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Irreducibility and Recurrence

Proposition

Assume π satisfies the positivity condition, then the Gibbs sampler
yields a π−irreducible and recurrent Markov chain.

Proof.
Recurrence. Will follow from irreducibility and the fact that π
is invariant. Irreducibility. Let X ⊂ Rd, such that π(X) = 1.
Write K for the kernel and let A ⊂ X such that π(A) > 0. Then
for any x ∈ X

K(x, A) =
∫

A
K(x, y)dy

=
∫

A
πX1|−1

(y1 | x2, . . . , xd)× · · ·

× πXd|X−d
(yd | y1, . . . , yd−1)dy.
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Proof.
Thus if for some x ∈ X and A with π(A) > 0 we have
K(x, A) = 0, we must have that

πX1|X−1(y1 | x2, . . . , xd)× · · · × πXd|X−d
(yd | y1, . . . , yd−1) = 0,

for π-almost all y = (y1, . . . , yd) ∈ A.

Therefore we must also have that

π (y1, x2, ..., yd) ∝
d

∏
j=1

π Xj|X−j

(
yj
∣∣ y1:j−1, xj+1:d

)
π Xj|X−j

(
xj
∣∣ y1:j−1, xj+1:d

) = 0,

for almost all y = (y1, . . . , yd) ∈ A and thus π(A) = 0 obtaining
a contradiction.
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LLN for Gibbs Sampler

Theorem
Assume the positivity condition is satisfied then we have for any
integrable function ϕ : X→ R:

lim
1
t

t

∑
i=1

ϕ
(

X(i)
)
=
∫

X
ϕ (x)π (x) dx

for π−almost all starting value X(1).
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Example: Bivariate Normal Distribution

Let X := (X1, X2) ∼ N (µ, Σ) where µ = (µ1, µ2) and

Σ =

(
σ2

1 ρ
ρ σ2

2

)
.

The Gibbs sampler proceeds as follows in this case

1 Sample X(t)
1 ∼ N

(
µ1 + ρ/σ2

2

(
X(t−1)

2 − µ2

)
, σ2

1 − ρ2/σ2
2

)
2 Sample X(t)

2 ∼ N
(

µ2 + ρ/σ2
1

(
X(t)

1 − µ1

)
, σ2

2 − ρ2/σ2
1

)
.

By proceeding this way, we generate a Markov chain X(t)

whose successive samples are correlated. If successive values
of X(t) are strongly correlated, then we say that the Markov
chain mixes slowly.
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Bivariate Normal Distribution
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Figure: Case where ρ = 0.1, first 100 steps.
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Bivariate Normal Distribution
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Figure: Case where ρ = 0.99, first 100 steps.
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Bivariate Normal Distribution

0.0

0.1

0.2

0.3

0.4

−2 0 2
X

de
ns

ity

(a) Figure A

0.0

0.2

0.4

0.6

−2 0 2
X

de
ns

ity

(b) Figure B

Figure: Histogram of the first component of the chain after 1000
iterations. Small ρ on the left, large ρ on the right.
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Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after 10000
iterations. Small ρ on the left, large ρ on the right.

Lecture 6 Gibbs Sampling Asymptotics 9 / 1



Bivariate Normal Distribution
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Figure: Histogram of the first component of the chain after 100000
iterations. Small ρ on the left, large ρ on the right.
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Gibbs Sampling and Auxiliary Variables

Gibbs sampling requires sampling from π Xj|X−j
.

In many scenarios, we can include a set of auxiliary variables
Z1, ..., Zp and have an “extended” distribution of joint density
π
(

x1, ..., xd, z1, ..., zp
)

such that∫
π
(
x1, ..., xd, z1, ..., zp

)
dz1...dzd = π (x1, ..., xd) .

which is such that its full conditionals are easy to sample.
Mixture models, Capture-recapture models, Tobit models,
Probit models etc.
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Mixtures of Normals

-2 -1 0 1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

t

de
ns
it
y

mixture
population 1
population 2
population 3

Independent data y1, ..., yn

Yi| θ ∼
K

∑
k=1

pkN
(
µk, σ2

k
)

where θ =
(

p1, ..., pK, µ1, ..., µK, σ2
1 , ..., σ2

K
)
.
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Bayesian Model

Likelihood function

p (y1, ..., yn| θ) =
n

∏
i=1

p (yi| θ) =
n

∏
i=1

 K

∑
k=1

pk√
2πσ2

k

exp

(
− (yi − µk)

2σ2
k

2
) .

Let’s fix K = 2, σ2
k = 1 and pk = 1/K for all k.

Prior model

p (θ) =
K

∏
k=1

p (µk)

where
µk ∼ N (αk, βk) .

Let us fix αk = 0, βk = 1 for all k.
Not obvious how to sample p(µ1 | µ2, y1, . . . , yn).
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Auxiliary Variables for Mixture Models

Associate to each Yi an auxiliary variable Zi ∈ {1, ..., K} such
that

P (Zi = k| θ) = pk and Yi| Zi = k, θ ∼ N
(
µk, σ2

k
)

so that

p (yi| θ) =
K

∑
k=1

P (Zi = k)N
(
yi; µk, σ2

k
)

The extended posterior is given by

p ( θ, z1, ..., zn| y1, ..., yn) ∝ p (θ)
n

∏
i=1

P ( zi| θ) p (yi| zi, θ) .

Gibbs samples alternately

P( z1:n| y1:n, µ1:K)

p (µ1:K| y1:n, z1:n) .
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Gibbs Sampling for Mixture Model

We have

P ( z1:n| y1:n, θ) =
n

∏
i=1

P ( zi| yi, θ)

where

P ( zi| yi, θ) =
P ( zi| θ) p (yi| zi, θ)

∑K
k=1 P ( zi = k| θ) p (yi| zi = k, θ)

Let nk = ∑n
i=1 1{k} (zi) , nkyk = ∑n

i=1 yi1{k} (zi) then

µk| z1:n, y1:n ∼ N
(

nkyk
1 + nk

,
1

1 + nk

)
.
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Mixtures of Normals
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Figure: 200 points sampled from 1
2N (−2, 1) + 1

2N (2, 1).
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Mixtures of Normals
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Figure: Histogram of the parameters obtained by 10, 000 iterations of
Gibbs sampling.
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Mixtures of Normals
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Figure: Traceplot of the parameters obtained by 10, 000 iterations of
Gibbs sampling.
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Gibbs sampling in practice

Many posterior distributions can be automatically
decomposed into conditional distributions by computer
programs.

This is the idea behind BUGS (Bayesian inference Using Gibbs
Sampling), JAGS (Just another Gibbs Sampler).

Lecture 6 Gibbs Sampling Asymptotics 19 / 1



Outline

Given a target π (x) = π (x1, x2, ..., xd), Gibbs sampling
works by sampling from π Xj|X−j

(
xj
∣∣ x−j

)
for j = 1, ..., d.

Sampling exactly from one of these full conditionals might be
a hard problem itself.

Even if it is possible, the Gibbs sampler might converge
slowly if components are highly correlated.

If the components are not highly correlated then Gibbs
sampling performs well, even when d→ ∞, e.g. with an
error increasing “only” polynomially with d.

Metropolis–Hastings algorithm (1953, 1970) is a more general
algorithm that can bypass these problems.
Additionally Gibbs can be recovered as a special case.
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Metropolis–Hastings algorithm

Target distribution on X = Rd of density π (x).
Proposal distribution: for any x, x′ ∈ X, we have q ( x′| x) ≥ 0
and

∫
X

q ( x′| x) dx′ = 1.

Starting with X(1), for t = 2, 3, ...

1 Sample X? ∼ q
(
·|X(t−1)

)
.

2 Compute

α
(

X?|X(t−1)
)
= min

1,
π (X?) q

(
X(t−1)

∣∣∣X?
)

π
(
X(t−1)

)
q
(

X?|X(t−1)
)
 .

3 Sample U ∼ U[0,1]. If U ≤ α
(

X?|X(t−1)
)

, set X(t) = X?,
otherwise set X(t) = X(t−1).
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

●

●●

−2

0

2

−2 0 2
x

y

Figure: Metropolis–Hastings on a bivariate Gaussian target.

Lecture 6 Metropolis–Hastings 22 / 1



Metropolis–Hastings algorithm

Metropolis–Hastings only requires point-wise evaluations of
π (x) up to a normalizing constant; indeed if π̃ (x) ∝ π (x)
then

π (x?) q
(

x(t−1)
∣∣∣ x?
)

π
(

x(t−1)
)

q
(

x?| x(t−1)
) =

π̃ (x?) q
(

x(t−1)
∣∣∣ x?
)

π̃
(
x(t−1)

)
q
(

x?| x(t−1)
) .

At each iteration t, a candidate is proposed. The probability
of a candidate being accepted is given by

a
(

x(t−1)
)
=
∫

X
α
(

x| x(t−1)
)

q
(

x| x(t−1)
)

dx

in which case X(t) = X, otherwise X(t) = X(t−1).

This algorithm clearly defines a Markov chain
(

X(t)
)

t≥1
.
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Transition Kernel and Reversibility

Lemma
The kernel of the Metropolis–Hastings algorithm is given by

K(y | x) ≡ K(x, y) = α(y | x)q(y | x) + (1− a(x))δx(y).

Proof.
We have

K(x, y)

=
∫

q(x? | x){α(x? | x)δx?(y) + (1− α(x? | x))δx(y)}dx?

= q(y | x)α(y | x) +
{∫

q(x? | x)(1− α(x? | x))dx?
}

δx(y)

= q(y | x)α(y | x) +
{

1−
∫

q(x? | x)α(x? | x)dx?
}

δx(y)

= q(y | x)α(y | x) + {1− a(x)} δx(y).
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Reversibility

Proposition

The Metropolis–Hastings kernel K is π−reversible and thus admit π
as invariant distribution.

Proof.
For any x, y ∈ X, with x 6= y

π(x)K(x, y) = π(x)q(y | x)α(y | x)

= π(x)q(y | x)
(

1∧ π(y)q(x | y)
π(x)q(y | x)

)
=
(

π(x)q(y | x) ∧ π(y)q(x | y)
)

= π(y)q(x | y)
(

π(x)q(y | x)
π(y)q(x | y)

∧ 1
)
= π(y)K(y, x).

If x = y, then obviously π(x)K(x, y) = π(y)K(y, x).
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Reducibility and periodicity of Metropolis–Hastings

Consider the target distribution

π (x) =
(
U[0,1] (x) + U[2,3] (x)

)
/2

and the proposal distribution

q ( x?| x) = U(x−δ,x+δ) (x?) .

The MH chain is reducible if δ ≤ 1: the chain stays either in
[0, 1] or [2, 3].

Note that the MH chain is aperiodic if it always has a
non-zero chance of staying where it is.
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Some results

Proposition

If q ( x?| x) > 0 for any x, x? ∈ supp(π) then the
Metropolis-Hastings chain is irreducible, in fact every state can be
reached in a single step (strongly irreducible).

Less strict conditions in (Roberts & Rosenthal, 2004).

Proposition

If the MH chain is irreducible then it is also Harris recurrent(see
Tierney, 1994).
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LLN for MH

Theorem
If the Markov chain generated by the Metropolis–Hastings sampler is
π−irreducible, then we have for any integrable function ϕ : X→ R:

lim
t→∞

1
t

t

∑
i=1

ϕ
(

X(i)
)
=
∫

X
ϕ (x)π (x) dx

for every starting value X(1).
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Random Walk Metropolis–Hastings

In the Metropolis–Hastings, pick q(x? | x) = g(x? − x) with g
being a symmetric distribution, thus

X? = X + ε, ε ∼ g;

e.g. g is a zero-mean multivariate normal or t-student.
Acceptance probability becomes

α(x? | x) = min
(

1,
π(x?)
π(x)

)
.

We accept...

a move to a more probable state with probability 1;
a move to a less probable state with probability

π(x?)/π(x) < 1.

Lecture 6 Metropolis–Hastings Properties 29 / 1



Independent Metropolis–Hastings

Independent proposal: a proposal distribution q(x? | x)
which does not depend on x.

Acceptance probability becomes

α(x? | x) = min
(

1,
π(x?)q(x)
π(x)q(x?)

)
.

For instance, multivariate normal or t-student
distribution.

If π(x)/q(x) < M for all x and some M < ∞, then the chain
is uniformly ergodic.
The acceptance probability at stationarity is at least 1/M
(Lemma 7.9 of Robert & Casella).
On the other hand, if such an M does not exist, the chain is
not even geometrically ergodic!
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Choosing a good proposal distribution

Goal: design a Markov chain with small correlation
ρ
(

X(t−1), X(t)
)

between subsequent values (why?).

Two sources of correlation:
between the current state X(t−1) and proposed value
X ∼ q

(
·|X(t−1)

)
,

correlation induced if X(t) = X(t−1), if proposal is
rejected.

Trade-off: there is a compromise between
proposing large moves,
obtaining a decent acceptance probability.

For multivariate distributions: covariance of proposal should
reflect the covariance structure of the target.
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Choice of proposal

Target distribution, we want to sample from

π (x) = N
(

x;
(

0
0

)
,
(

1 0.5
0.5 1

))
.

We use a random walk Metropolis—Hastings algorithm with

g (ε) = N
(

ε; 0, σ2
(

1 0
0 1

))
.

What is the optimal choice of σ2?
We consider three choices: σ2 = 0.12, 1, 102.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 0.12, the acceptance rate is ≈ 94%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 0.12, the acceptance rate is ≈ 94%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 1, the acceptance rate is ≈ 52%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 1, the acceptance rate is ≈ 52%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 10, the acceptance rate is ≈ 1.5%.
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Metropolis–Hastings algorithm
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Figure: Metropolis–Hastings on a bivariate Gaussian target. With
σ2 = 10, the acceptance rate is ≈ 1.5%.
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Choice of proposal

Aim at some intermediate acceptance ratio: 20%? 40%? Some
hints come from the literature on “optimal scaling”.
Literature suggest tuning to get .234...

Maximize the expected square jumping distance:

E
[
||Xt+1 − Xt||2

]
In multivariate cases, try to mimick the covariance structure
of the target distribution.

Cooking recipe: run the algorithm for T iterations, check some
criterion, tune the proposal distribution accordingly, run the
algorithm for T iterations again . . .
“Constructing a chain that mixes well is somewhat of an art.”
All of Statistics, L. Wasserman.
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The adaptive MCMC approach

One can make the transition kernel K adaptive, i.e. use Kt at
iteration t and choose Kt using the past sample
(X1, . . . , Xt−1).

The Markov chain is not homogeneous anymore: the
mathematical study of the algorithm is much more
complicated.

Adaptation can be counterproductive in some cases (see
Atchadé & Rosenthal, 2005)!

Adaptive Gibbs samplers also exist.
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