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Transformation Method: pushforward �

Let Y,X be two topological spaces equipped with their Borel
σ-algebras.
Suppose that f : Y 7→ X is Borel measurable;
Suppose that q is a Borel probability measure on Y and let Y ∼ q.
Write π for the distribution of X = f (Y ), a Borel probability
measure on X.
Then π is the push-forward of q under f , written

π = f∗µ.

It’s defined as

π(B) = (f∗)µ(B) = q
(
f −1(B)

)
, for all B ∈ B(X).

In terms of expectations∫
h ◦ ϕdq =

∫
hdf∗µ.

0 / 32



Transformation Method: change of variables formula

When dq(x) = q(x)dx , and ϕ is a bijection, then π also has a
density given by the change of variables formula

π(x) = q ◦ ϕ−1(x)
∣∣det(Dϕ−1)(x)

∣∣ .
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Transformation Method - Box-Muller Algorithm

Gaussian distribution. Let U1 ∼ U[0,1] and U2 ∼ U[0,1] be
independent and set

R =
√
−2 log (U1), ϑ = 2πU2.

Clearly R, ϑ independent and R2 ∼ Exp(1/2), ϑ ∼ U[0,2π] with
joint density

q(r2, ϑ) =
1
2π

1
2

exp(−r2/2).

Set X = R cos(ϑ),Y = R sin(ϑ) a bijection.
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Transformation Method - Box-Muller Algorithm

By standard facts:

fX ,Y (x , y) = fR2,ϑ(r2(x , y), θ(x , y))
∣∣∣ det

∂(r2, ϑ)

∂(x , y)

∣∣∣
= fR2,ϑ(r2(x , y), θ(x , y))

∣∣∣ det
∂(x , y)

∂(r2, ϑ)

∣∣∣−1

=
1
2

1
2π

exp
[
− x2 + y2

2
]
2 =

1
2π

exp
[
− x2 + y2

2
]
,

since

det
∂(x , y)

∂(r2, ϑ)
| =

∣∣∣∣∣ cos(ϑ)2r −r sinϑ
sin(ϑ)

2r r cosϑ

∣∣∣∣∣ =
1
2
.

thus (X ,Y ) are independent standard normal.
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Transformation Method - Multivariate Normal

Let Z = (Z1, ...,Zd)
i.i.d.∼ N (0, 1).

Let L be a real invertible d × d matrix satisfying L LT = Σ, and
X = LZ + µ. Then X ∼ N (µ,Σ) .

We have indeed q (z) = (2π)−d/2 exp
(
−1

2z
T z
)
and

π (x) = q (z) |det ∂z/∂x |

where ∂z/∂x = L−1 and det
(
L−1) = det (Σ)−1/2. Additionally,

zT z = (x − µ)T
(
L−1)T L−1 (x − µ)

= (x − µ)T Σ−1 (x − µ) .

In practice, use a Cholesky factorization Σ = L LT where L is a
lower triangular matrix.
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Sampling via Composition
Assume we have a joint pdf π with marginal π; i.e.

π (x) =

∫
πX ,Y (x , y) dy

where π (x , y) can always be decomposed as

πX ,Y (x , y) = πY (y)πX |Y (x | y) .

It might be easy to sample from π (x , y) whereas it is
difficult/impossible to compute π (x) .

In this case, it is sufficient to sample

Y ∼ πY then X |Y ∼ πX |Y ( ·|Y )

so (X ,Y ) ∼ πX ,Y and hence X ∼ π.
Latent variable models; HMMs;
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Finite Mixture of Distributions

Assume one wants to sample from

π (x) =

p∑
i=1

αi .πi (x)

where αi > 0,
∑p

i=1 αi = 1 and πi (x) ≥ 0,
∫
πi (x) dx = 1.

We can introduce Y ∈ {1, ..., p} and

πX ,Y (x , y) = αy × πy (x) .

To sample from π (x), first sample Y from a discrete distribution
such that P (Y = k) = αk then

X | (Y = y) ∼ πy .
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Rejection Sampling

Basic idea: Sample from instrumental proposal q 6= π; correct
through rejection step to obtain a sample from π.

Algorithm (Rejection Sampling). Given two densities π, q with
π (x) ≤ M q (x) for all x , we can generate a sample from π by
1. Draw X ∼ q, draw U ∼ U[0,1].
2. Accept X = x as a sample from π if

U ≤ π (x)

M q (x)
,

otherwise go to step 1.

Proposition
The distribution of the samples accepted by rejection sampling is π.
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Rejection Sampling

Proof.

P (X ∈ A|X accepted) =
P (X ∈ A,X accepted)

P (X accepted)

where

P (X ∈ A,X accepted)

=

∫
X

∫ 1

0
IA (x) I

(
u ≤ π (x)

M q (x)

)
q (x) dudx

=

∫
X

IA (x)
π (x)

M q (x)
q (x) dx

=

∫
X

IA (x)
π (x)

M
dx =

π (A)

M
.
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Rejection Sampling

• Often we only know π and q up to some normalising constants; i.e.

π = π̃/Zπ and q = q̃/Zq

where π̃, q̃ are known but Zπ, Zq are unknown.
You still need to be able to sample from q(·).

• If you can upper bound:

π̃ (x) /q̃ (x) ≤ M̃,

then using π̃, q̃ and M̃ in the algorithm is correct.

• Indeed we have

π̃ (x)

q̃ (x)
≤ M̃ ⇔ π (x)

q (x)
≤ M̃

Zq

Zπ
= M.
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Rejection Sampling

Let T denote the number of pairs (X ,U) that have to be
generated until X is accepted for the first time.

Lemma
T is geometrically distributed with parameter 1/M and in particular
E (T ) = M.

In the unnormalised case, this yields

P (X accepted) =
1
M

=
Zπ

M̃Zq

,

E (T ) = M =
ZqM̃

Zπ
,

and it can be used to provide unbiased estimates of Zπ/Zq and
Zq/Zπ.
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Examples:Uniform from bounded subset of Rp

• Let B ⊂ Rp, a bounded subset of Rp:

π (x) ∝ IB (x) .

Let R be a rectangle containing B ⊂ R and

q (x) ∝ IR (x) .

• Then we can use M̃ = 1 and

π̃ (x) /
(
M̃ ′q̃ (x)

)
= IB (x) .

• The probability of accepting a sample is then Zπ/Zq.
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Example: Normal density

• Let π̃ (x) = exp
(
−1

2x
2) and q̃ (x) = 1/

(
1 + x2). We have

π̃ (x)

q̃ (x)
=
(
1 + x2) exp

(
−1
2
x2
)
≤ 2/

√
e = M̃

which is attained at ±1.
• Let X ∼ q̃. The acceptance probability is

P

(
U ≤ π̃ (X )

M̃q̃ (X )

)
=

Zπ

M̃Zq

=

√
2π

2√
e
π

=

√
e

2π
≈ 0.66,

and the mean number of trials to success is approximately
1/0.66 ≈ 1.52.
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Examples: Genetic Linkage model
• We observe

(Y1,Y2,Y3,Y4) ∼M
(
n;

1
2

+
θ

4
,
1
4

(1− θ) ,
1
4

(1− θ) ,
θ

4

)
whereM is the multinomial distribution and θ ∈ (0, 1) .

• The likelihood of the observations is thus

p (y1, ..., y4; θ)

=
n!

y1!y2!y3!y4!

(
1
2

+
θ

4

)y1 (1
4

(1− θ)

)y2+y3 (θ
4

)y4

∝ (2 + θ)y1 (1− θ)y2+y3 θy4 .

• Bayesian approach where we select p (θ) = I[0,1] (θ) and are
interested in

p (θ| y1, ..., y4) ∝ (2 + θ)y1 (1− θ)y2+y3 θy4I[0,1] (θ) .

13 / 32



Examples: Genetic linkage model

• Rejection sampling using the prior as proposal q (θ) = q̃ (θ) = p (θ)
to sample from p (θ| y1, ..., y4).

• To use accept-reject, we need to upper bound

π̃ (θ)

q̃ (θ)
= π̃ (θ) = (2 + θ)y1 (1− θ)y2+y3 θy4

• Maximum of π̃ can be found using standard optimization procedure
to perform rejection sampling.

• For a realisation of (Y1,Y2,Y3,Y4) equal to (69, 9, 11, 11) obtained
with n = 100 and θ? = 0.6, results shown in following figure.
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Examples: Genetic linkage model
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Figure: Histogram of 10,000 samples drawn from posterior obtained by
rejection sampling (left); and histogram of waiting time distribution
before acceptance (right).
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Rejection Sampling Recap

Rejection sampling requires
• Samples from some distribution q;

• evaluation of π(·) point-wise, or unnormalized π̃;

• an upper bound M on π(x)/q(x), or π̃/q and so on.

Sometimes the upper bound is not feasible.
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Importance Sampling

• We want to compute

I = Eπ(ϕ(X )) =

∫
X

ϕ (x)π (x) dx .

• We do not know how to sample from the target π but have access
to a proposal distribution of density q.

• We only require that

π (x) > 0⇒ q (x) > 0;

i.e. the support of q includes the support of π.

• q is called the proposal, or importance distribution.
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Importance Sampling

• We have the following identity

I = Eπ(ϕ(X )) = Eq(ϕ(X )w (X )),

where w : X→ R
+ is the importance weight function

w (x) =
π (x)

q (x)
.

• Hence for X1, . . . ,Xn
i.i.d.∼ q,

Î ISn =
1
n

n∑
i=1

ϕ(Xi )w(Xi ).
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Importance Sampling Properties

Proposition

(a) Unbiased: Eq[Î ISn ] = I ;
(b) Strongly consistent: If Eq(|ϕ(X )|w (X )) <∞ then

lim
n→∞

Î ISn = I , a.s.

(c) CLT: Vq(Î ISn ) = σ2
IS/n where

σ2
IS := Vq (ϕ(X )w (X ))

If σ2
IS <∞ then

lim
n→∞

√
n
(
Î ISn − I

)
D→ N

(
0, σ2

IS
)
.
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Importance Sampling: Practical Advice

Consistency does not require σ2
IS <∞ but highly recommended in

practice (!).

Sufficient condition: If Eπ
(
ϕ2(X )

)
<∞ and w (x) ≤ M for all x

for some M <∞, then σ2
IS <∞.

In practice ensure w (x) ≤ M although it is neither necessary nor
sufficient, as seen in the following example.
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Importance Sampling: Example

π (x) = N (x ; 0, 1), q (x) = N
(
x ; 0, σ2)

w(x) =
π(x)

q(x)
∝ exp

[
− x2(1− 1

σ2

)]
.

For σ2 ≥ 1, w (x) ≤ M for all x ,
and for σ2 < 1, w (x)→∞ as |x | → ∞.

For ϕ (x) = x2, we have σ2
IS <∞ for all σ2 > 1/2.

For ϕ (x) = exp
(
β
2 x

2
)
, we have I <∞ for β < 1

but σ2
IS =∞ for β > 1− 1

2σ2 .
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Optimal Importance Distribution I

Question
Is there a best proposal that minimizes the variance σ2

IS?

Proposition

The optimal proposal minimising Vq

(
Î ISn

)
is given by

qopt (x) =
|ϕ(x)|π (x)∫

X
|ϕ(x)|π (x) dx

.
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Optimal Importance Distribution II
Proof.
We have indeed

σ2
IS = Vq (ϕ(X )w (X )) = Eq

(
ϕ2(X )w2 (X )

)
− I 2.

We also have by Jensen’s inequality for any q

Eq

(
ϕ2(X )w2 (X )

)
≥
(∫

X

|ϕ(x)|π (x) dx

)2

.

For q = qopt, we have

Eqopt

(
ϕ2(X )w2 (X )

)
=

∫
X

ϕ2(x)π2 (x)

|ϕ(x)|π (x)
dx ×

∫
X

|ϕ(x)|π (x) dx

=

(∫
X

|ϕ(x)|π (x) dx

)2

.
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Optimal Importance Distribution

qopt (x) can never be used in practice!

For ϕ (x) > 0 we have qopt (x) = ϕ(x)π (x) /I and Vqopt

(
Î ISn

)
= 0

but this is because

ϕ (x)w (x) = ϕ (x)
π (x)

qopt (x)
= I ,

it requires knowing I !

This can be used as a guideline to select q; i.e. select q (x) such
that q (x) ≈ qopt (x).

Particularly interesting in rare event simulation, not quite in
statistics.
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Normalised Importance Sampling

Standard IS has limited applications in statistics as it requires
knowing π (x) and q (x) exactly.

Assume π(x) = π̃(x)/Zπ and q(x) = q̃(x)/Zq,
π(x) > 0⇒ q(x) > 0 and and define

w̃(x) =
π̃(x)

q̃(x)
.

An alternative identity is

I = Eπ(ϕ(X )) =

∫
X
ϕ (x) w̃ (x) q(x)dx∫
X
w̃(x)q(x)dx

.
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SLLN for NIS

Proposition (SLLN for NIS)

Let X1, ...,Xn
i.i.d.∼ q and assume that Eq(|ϕ(X )|w (X )) <∞.

Then

ÎNIS
n =

∑n
i=1 ϕ(Xi )w̃(Xi )∑n

i=1 w̃(Xi )

is strongly consistent.

Proof.
Divide numerator and denominator by n. Both converge almost
surely by the strong law of large numbers.

BUT, for finite n ÎNIS
n is biased, see notes Chapter 3.
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CLT for NIS

Proposition
If Vq(ϕ(X )w(X )) <∞ and Vq(w(X )) <∞ then

√
n(Î NIS

n − I )⇒ N (0, σ2
NIS),

where

σ2
NIS := Vq

([
ϕ(X )w(X ))− Iw(X )

])
=

∫
π(x)2 (ϕ(x)− I )2

q(x)
dx .
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Proof

Proof.
First notice that with X1, . . . ,Xn i.i.d. ∼ q

√
n(Î NIS

n − I ) =

1√
n

∑n
i=1 w̃(Xi )

[
ϕ(Xi )− I

]
1
n

∑n
i=1 w̃(Xi )

where since w̃(x) = π̃/q̃

Eq

[
w̃(Xn)(ϕ(Xi )− I )

]
= 0.

Since Vq(ϕ(X )w(X )) <∞ by standard CLT

1√
n

n∑
i=1

w̃(Xi )
[
ϕ(Xi )− I

]
⇒ N

(
0,Vq

(
w̃(X1)[ϕ(X1)− I ]

))
.
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Proof ctd...

Proof.
The strong law of large numbers applied to the denominator

1
n

n∑
i=1

w̃(Xi )→ Eq[w̃(X1)] = Zπ/Zq, a.s.

By Slutsky’s theorem, combining the two

√
n(Î NIS

n − I )⇒ N
(
0,Vq

(
w̃(X1)[ϕ(X1)− I ]

)Z 2
q

Z 2
π

)
∼ N

(
0, σ2

NIS

)
.

Alternatively, use Delta method.
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Toy Example: t-distribution

• We want to compute I = Eπ(|X |) where π (x) ∝
(
1 + x2/3

)−2

(t3-distribution).
(a) Directly sample from π.

(b) Use q1 (x) = gt1 (x) ∝
(
1 + x2)−1 (t1-distribution).

(c) Use q2 (x) ∝ exp
(
−x2/2

)
(normal).
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Toy Example: t-distribution

π q1 q2
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Figure: Sample weights obtained for 1000 realisations of Xi , from the
different proposal distributions.
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Toy Example: t-distribution

π q1 q2
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Figure: Estimates În of I obtained after 1 to 1500 samples. The grey
shaded areas correpond to the range of 100 independent replications.
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