and g (x) = 1/ (1 + x?). We have

7(x) _ (14 x2) exp (_;X2> <2/\Je=M

which is attained at +1.
e Let X ~ g. The acceptance probability is

[P<U§ *(X) ) _ I :@:,/;zo.%,
Ma(x)) Mz, Zn T

and the mean number of trials to success is approximately

1/0.66 ~ 1.52.
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Examples: Genetic Linkage model
e We observe

Faa-0).

-Ml—‘

1 1
(Y17Y2ay3, Y4)N_/\/l (n2 Z

(1-0).5)

where M is the multinomial distribution and 6 € (0,1).

o The likelihood of the observations is thus
P ()/17 e Y4, 0)
I 1 o/ Y2+y3 ya
i (101 G ()
yvilyalyslyat \2 4 4 4
o (2 + 9)}/1 (1- 0)y2+y3 Y4,

e Bayesian approach where we select p (¢) = ljp 1] (¢) and are
interested in

p(0]y1,....ya) o (24 0)" (1 — )72 0"0j0,17 () -
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Examples: Genetic linkage model

e Rejection sampling using the prior as proposal g (6) = g (6) = p ()
to sample from p (6| yi, ..., ya).

e To use accept-reject, we need to upper bound

— L =7 (9) — (2 + 9)}’1 (1 _ 9)}’2+)/3 [z

e Maximum of 7 can be found using standard optimization procedure
to perform rejection sampling.

e For a realisation of (Y1, Y2, Y3, Y4) equal to (69,9,11,11) obtained
with n = 100 and #* = 0.6, results shown in following figure.
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Examples: Genetic linkage model

density density 0.10-
2
0.05-
1
0 0.00- -
0.00 025 050 0.75 1.00 0 20 40 60
<] T
(a) Figure A (b) Figure B

Figure: Histogram of 10,000 samples drawn from posterior obtained by
rejection sampling (left); and histogram of waiting time distribution
before acceptance (right).
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Rejection Sampling Recap

Rejection sampling requires

e Samples from some distribution g;

e evaluation of 7(-) point-wise, or unnormalized T;

e an upper bound M on 7(x)/q(x), or 7/q and so on.

Sometimes the upper bound is not feasible.
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Importance Sampling

o We want to compute

= En(o(X) = [ 9007 (x) o
e We do not know how to sample from the target = but have access
to a proposal distribution of density g.
e We only require that
m(x)>0=q(x) >0;
i.e. the support of g includes the support of .

e g is called the proposal, or importance distribution.
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Importance Sampling

e We have the following identity

I = Ex(p(X)) = Eq(o(X)w (X)),

where w : X — R™ is the importance weight function

e Hence for Xi,..., X, b q,
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Importance Sampling Properties

Proposition
(a) Unbiased: [Eq[T,',S] =1;
(b) Strongly consistent: If Eq(|o(X)|w (X)) < oo then

lim 1% =1,
n—oo

a.s.
(c) CLT: \/q(T',,S) = 0%/n where
ofs = Vg (p(X)w (X))
If 0% < oo then

lim v/n (/7,5 - /) BN (0,0%).

n—o0
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Importance Sampling: Practical Advice

Consistency does not require 0% < oo but highly recommended in
practice (!).

Sufficient condition: If E; (¢?(X)) < oo and w (x) < M for all x
for some M < oo, then 0% < occ.

In practice ensure w (x) < M although it is neither necessary nor
sufficient, as seen in the following example.
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Importance Sampling: Example

For 02 > 1, w(x) < M for all x,

and for 02 < 1, w(x) = o0 as |x| — oc.

2

For ¢ (x) = x2, we have 0% < oo for all 02 > 1/2.

For ¢ (x) = exp (gxz), we have | < oo for B < 1

(
butafszooforﬁ>1—ﬁ.
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Optimal Importance Distribution |

Question

Is there a best proposal that minimizes the variance 0,25?

Proposition
n

The optimal proposal minimising V4 (T’S) is given by

el ()
J [ ()l (x) o

Gopt (X)

22 / 32



Optimal Importance Distribution Il

Proof.
We have indeed

ot = Vg (p(X)w (X)) = Eq (¢*(X)w? (X)) — I?

We also have by Jensen's inequality for any g

Eq (£2(X)w? ( </|¢ )7 (x dx).

For g = qopt, we have

X 71'2 X
E e (F2(O)W2 (X)) = /X dx / 00| 7 (x

lo(x)| 7 (x)

= ([t dx) .
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Optimal Importance Distribution

opt (x) can never be used in practice!

For ¢ (x) > 0 we have gopt (x) = @(x)7 (x) /I and Vg, (7,',5> =0

but this is because

it requires knowing /!

This can be used as a guideline to select g; i.e. select g (x) such
that g (x) = gopt (X).

Particularly interesting in rare event simulation, not quite in
statistics.
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Normalised Importance Sampling

Standard IS has limited applications in statistics as it requires
knowing 7 (x) and g (x) exactly.

Assume 7(x) = 7(x)/Z; and q(x) = q(x)/Z,
m(x) > 0= g(x) > 0 and and define

An alternative identity is

_ Jxp () w(x) g(x)dx

I = Ex(0(X)) Js w(x)q(x)dx
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SLLN for NIS

Proposition (SLLN for NIS)

Let X1, ..., Xo " q and assume that Eq(|p(X)| w (X)) < 0.

Then ; _
s _ iz (X w(Xi)
! >ty w(X))

is strongly consistent.

Proof.

Divide numerator and denominator by n. Both converge almost
surely by the strong law of large numbers.

O

v

BUT, for finite n 7;'7\”5 is biased, see notes Chapter 3.
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CLT for NIS

Proposition
If Vq(p(X)w(X)) < 0o and Vg(w(X)) < oo then

V(N — 1) = N(0,0%s),
where

s = Vo ([e(X)w(X)) — m(X)])
-/ (X (o) = 12 |

B q(x)

X.
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Proof
Proof.

First notice that with Xi,..., Xpiid. ~q
L, W) [0 — 1]
5 iy W(X;)

ﬁ(ENIS - I)
where since w(x) = 7/q

Eq [#(Xa) (X)) — )] = 0.

Since Vg ((X)w(X)) < oo by standard CLT

% ; WX [P (X)) — 1] = N (0, Ve (#0X)[(X) = 11) ).
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Proof ctd...

Proof.

The strong law of large numbers applied to the denominator
1 n
- D w(Xi) = Eglw(X)] = Ze/Z,,  ass.
i=1
By Slutsky's theorem, combining the two

VANS — 1) = A7 (0., (F0)X) — 1) 22)

-9
zz

Alternatively, use Delta method.
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Toy Example: t-distribution

e We want to compute | = E(|X|) where 7 (x) o (1 + X2/3)72
(ts-distribution).

(a) Directly sample from 7.
(b) Use g1 (x) = g, (x) ox (1+ x2)_1 (ti-distribution).
(c) Use g2 (x) o exp (—x2/2) (normal).

0.4
0.3
y0.2
0.1
00) =——— i S—
-5.0 -2.5 0.0 25 5.0

Functions —xm(x) —q1(x) —g2(x) — 1(x)
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Toy Example: t-distribution

m [F1 92
4
3
weights 2
0 uLMﬂu .- -
N T e e T T
samples

Figure: Sample weights obtained for 1000 realisations of X;, from the
different proposal distributions.
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Toy Example: t-distribution

q2
10.0
estimate 1.0 F
01 i i U . i i U \ i i U \
0 500 1000 15000 500 1000 15000 500 1000 1500

number of samples

Figure: Estimates I, of I obtained after 1 to 1500 samples. The grey
shaded areas correpond to the range of 100 independent replications.

32 /32



	Examples
	Importance Sampling
	Normalized Importance Sampling

