Advanced Simulation - Lecture 14

March 3rd, 2020
Outline

• Sequential Importance Sampling.

• Resampling step.

• Sequential Monte Carlo / Particle Filters.
Hidden Markov Models

\[p_\theta(x_1:T, y_1:T) = \mu_\theta(x_1) \prod_{t=2}^{T} f_\theta(x_t | x_{t-1}) g_\theta(y_t | x_t). \]
Sequential Importance Sampling: algorithm

• **At time** $t = 1$
 - Sample $X_1^i \sim q_1(\cdot)$.
 - Compute the weights
 \[
 w_1^i = \frac{\mu(X_1^i)g(y_1 \mid X_1^i)}{q_1(X_1^i)}.
 \]

• **At time** $t \geq 2$
 - Sample $X_t^i \sim q_{t|t-1}(\cdot \mid X_{t-1}^i)$.
 - Compute the weights
 \[
 w_t^i = w_{t-1}^i \times \omega_t^i = w_{t-1}^i \times \frac{f \left(X_t^i \mid X_{t-1}^i \right) g(y_t \mid X_t^i)}{q_{t|t-1}(X_t^i \mid X_{t-1}^i)}.
 \]
Sequential Importance Sampling: prior proposal

- Default choice of proposal:

\[
q_1(x_1) = \mu(x_1), \\
q_{t|t-1}(x_t \mid x_{t-1}) = f(x_t \mid x_{t-1}).
\]

- Then the incremental weight takes the form

\[
\omega(x_{t-1}, x_t) = g(y_t \mid x_t).
\]

- This proposal blindly propagates \(x_{t-1} \) to \(x_t \) without taking \(y_t \) into account.

- We can implement SIS as soon as we can sample from the hidden process \((X_t)_{t \geq 1} \) and evaluate \(g(y \mid x) \) pointwise.
Sequential Importance Sampling: optimal proposals

- Proposal \(q_{t|t-1}(x_t|x_{t-1}) \) that minimizes the variance of \((\omega_t^i)_{i=1}^{N}\).

- Turns out to be

\[
q_{t|t-1}^{\text{opt}}(x_t|x_{t-1}) = p(x_t|x_{t-1}, y_t) = \frac{f(x_t|x_{t-1})g(y_t|x_t)}{p(y_t|x_{t-1})}.
\]

- This uses the observation \(y_t \) to guide the propagation of \(x_t \).

- Associated incremental weight:

\[
\omega_{t}^{\text{opt}}(x_{t-1}, x_t) = p(y_t|x_{t-1}),
\]

does not depend on \(x_t \).
Sequential Importance Sampling: example

Figure: Estimation of filtering means $\mathbb{E}(x_t \mid y_{1:t})$.
Sequential Importance Sampling: example

Figure: Estimation of filtering variances $\nabla (x_t | y_{1:t})$.
Sequential Importance Sampling: example

Figure: Estimation of marginal log likelihoods $\log p(y_{1:t})$.
Sequential Importance Sampling: example

Figure: Effective sample size over time.
Sequential Importance Sampling: example

Figure: Spread of 100 paths drawn from the prior proposal, and KF means in blue. Darker lines indicate higher weights.
Resampling

- Idea: at time t, select particles with high weights, and remove particles with low weights.

- Spend the fixed computational budget “N” on the most promising paths.

- Obtain an equally weighted sample (N^{-1}, \bar{X}^i) from a weighted sample (w^i, X^i).

- Resampling on empirical probability measures: input

$$\pi^N(x) = \left(\sum w^j \right)^{-1} \sum w^i \delta_{X^i}(x)$$

and output

$$\bar{\pi}^N(x) = N^{-1} \sum \delta_{\bar{X}^i}(x).$$
Multinomial resampling

- How to draw from an empirical probability distribution?

\[
\pi^N(x) = \frac{1}{\sum_{j=1}^N w^j} \sum_{i=1}^N w^i \delta_{X^i}(x)
\]

- Remember how to draw from a mixture model?

\[
\sum_{i=1}^K \omega^i \ p^i(x)
\]

- Draw \(k \) with probabilities \(\omega^1, \ldots, \omega^N \), then draw from \(p^k \).
Multinomial resampling

- Draw an “ancestry vector”
 \[A^{1:N} = (A^1, \ldots, A^N) \in \{1, \ldots, N\}^N \] independently from a categorical distribution

 \[A^{1:N} \overset{i.i.d.}\sim \text{Cat} \left(w^1, \ldots, w^N \right) , \]

 in other words

 \[
 \forall i \in \{1, \ldots, N\} \quad \forall k \in \{1, \ldots, N\} \quad P[A^i = k] = \frac{w^k}{\sum_{j=1}^{N} w^j} .
 \]

- Define \(\bar{X}^i \) to be \(X^{A^i} \) for all \(i \in \{1, \ldots, N\} \). \(X^{A^i} \) is said to be the “parent” or “ancestor” of \(\bar{X}^i \).

- Return \(\bar{X} = (\bar{X}^1, \ldots, \bar{X}^N) \).
Multinomial resampling

- Draw an “offspring vector”
 \[O^{1:N} = (O^{1}, \ldots, O^{N}) \in \{0, \ldots, N\}^{N} \]
 from a multinomial distribution

 \[O^{1:N}_{t} \sim \text{Multinomial} \left(N; w^{1}, \ldots, w^{N} \right) \]

 so that

 \[\forall i \in \{1, \ldots, N\} \quad \mathbb{E}[O^{i}] = N \frac{w^{i}}{\sum_{j=1}^{N} w^{j}} \quad \text{and} \quad \sum_{i=1}^{N} O^{i} = N. \]

- Each particle \(X^{i} \) is replicated \(O^{i} \) times (possibly zero times) to create the sample \(\bar{X} \):
 - \(\bar{X} \leftarrow \{\} \)
 - For \(i = 1, \ldots, N \), for \(k = 0, \ldots, O^{i}_{t} \), \(\bar{X} \leftarrow \{\bar{X}, X^{i}\} \)
- Return \(\bar{X} = (\bar{X}^{1}, \ldots, \bar{X}^{N}) \).
Multinomial resampling

- Other strategies are possible to perform resampling.
- Some properties are desirable:

\[
\mathbb{E}[O^i] = N \frac{w^i}{\sum_{j=1}^{N} w^j},
\]

or \(\mathbb{P}[A^i = k] = \frac{w^k}{\sum_{j=1}^{N} w^j} \).

- This is sometimes called “unbiasedness”, because then

\[
\frac{1}{N} \sum_{k=1}^{N} \varphi(\bar{X}^k) = \frac{1}{N} \sum_{k=1}^{N} O^k \varphi(X^k)
\]

has expectation

\[
\sum_{k=1}^{N} \frac{w^k}{\sum_{j=1}^{N} w^j} \varphi(X^k).
\]
Sequential Monte Carlo: algorithm

- At time $t = 1$
 - Sample $X^i_1 \sim q_1(\cdot)$.
 - Compute the weights
 \[
 w^i_1 = \frac{\mu(X^i_1)g(y_1 | X^i_1)}{q_1(X^i_1)}.
 \]

- At time $t \geq 2$
 - Resample $\left(w^i_{t-1}, X^i_{1:t-1} \right) \rightarrow \left(N^{-1}, \bar{X}^i_{1:t-1} \right)$.
 - Sample $X^i_t \sim q_{t|t-1}(\cdot | \bar{X}^i_{t-1})$, $X^i_{1:t} := \left(\bar{X}^i_{1:t-1}, X^i_t \right)$
 - Compute the weights
 \[
 w^i_t = \omega^i_t = \frac{f \left(X^i_t \mid X^i_{t-1} \right) g(y_t \mid X^i_t)}{q_{t|t-1}(X^i_t \mid X^i_{t-1})}.
 \]
Sequential Monte Carlo: example

Figure: Estimation of filtering means $\mathbb{E}(x_t | y_{1:t})$.
Sequential Monte Carlo: example

Figure: Estimation of filtering variances $\mathbb{V}(x_t | y_{1:t})$.
Sequential Monte Carlo: example

Figure: Estimation of marginal log likelihoods $\log p(y_{1:t})$.
Sequential Monte Carlo: example

![Effective sample size over time.](#)

Figure: Effective sample size over time.
Sequential Monte Carlo: example

Figure: Support of the approximation of $p(x_t | y_{1:t})$, over time.
Sequential Importance Sampling: algorithm

- At time \(t = 1 \)
 - Sample \(X^i_1 \sim q_1(\cdot) \).
 - Compute the weights
 \[
 w^i_1 = \frac{\mu(X^i_1)g(y_1 | X^i_1)}{q_1(X^i_1)}.
 \]

- At time \(t \geq 2 \)
 - Sample \(X^i_t \sim q_{t|t-1}(\cdot | X^i_{t-1}) \), \(X^i_{1:t} := (X^i_{1:t-1}, X^i_t) \).
 - Compute the weights
 \[
 w^i_t = w^i_{t-1} \times \omega^i_t
 = w^i_{t-1} \times \frac{f(X^i_t | X^i_{t-1}) g(y_t | X^i_t)}{q_{t|t-1}(X^i_t | X^i_{t-1})}.
 \]
Sequential Monte Carlo: algorithm

- **At time** $t = 1$
 - Sample $X_1^i \sim q_1(\cdot)$.
 - Compute the weights
 \[
 w_1^i = \frac{\mu(X_1^i)g(y_1 \mid X_1^i)}{q_1(X_1^i)}.
 \]

- **At time** $t \geq 2$
 - Resample $(w_{t-1}^i, X_{1:t-1}^i) \rightarrow (N^{-1}, \overline{X}_{1:t-1}^i)$.
 - Sample $X_t^i \sim q_{t|t-1}(\cdot \mid \overline{X}_{t-1}^i)$, $X_{1:t}^i := (\overline{X}_{1:t-1}^i, X_t^i)$.
 - Compute the weights
 \[
 w_t^i = \omega_t^i = \frac{f(X_t^i \mid X_{t-1}^i)g(y_t \mid X_t^i)}{q_{t|t-1}(X_t^i \mid X_{t-1}^i)}.
 \]
Path degeneracy: example

Figure: Support of the approximation $(\tilde{X}_t^i)_{i=1}^N$ of $p(x_t | y_{1:t})$, over time. The blue curve shows the expectation $\mathbb{E}(x_t | y_{1:t})$ at all times t.
Path degeneracy: example

Figure: Trajectories $\bar{X}_{1:t}^i$, at time $t = 10$.
Path degeneracy: example

Figure: Trajectories $\bar{X}_{i..t}$, at time $t = 20$.
Path degeneracy: example

Figure: Trajectories $\bar{X}_{1:t}^i$, at time $t = 30$.
Path degeneracy: example

Figure: Trajectories \bar{X}_1^i, t, at time $t = 40$.
Path degeneracy: example

Figure: Trajectories $\bar{X}_{i,t}$, at time $t = 50$.
Path degeneracy: example

Figure: Trajectories \bar{X}_i^t, at time $t = 60$.
Path degeneracy: example

Figure: Trajectories $\bar{X}^i_{1:t}$, at time $t = 70$.
Path degeneracy: example

Figure: Trajectories $\bar{X}_i^{\cdot t}$, at time $t = 80$.
Path degeneracy: example

Figure: Trajectories $\bar{X}^i_{1:t}$, at time $t = 90$.
Path degeneracy: example

Figure: Trajectories $\bar{X}_{1:t}^i$, at time $t = 100$.
Path degeneracy: output

- Particle approximation of filtering $p(x_t \mid y_{1:t}, \theta)$:

$$\frac{1}{\sum_{j=1}^{N} w_t^j} \sum_{i=1}^{N} w_t^i \delta x_t^i (dx_t),$$

or, after resampling,

$$\frac{1}{N} \sum_{i=1}^{N} \delta \bar{x}_t^i (dx_t).$$

- Particle approximation of path filtering $p(x_{1:t} \mid y_{1:t}, \theta)$:

$$\frac{1}{\sum_{j=1}^{N} w_t^j} \sum_{i=1}^{N} w_t^i \delta x_{1:t}^i (dx_{1:t}),$$

or, similarly, the one after resampling.
Path degeneracy

- Particle filters approximate well $p(x_t \mid y_{1:t})$ but not $p(x_s \mid y_{1:t})$ for $s < < t$.

- Specific particle methods have been developed for this task: fixed lag smoother, forward filtering backward smoothing, etc.

- The simplest is the fixed lag smoother: $p(x_s \mid y_{1:t})$ is approximated by the particle approximation of $p(x_s \mid y_{1:(s+\Delta)\land t})$ for a small integer Δ.

- Fixed-lag smoothing introduces a bias but reduces the variance.
Complexity

- Propagating and weighting the particles is $\mathcal{O}(N)$.
- Each particle can be propagated and weighted in parallel.
- Multinomial resampling is $\mathcal{O}(N)$ if the uniforms are generated in sorted order.
- Resampling cannot be completely parallel, since it creates correlation between the particles.
- The memory cost is $\mathcal{O}(N)$ if only the latest particles are stored.
- The memory cost is at most $\mathcal{O}(Nt)$ if the paths are stored; efficient implementations reduce this to $\mathcal{O}(t + N \log N)$.
Likelihood estimation

- At time 1,

\[p^N(y_1) = \frac{1}{N} \sum_{i=1}^{N} w^i \]

\[\xrightarrow{\text{a.s.}} N \to \infty \int \frac{\mu(x_1)g(y_1 | x_1)}{q_1(x_1)} q_1(x_1) \, dx_1 = p(y_1). \]

- At time \(t \),

\[p^N(y_t | y_{1:t-1}) = \frac{1}{N} \sum_{i=1}^{N} w^i \]

\[\xrightarrow{\text{a.s.}} N \to \infty \int w(x_{t-1}, x_t) q_{t|t-1}(x_t | x_{t-1}) p(x_{t-1} | y_{1:t-1}) \, dx_{t-1:t} = p(y_t | y_{1:t-1}). \]

where \(w(x_{t-1}, x_t) = \frac{f(x_t | x_{t-1})g(y_t | x_t)}{q_{t|t-1}(x_t | x_{t-1})} \).
Likelihood estimation

- This leads to the estimator

\[
p^N(y_{1:t}) = p^N(y_1) \prod_{s=2}^{t} p^N(y_s | y_{1:s-1})
\]

\[
= \prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w_s^i \xrightarrow{N \to \infty} p(y_{1:t}).
\]

- Surprisingly (?), this estimator is unbiased:

\[
\mathbb{E} \left[p^N(y_{1:t}) \right] = p(y_{1:t}),
\]

whereas for any \(t \geq 2 \),

\[
\mathbb{E} \left[p^N(y_t | y_{1:t-1}) \right] \neq p(y_t | y_{1:t-1}).
\]

- Typical particle estimates have a bias of order \(O(1/N) \); the likelihood estimator \(p^N(y_{1:t}) \) is an exception.
Likelihood estimation: example

- Model equations:

\[
\begin{align*}
\forall t \geq 1 \quad X_t &= \varphi X_{t-1} + \sigma_V V_t, \\
\forall t \geq 1 \quad Y_t &= X_t + \sigma_W W_t,
\end{align*}
\]

with \(X_0 \sim \mathcal{N}\left(0, \sigma_V^2\right) \), \(V_t, W_t \) i.i.d. \(\sim \mathcal{N}(0, 1) \), \(\sigma_V = 1 \), \(\sigma_W = 1 \).

- Synthetic data is generated using \(\varphi^* = 0.95 \), and we estimate the likelihood for a range of values of \(\varphi \).
Likelihood estimation: example

Figure: Log-likelihood estimates $\log p^N(y_{1:t} | \varphi)$ as a function of φ. 12 independent replicates for each value of φ.
Selected theoretical results

- Particle filters have been theoretically studied in the past 20 years.

- Consistency as $N \to \infty$ is simple to prove, as each step (propagation, weighting, resampling) is itself consistent.

- Convergence results include Central Limit Theorems and non-asymptotic results.

- They provide guidelines to select the number of particles as a function of T, the size of the data, and other algorithmic parameters.
Selected theoretical results

Consider \(I(\varphi_t) = \int \varphi_t(x_{1:t})p(x_{1:t} \mid y_{1:t})dx_{1:t} \).

- \(L_p \)-bound on the path space:

\[
\mathbb{E} \left[\left| I^N(\varphi_t) - I(\varphi_t) \right|^p \right]^{1/p} \leq \frac{B(t)c(p)\|\varphi_t\|_{\infty}}{\sqrt{N}},
\]

- Central limit theorem on the path space.

\[
\sqrt{N} \left(I^N(\varphi_t) - I(\varphi_t) \right) \xrightarrow{D} \mathcal{N} \left(0, \sigma^2_t \right),
\]

- As expected, \(B(t) \) and \(\sigma^2_t \) typically grow exponentially fast with \(t \). This is the path degeneracy problem.
Selected theoretical results

Consider instead \(I(\varphi_t) = \int \varphi_t(x_t)p(x_t \mid y_{1:t})dx_t \).

- \(L_p \)-bound:
 \[
 \mathbb{E} \left[\left| I^N(\varphi_t) - I(\varphi_t) \right|^p \right]^{1/p} \leq \frac{B_1 c(p) \|\varphi_t\|_\infty}{\sqrt{N}} \\
 \sqrt{N} \left(I^N(\varphi_t) - I(\varphi_t) \right) \xrightarrow{\mathcal{D}} \mathcal{N} \left(0, \sigma_t^2 \right),
 \]

- For the filtering estimates, the error is independent of the time \(t \): \(\sigma_t^2 < \sigma_{\text{max}}^2 \) for all \(t \), and \(B_1 \) independent of \(t \).

- i.e. particle filters are online.
Selected theoretical results

Consider the estimator of the marginal likelihood

\[p^N(y_{1:t}) = \prod_{s=1}^{t} \frac{1}{N} \sum_{i=1}^{N} w^{i}_s. \]

- Unbiasedness

\[\mathbb{E} \left[p^N(y_{1:t}) \right] = p(y_{1:t}). \]

- Non-asymptotic relative variance

\[\mathbb{E} \left(\left(\frac{p^N(y_{1:t})}{p(y_{1:t})} - 1 \right)^2 \right) \leq \frac{B_3 t}{N}. \]

- Choose \(N = \mathcal{O}(t) \) to control the relative variance.
Next

- Particle Markov chain Monte Carlo (PMCMC) methods, for estimating Θ, using these likelihood estimates.