Advanced Simulation - Lecture 2

George Deligiannidis
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Outline

Monte Carlo methods rely on random numbers to
approximate integrals.

In this lecture we'll see some statistical problems involving
integrals, and discuss the properties of the basic Monte Carlo
estimator.

We will see some basic methods for sampling from
distributions: inversion, transformation, rejection sampling...
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Monte Carlo Integration
We are interested in computing

I:/xgo(x)Tr(x)dx

where 1 is a pdf on X and ¢ : X = R.
Monte Carlo method:

sample n independent copies X1,..., Xn of X ~m,
~ 1
In = E Z (P(Xz)

Remark: You can think of it as having the following
empirical measure approximation of  (dx)

T (dx) = r11 > 8, (dx)
i=1

where &, (dx) is the Dirac measure at X;.
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Monte Carlo Integration: Limit Theorems

Proposition (LLN)

If E(le(X)]) <co then Tois a strongly consistent estimator
of I.

Proposition (CLT)

If
o2 =V (p (X /[(p ) — 177 (x) dx <o
then , )
(1) -v(0) -
and
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Monte Carlo Integration: Variance Estimation |

Proposition

Assume 0% =V (¢ (X)) <oo then

st = L5 (000 1)’
i=1

is an unbiased sample variance estimator of o?.
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Monte Carlo Integration: Variance Estimation I

Proof.
let Yi = ¢ (X;) then we have

I & o I

& -2
[E(s,%)—n_I [E((Yi—Y)Z):n_I[E(ZY?—nY)
i=1 i=1
2 | | n—I1
E(Y) = nsz[ZY? + ZY,-YJ] = (V) + %)+ 2
i
_\/(Y)+I2
n
L n V(Y) n o n
E(S”)_n—IV(Y) n—1 n +n—ll_n—ll
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Monte Carlo Integration: Error Estimates
Chebyshev's inequality: exact but possibly rough

A v (In
JREAPMCNY

CLT: much tighter but approximate and for large n

e7c2/2

>%2(1 _¢(c)):0( - )

P (Vn—ll >c

o)
V/n

Choosing ¢ = ¢4 s.t. 2(1 —®(cq)) = a, an approximate
(1 —a) 100%-CI for [ is

~ o ~ S,
<’"ﬂwa> ~ (’"ﬂwa>

and the rate is in 1/y/n whatever X.
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Toy Example

Consider the case where we have a square S CR?, sides of
length 2, with inscribed disk D of radius 1.

Use Monte Carlo to compute the area / of D.

/:'IT:// dxdxy
D

://SHD(XI,XQ)dXIdXZ asDcCS
:4//[R2 Ip (x1,x2) (X1, x2) dxdxy
where S :=[-1,1]x[-1,1] and
W(Xllxz)zll,f”s(xlyxz)

is the uniform density on the square S.
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Toy Example
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Figure: T, = 42 where np is the number of samples which fell
within the disk.
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Toy Example
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Figure: Relative error of T, against the number of samples.
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Drawing random numbers

Computing intricate high-dimensional integrals boils down to
generating random variables from complicated distributions.

How does a computer simulate random variables?

Firstly it can produce a random integer uniformly distributed
in {O,...,M— 1} for some large M, often M = 232 giving
32-bit integers.

These are pseudo-random numbers.

Then various techniques are used to produce all others
distributions of interest.
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Pseudo-Random Number Generation

Start off with a "seed" xq.
Given x,, produce

Xny1 = (axp+¢) mod M,

for integers a,c, and M.
Maximum period M.

Hull and Dobell (1962) provide necessary and sufficient
conditions for period M.

Then U, = X,/M behaves similarly to U[0, 1] random
variable, despite not being random at all.
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Figure: Left: 10,000 pseudo random numbers in [O, I];
Right: histogram.

13/ 30



Drawing random numbers

Assumption: we have access to i.i.d. (Uyi> 1) ~Upg .

To simulate from m(x,xy) = %I]S (x1,x2), we draw U, and
U, uniformly and define X| =2U, — 1, X, =2U, — I.
Then the point (X, X3) is distributed uniformly within S.

We will see how to use the above to simulate many
different random variables.
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Galton’s machine to draw normal samples
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Inversion Method

Consider a real-valued random variable X and its associated
cumulative distribution function (cdf)

F(x)=P (X <x)=F(x).

The cdf F:R—=1[0, 1] is
increasing; i.e. if x <y then F(x) < F(y),
right continuous; i.e. F(x+¢) — F(x) as ¢ = 0™,
F(x) -0 as x —» —oco and F(x) — | as x — +o0.

We define the generalised inverse
F~(u) =inf{x € R;F (x) > u}

also known as the quantile function.
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Inversion Method

Figure: Cumulative distribution function F and representation of
the inverse cumulative distribution function.
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Inversion Method

Proposition
Let F be a cdf and U ~Ujg ;. Then X =F~ (U) has cdf F.J

In other words, to sample from a distribution with cdf F, we
can sample U ~ Ujg |} and then return F~(U).

Proof.
Fact: F~ (u) <x<u<F(x).
Thus for U ~Upo, 11, we have

P(F-(U)<x)=PU<F(x)=F(x). O
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Examples

Exponential distribution. If F(x) =1 — e, then
F~(u)=F"(u)=—log (1 —u)/A.

Thus when U ~ Upo, 11,
—log (1 —U)/A~Exp(A), and —log(U)/A~ Exp(Q).
Discrete distribution. Assume X takes values x| <xy <---

with probability py,ps,... so
F(xX)=> pw

X <X

F~(u)=xx for py +---+pr_1 <u<py+-+ pg.
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Transformation Method

Setting:
We can simulate Y ~q, Y €Y.

We want to simulate: X ~ 1, X € X.

Transformation method: find a function ¢ : Y — X such that

Y~g=X=¢()~m.

Inversion is a special case of this idea.
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Transformation Method-Example

Gamma distribution. For a e N, let Y;, i=1,2,---, be i.i.d.
with Y; ~ Exp(1). Then

X::,[B"f:Yiwg(a,B).
i=1

Proof. The moment generating function of X is

f i tY; _ ]
[E(eX> —H[E(eY/,B) = =B

which is the MGF of the Gamma density with param'’s o
and 3

T (x) % X% exp (—Bx)

Beta distribution. See Exercise sheet 1.
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Transformation Method: pushforward @

Let Y, X be two topological spaces equipped with their
Borel o-algebras.

Suppose that f: Y +— X is Borel measurable;

Suppose that g is a Borel probability measure on Y and let
Y ~q.

Write m for the distribution of X =f(Y), a Borel probability
measure on X.

Then m is the push-forward of q under f, written

T = f.p.
It's defined as

7(B) = (f)u(B) =q (f*‘ (B)) . for all B e B(X).
In terms of expectations

/ ho pdg — / hdf. .
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Transformation Method: change of variables
formula

When dq(x) = g(x)dx, and ¢ is a bijection, then 7 also has
a density given by the change of variables formula

m(x) = qgow ' (x)|det(Dp~")(x)|.
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Transformation Method - Box-Muller Algorithm

Gaussian distribution. Let U; ~ U ) and Uy ~ U} be
independent and set

R= —2|og(U|), U= 27TU2
Clearly R,® independent and R? ~ Exp(1/2), ¥ ~ Ujg 27) With
joint density

o
q(r?,9) = ) exp(—r?/2).

Set X = Rcos(9),Y = Rsin(9¥) a bijection.
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Transformation Method - Box-Muller Algorithm

By standard facts:

o(r?,d
fxy(xy) fRz@ (x,y), B(X,y))‘det (( ))’
o(x.y)
= fazolr*(0.y). 00 y)| det 5 ﬁ)]
_ xX24+y? X% +y?
B A B e T
since
et O00Y) | _ <9 _rsino| 1
(f2 ) Smﬁ rcos®| 2

thus (X,Y) are independent standard normal.
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Transformation Method - Multivariate Normal

Let Z = (Z4,..., Zq) " N(O, 1).
Let L be a real invertible d x d matrix satisfying L LT =¥,
and X =LZ+u. Then X ~N (4, X).

We have indeed g(z) = (27‘[)_‘://2 exp <—%sz> and
T (x) = q(2) |det 0z/0x|

where 0z/0x = L~" and det (L7!) = det (£)~'/2. Additionally,

Tz=(x-w' (L_1>TL_' (x — )

:(x—y)TZ_I (X—[J),

In practice, use a Cholesky factorization ¥ =L LT where L
is a lower triangular matrix.
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Sampling via Composition

Assume we have a joint pdf 7T with marginal m; i.e.

m(x) = [ (xy)dy
where T (x,y) can always be decomposed as
Txy (xy) =Ty (y)T xy (x|y) .

[t might be easy to sample from 7T (x,y) whereas it is
difficult/impossible to compute 7 (x).

In this case, it is sufficient to sample
YNﬁY then X|YNﬁX|Y(‘Y)

so (X,Y)~Txy and hence X ~ .
Latent variable models; HMMs;
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Finite Mixture of Distributions

Assume one wants to sample from
P
T(x) = Zai.m (x)
i=1

where a; >0, 37 ,a;=1 and m;(x) >0, [m;(x)dx= 1.

We can introduce Y € {Il,...,p} and

Txy(xy) =0y, xmy(x).

To sample from 1 (x), first sample Y from a discrete
distribution such that P (Y = k) = o, then

X|(Y:y)~'rry.
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Rejection Sampling
Basic idea: Sample from instrumental proposal g # ;
correct through rejection step to obtain a sample from .

Algorithm (Rejection Sampling). Given two densities 1, g
with 7 (x) <M g(x) for all x, we can generate a sample

from m by
I. Draw X ~gq, draw U ~Ug ).
2. Accept X =x as a sample from  if

U<

otherwise go to step I.

Proposition
The distribution of the samples accepted by rejection
sampling is 1.
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Rejection Sampling

Proof.

P (X € Al X accepted) = P (X € A X accepted)

P (X accepted)

where

P (X € A X accepted)

// la(x)0 <u< ())>q( ) dudx
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