
Advanced Simulation

Problem Sheet 3, with answers

Exercise 1

Consider the following X-valued Markov chain (Xt)t≥1. It evolves over time as follows. At time t, with
probability α (Xt−1) sample

Xt ∼ q (·)

where q (x) is a probability density function and otherwise set Xt := Xt−1. Hence its transition kernel
is given by

K (x, y) = α (x) q (y) + (1− α (x)) δx (y)

where δx (y) is the Dirac mass located at x.

1. Show that if ∫
X

q (x)

α (x)
dx <∞

then K admits a stationary distribution of density

π (x) ∝ q (x)

α (x)
.

Answer. The condition states that the acceptance α(x) has to be large enough in the tails
of q. We have ∫

X
π (x)K (x, y) dx =

∫
X
π (x)α (x) dx q (y) + (1− α (y))π (y)

∝
∫
X

q (x)

α (x)
α (x) dx q (y) + (1− α (y))

q (y)

α (y)

∝ q (y) + (1− α (y))
q (y)

α (y)
∝ π (y)

Alternatively, we can check that K (x, y) is π−reversible as for x 6= y

π(x)K(x, y) =
q (x)

α (x)
α (x) q (y) = q (x) q (y) =

q (y)

α (y)
α (y) q (x) = π(y)K(y, x).

so it is π-invariant.

2. Assume that 0 ≤ α (x) = α < 1 then it can be easily shown that a central limit theorem holds
for 1

t

∑t
i=1Xi as long as σ2 := Vq [X1] < ∞. Compute the asymptotic variance σ2

X = V [X1] +
2
∑∞
k=2 Cov [X1, Xk] in the stationary regime as a function of α and σ2.

(Hint. First prove that the marginal distribution of Xk is q for all k, then find a recursion formula
for Cov(X1, Xk).)
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Answer. In this case, we have π (x) = q (x). We have V [X1] = σ2 and

Cov [X1, Xk] = E [X1Xk]− E [X1]E [Xk]

= E [E [X1Xk|X1, Xk−1]]− E2 [X1]

= (1− α)E [X1Xk−1] + αE2 [X1]− E2 [X1]

= (1− α)Cov [X1, Xk−1] = (1− α)
k−1

σ2.

Hence we have

σ2
X = σ2

(
1 + 2

∞∑
k=1

(1− α)
k

)
= σ2 2− α

α

which, as expected, goes to ∞ as α→ 0.

Exercise 2

Suppose that we wish to use the Gibbs sampler on

π (x, y) ∝ exp

(
−1

2
(x− 1)

2
(y − 2)

2

)
.

1. Write down the two “full” conditional distributions associated to π (x, y) .

Answer. We have

π (y|x) ∝
exp

(
− 1

2 (x− 1)
2

(y − 2)
2
)

∫
exp

(
− 1

2 (x− 1)
2

(y − 2)
2
)
dy

∝ exp

(
− 1

2(x− 1)−2
(y − 2)

2

)
= N

(
y; 2, (x− 1)

−2
)

and similarly

π (x| y) = N
(
x; 1, (y − 2)

−2
)
.

2. Does the resulting Gibbs sampler make any sense?

Answer. No it does not because∫ [∫
π (x, y) dx

]
dy =

∫ √
2π (y − 2)

−2
dy =∞.

Hence the density π (x, y) does not correspond to a probability distribution. Note that the
algorithm is still easily implementable (which is scary).

Exercise 3: (Optional)

For i = 1, . . . , T consider Zi = Xi + Yi with independent Xi, Yi such that

Xi ∼ Binomial (mi, θ1) , Yi ∼ Binomial (ni, θ2) .
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1. We assume 0 ≤ zi ≤ mi + ni for i = 1, . . . , T . We observe zi for i = 1, . . . , T and the ni,mi, for
i = 1, . . . , T are given. Give the expression of the likelihood function p (z1, . . . , zT | θ1, θ2).

Answer. We have

p (z1, . . . , zT | θ1, θ2) =

T∏
i=1

 min{mi,zi}∑
ji=max{0,zi−ni}

(
mi

ji

)(
ni

zi − ji

)
θji1 (1− θ1)

mi−ji θzi−ji2 (1− θ2)
ni−zi+ji

 .
Indeed we can use the discrete convolution formula, for variables X,Y and Z = X + Y :

pZ(z) =

z∑
x=0

pX(x)pY (z − x).

2. Assume we set independent uniform priors ϑ1 ∼ U[0,1], ϑ2 ∼ U[0,1]. Propose a Gibbs sampler to
sample from p (θ1, θ2| z1, . . . , zT ). Recall that the Beta distribution of parameter α, β > 0 admits

a density f (x) ∝ xα−1 (1− x)
β−1 I[0,1] (x).

(Hint: introduce auxiliary variables)

Answer. We introduce the latent variables Xi, Yi and propose to sample from
p (θ1, θ2, x1:T , y1:T | z1:T ). We have

p (θ1, θ2|x1:T , y1:T , z1:T ) = p (θ1|x1:T ) p (θ2| y1:T )

where

p (θ1|x1:T ) ∝
T∏
i=1

θxi1 (1− θ1)
mi−xi

= Beta

(
θ1; 1 +

T∑
i=1

xi, 1 +

T∑
i=1

(mi − xi)

)

and

p (θ2| y1:T ) = Beta

(
θ2; 1 +

T∑
i=1

yi, 1 +

T∑
i=1

(ni − yi)

)
.

Now we have

p (x1:T , y1:T | z1:T , θ1, θ2) =

T∏
i=1

p (xi, yi| zi, θ1, θ2)

∝
T∏
i=1

Binomial (xi;mi, θ1)Binomial (yi;ni, θ2)1xi+yi=zi .

This distribution is intractable but we can still evaluate its probability mass function point-
wise, up to a normalizing constant. Thus we can perform a Metropolis-Hastings step within
the Gibbs sampler. For instance, we could naively propose from a uniform distribution on
{0, . . . ,mi} × {0, . . . , ni}.

Exercise 4: Gibbs Sampler

Let πX,Y (x, y) be the density of a distribution of interest. We recall that the systematic scan Gibbs
sampler proceeds as follows to sample from πX,Y .
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Systematic Scan Gibbs sampler. Let X(1), Y (1) be the initial state then iterate for t = 2, 3, ...
• Sample Y (t) ∼ πY |X

(
·|X(t−1)

)
.

• Sample X(t) ∼ πX|Y
(
·|Y (t)

)
.

The random scan Gibbs sampler is an alternative algorithm which proceeds as follows to sample from
πX,Y .

Random Scan Gibbs sampler. Let X(1), Y (1) be the initial state then iterate for t = 2, 3, ...
• Sample J ∈ {1, 2} where P (J = 1) = P (J = 2) = 1/2.
• If J = 1, sample Y (t) ∼ πY |X

(
·|X(t−1)

)
and set X(t) = X(t−1).

• If J = 2, Sample X(t) ∼ πX|Y
(
·|Y (t−1)

)
and set Y (t) = Y (t−1).

1. Give the expression of the transition kernel density KS
X,Y ((x, y) , (x′, y′)) of the Markov chain(

X(t), Y (t)
)
t≥1

generated by the systematic Gibbs sampler as a function of πX|Y and πY |X . Show

that KS
X,Y is not reversible with respect to πX,Y .

Answer. We have

KS
X,Y ((x, y) , (x′, y′)) = πY |X (y′|x)πX|Y (x′| y′) .

and

πX,Y (x, y)KS
X,Y ((x, y) , (x′, y′))

πX,Y (x′, y′)KS
X,Y ((x′, y′) , (x, y))

=
πX,Y (x, y)πY |X (y′|x)πX|Y (x′| y′)
πX,Y (x′, y′)πY |X (y|x′)πX|Y (x| y)

=
πY (y)πY |X (y′|x)

πY (y′)πY |X (y|x′)
6= 1

2. Show that the sequence
(
X(t)

)
t≥1

associated to the systematic scan Gibbs sampler is a πX -reversible

Markov chain and give the expression of its associated transition kernel density KS
X (x, x′) as a

function of the two “full” conditional densities πY |X and πY |X .

Answer. We have∫
KX,Y ((x, y) , (x′, y′)) dy′ =

∫
πY |X (y′|x)πX|Y (x′| y′) dy′.

As this is expression is independent of y, we can conclude that
(
X(t)

)
t≥1

is Markov of transition

kernel density

KX (x, x′) =

∫
πY |X (y′|x)πX|Y (x′| y′) dy′.

Moreover, we have

πX (x)KX (x, x′) = πX (x)

∫
πY |X (y′|x)πX|Y (x′| y′) dy′

= πX (x)

∫
πX|Y (x| y′)πY (y′)

πX (x)

πY |X (y′|x′)πX (x′)

πY (y′)
dy′

= πX (x′)

∫
πX|Y (x| y′)πY |X (y′|x′) dy′

= πX (x′)KX (x′, x) .
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3. Give the expression of the transition kernel density KR
X,Y ((x, y) , (x′, y′)) of the Markov chain(

X(t), Y (t)
)
t≥1

generated by the random scan Gibbs sampler as a function of πX|Y and πY |X .

Show that KR
X,Y is πX,Y−reversible.

Answer. We have

KR
X,Y ((x, y) , (x′, y′)) =

1

2
πY |X (y′|x) δx (x′) +

1

2
πX|Y (x′| y) δy (y′) .

Therefore

πX,Y (x, y)KR
X,Y ((x, y) , (x′, y′))

=
1

2
πX,Y (x, y)πY |X (y′|x) δx (x′) +

1

2
πX,Y (x, y)πX|Y (x′| y) δy (y′) .

On one hand we have

πX,Y (x, y)πY |X(y′|x)δx(x′) = πX,Y (x′, y)πY |X(y′|x)δx(x′)

= πX(x′)πY |X(y|x′)πY |X(y′|x)δx(x′)

= πX,Y (x′, y′)πY |X(y|x′)δx(x′)

and similarly

πX,Y (x, y)πX|Y (x′|y)δy(y′) = πX,Y (x′, y′)πX|Y (x|y′)δy(y′)

So that we finally obtain

πX,Y (x, y)KR
X,Y ((x, y) , (x′, y′)) =

1

2
πX,Y (x′, y′)πY |X (y|x′) δx′ (x) +

1

2
πX,Y (x′, y′)πX|Y (x| y′) δy′ (y)

= πX,Y (x′, y′)KR
X,Y ((x′, y′) , (x, y)) .

Exercise 5: ν-irreducibility of HMC (Optional)

Let ν(q) ∝ exp(−U(q)) be the d-dimensional target density of HMC. In this exercise, we are going to
show that HMC with leapfrog steps and randomized step size ε is ν-irreducible. The goal of the exercise
is to show the following proposition.

Proposition 1 Let ε be distributed uniformly on an interval [0, τ ] for some τ > 0. Let the number
of steps L be fixed. Let K denote the Markov kernel for the position variables on Rd corresponding
to sampling a random momentum p from N(0,M), then doing L Leapfrog steps started at (q,p) with
step size ε sampled from [0, τ ] uniformly (independently before each sequence of L leapfrog steps, but
constant during the sequence of L steps), and finally discarding the momentum variable. Suppose that U
is continuously differentiable on Rd, and satisfies that supq ‖∇2U(q)‖ ≤ LU , and Umin := infq∈Rd U(q) >
−∞. Then K is strongly ν-irreducible.

The proof of this result is similar to the continuous time case. It consists of the following steps.

1. Assume that M = Id (the general case follows similarly). Let Ψε denote the Leapfrog map as
defined in the lectures. Let (q(Lε),p(Lε)) = ΨL

ε (q(0),p(0)) denote the new position and momen-
tum after L leapfrog steps started from (q(0),p(0)). Show that if εL ≤ 1/(4(1 + LU )2), then the

Jacobian ∂q(Lε)
∂p(0) satisfies that

εLId
2
� ∂q(Lε)

∂p(0)
� 3εLId

2
.

(Hint: the Jacobian of a product of maps is the product of the Jacobians of each map.)
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Answer. The Leapfrog steps (q(ε),p(ε)) = Ψε(q,p) from a starting position z = (q,p) are
defined as

p(ε/2) = p− ε

2
∇U(q)

q(ε) = q + ε · p(ε/2).

p(ε) = p(ε/2)− ε

2
∇U(q(ε)).

Let Ψε denote the Leapfrog map, and let z(kε) = (q(kε),p(kε)) := Ψk
ε (q,p).

Let M(z) := ∂Ψε
∂z , then by the chain rule, the Jacobian of ΨL

ε can be written as

∂ΨL
ε

∂z
= M(z)M(z(ε)) · . . . ·M(z((L− 1)ε)).

Moreover, for any z = (q,p), we have

M(z) =

(
Id 0d

− ε
2∇

2U(q) Id

)(
Id εId
0d Id

)(
Id 0

− ε
2∇

2U(q(ε)) Id

)
=

(
Id − ε2

2 ∇
2U(q(ε)) εId

− ε
2

(
∇2U(q) +∇2U(q(ε))

)
+ ε3

4 ∇
2U(q)∇2U(q(ε)) Id − ε2

2 ∇
2U(q)

)
.

Let D0 = M(z)− I2d, and Dk = M(z(kε))− Id for 1 ≤ k ≤ L− 1. One can show that for a

block matrix E =

(
A B
C D

)
, we have ‖E‖ ≤ ‖A‖+ ‖B‖+ ‖C‖+ ‖D‖. Hence using the fact

that ‖∇2U(q)‖ ≤ LU , and our assumption on ε, for any 0 ≤ k ≤ L− 1, we have

‖Dk‖ ≤ ε2LU + ε+ εLU +
ε3

4
L2
U ≤ (4/3)ε(1 + LU ).

Since

∂ΨL
ε

∂z
= (Id + D0) · . . . · (Id + DL−1)

= Id + D0 + . . .+ DL−1 +
∑

0≤i1<i2≤L−1

Di1Di2 +
∑

0≤i1<i2<i3≤L−1

Di1Di2Di3 + . . .+ D0 . . .DL−1,

using the above bound on ‖Dk‖, we have∥∥∥∥∂ΨL
ε

∂z
− (Id + D0 + . . .+ DL−1)

∥∥∥∥
≤
(
L

2

)
((4/3)ε(1 + LU ))2 +

(
L

3

)
((4/3)ε(1 + LU ))3 + . . .+

(
L

L

)
((4/3)ε(1 + LU ))L

≤ [L((4/3)ε(1 + LU ))]2

2!
+

[L((4/3)ε(1 + LU ))]3

3!
+ . . .+

[L((4/3)ε(1 + LU ))]L

L!

≤ exp (L((4/3)ε(1 + LU )))− 1− L((4/3)ε(1 + LU )) ≤ (L((4/3)ε(1 + LU ))2 ≤ 2(Lε)2(1 + LU )2 ≤ Lε

2
,

using the fact that exp(x)− 1−x ≤ x2 for 0 ≤ x ≤ 1, and L((4/3)ε(1 +LU )) ≤ 1 based on our
assumption on ε. Now the result follows from the fact that Id + D0 + . . .+ DL−1 has LεId in

the top right d× d block-matrix corresponding to the Jacobian ∂q(Lε)
∂p(0) .

2. Let H(q,p) = U(q) − Umin + ‖p‖2
2 . Show that there is a constant CH only depending on L, LU
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and τ such that for any 0 ≤ k ≤ L,

H(q(kε),p(kε))−H(q,p) ≤ CHLε ·H(q,p). (1)

Hence the Hamiltonian is approximately preserved for sufficiently short intervals. (Hint: use Taylor
expansion with remainder term and the assumption supq ‖∇2U(q)‖ ≤ LU to control the change of
the Hamiltonian).

Answer. The Leapfrog dynamics consists of 3 steps,

p(ε/2) = p− ε

2
∇U(q)

q(ε) = q + ε · p(ε/2).

p(ε) = p(ε/2)− ε

2
∇U(q(ε)).

Note that by Taylor’s expansion with second order raminder term, we have

U(q)− Umin ≥ U(q)− U(q −∇U(q)/LU ) ≥ 〈∇U(q)/LU ,∇U(q)〉 − 1

2
LU‖∇U(q)/LU‖2 =

‖∇U(q)‖2

2LU
,

hence ‖∇U(q)‖2 ≤ 2LU (U(q)− Umin).

For the first step in the Leapfrog, by the Cauchy-Schwarz inequality, we can show that

H(q,p(ε/2))−H(q,p) =
‖p(ε/2)‖2

2
− ‖p‖

2

2
= − ε

2
〈∇U(q),p〉+

ε2

4
‖∇U(q)‖2 ≤ ε+ ε2

4
‖∇U(q)‖2 +

ε

4
‖p‖2

≤ ε(1 + ε)

2
LU (U(q)− Umin) +

ε

2

‖p‖2

2
≤ ε(1 + ε)(1 + LU )

2
H(q,p).

For the second step in the Leapfrog, Taylor expansion with second order remainder term, and
Cauchy-Schwarz, we have

H(q(ε),p(ε/2))−H(q,p(ε/2)) = U(q(ε))− U(q) ≤ 〈∇U(q), εp(ε/2)〉+
LU‖εp(ε/2)‖2

2

≤ (ε2LU + ε)‖p(ε/2)‖2

4
+ εLU (U(q)− Umin) ≤ ε(1 + LU + LU ε)H(q,p(ε/2)).

A similar result holds for the third step too, and combinging these together leads to (1).

3. Let Q, q(0) ∈ Rd be arbitrary points, and let p(0) = Q−q(0)
Lε . Show that (q(Lε),p(Lε)) =

ΨL
ε (q(0),p(0)) satisfies that

‖q(Lε)−Q‖ ≤ C · (Lε)2,

where C is a constant only depending on L, LU , τ , q(0), Q and U but independent of ε (Hint: use
the approximate conservation of the Hamiltonian by (1) and try to do a similar argument as in
Lemma 2 of Chapter 7).

Answer. Using (1), for any 0 ≤ k ≤ L, we have

‖p(kε)‖2

2
≤ H(q(kε),p(kε)) ≤

(
‖p(0)‖2

2
+ U(q(0))− Umin

)
(1 + CHkε),

therefore

‖p(kε)‖ ≤

√(
‖p(0)‖2

2
+ U(q(0))− Umin

)
(1 + CHLε)

≤ (1 + CHLτ)
(√

2(U(q(0))− Umin) + ‖p(0)‖
)
.
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Thus for p(0) = Q−q(0)
Lε , for any 0 ≤ k ≤ L, we have

‖q(kε)− q(0)‖ ≤ D for D = (1 + CHLτ)(Lτ
√

2(U(q(0))− Umin) + ‖Q− q(0)‖).

The rest of the argument is similar to the proof of Lemma 2 of Chapter 7. Let BD(q) = {q′ ∈
Rd : ‖q′ − q‖ ≤ D} denote the ball of radius D centered at q. Then from the continuity of
∇U , we have

E := sup
q′∈BD(q)

‖∇U(q′) <∞.

Let p(kε+ ε/2) = p(kε)− ε
2∇U(q(kε)) denote the first step of the Leapfrog dynamics started

at (q(kε),p(kε)). Then by induction it follows that for any 0 ≤ k ≤ L− 1,

‖p(kε+ ε/2)− p(0)‖ ≤ E(k + 1/2)ε,

and therefore

‖q(Lε)−Q‖ = ‖q(Lε)− q(0)− Lεp(0)‖ =

∥∥∥∥∥
L−1∑
k=0

ε(p(kε+ ε/2)− p(0))

∥∥∥∥∥
≤
L−1∑
k=0

(k + 1/2)Eε2 =
ε2L2E

2
,

hence the result.

4. Using the above results, show Proposition 1 (Hint: the argument is similar to the continuous time
case we have studied during the lecture).

Answer. The proof is essentially same as the proof of Proposition 4 of Chapter 7, except that
we use Parts 1 and 3 in place of Lemmas 1 and 2. For completeness, we repeat it here.

Let ν(q) ∝ exp(−U(q)) be the target distribution, and µ be the multivariate normal distri-
bution on Rd with mean 0 and covariance matrix M . Assume without loss of generality that
M = Id (the general case follows by a simple modification of this argument).

Our goal is to show that for any starting point q(0), any measurable set A ⊂ Rd with ν(A) > 0,
we have K(q(0), A) > 0. Since we can fill Rd into countably many balls of radius δ (for any
δ > 0), we can assume without loss of generality that A is a subset of a ball of radius δ centered
at some point Q ∈ Rd. We will denote this closed ball by Bδ(Q) = {q ∈ Rd : ‖q −Q‖ ≤ δ}.

Then by Part 3, it follows that if ε ≤
√
δ

L
√
C

, and

p(0) = p∗ =
Q− q(0)

t
,

then q(Lε) ∈ Bδ(Q).

Let Ψ(p(0)) denote the position (q) component of (ΨL
ε )(q(0),p) (q(0) is assumed fixed). Hence

for a fixed q(0), Ψ maps from the initial momentum p(0) to the position after L leapfrog steps
of size ε.

It follows from Part 1 that for any vector v, we have

‖Ψ(p∗)−Ψ(p∗ + v)‖ =

∥∥∥∥∥
(∫ 1

s=0

∂q(Lε)

∂p(0)

∣∣∣∣
p(0)=p∗+vs

ds

)
v

∥∥∥∥∥ ≥ Lε‖v‖
2

.

Therefore, with the choice r = 6δ
t the sphere Sr(p

∗) = {p′ ∈ Rd : ‖p′ − p∗‖ = r} satisfies that
for any p′ ∈ Sr(p∗),

‖Ψ(p∗)−Ψ(p)‖ ≥ 3δ.
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Moreover, the map of p∗, Ψ(p∗) is also contained in the ball Bδ(Q), thus it follows that map
of the ball Br(p

∗) by Ψ will contain the ball Bδ(Q) (see Figure ??). Hence for any point
in Q′ ∈ Bδ(Q), there is at least one point p′ ∈ Br(p

∗) such that Ψ(p′) = q′. Denote the
set of points in Br(p

∗) that get mapped into the set A by Ψ as Bε (preimage of A). Since
ν(A) > 0, and ν has a density, it follows that Vol(A) > 0, and by Part 1, it follows that if
0 < ε ≤ 1

4L(1+LU )2 , the determinant of the Jacobian of Ψ on Bε is finite and positive, so we also

must have Vol(Bε) > 0, implying that µ(Bε) > 0 (µ denotes the standard normal distribution
on Rd, corresponding to the distribution of the resampled momentum variable). Since this

holds for any ε ≤ min
( √

δ
L
√
C
, 1

4L(1+LU )2

)
, ε is uniformly distributed on [0, τ ], and the proposed

steps are accepted with positive probability, it follows by integration that K(q(0), A) > 0,
thus K is strongly ν-irreducible.

p*

Br(p*)

Ψ
Q

Ψ(p*)

Bδ(Q)

B3δ(Ψ(p*))

Ψ(Br(p*))

ABε

Figure 1: Effect of the map Ψ

Exercise 6: Sequential Importance Sampling

In this example we will carefully study the phenomenon of weight degeneracy of the sequential impor-
tance sampling algorithm (SIS) in a simplified situation where the exponential growth of the asymptotic
variance with the time-horizon is easy to capture. This in turn provides motivation for the use of a
resampling step that results in the sequential importance resampling algorithm (SIR).

Let π(dx) = π(x)dx be a fixed distribution on R, with density π(·) known up to a normalizing
constant, that is π(x) = π̃(x)/Z, where π̃(x) can be evaluated for every x whereas Z is unknown.

Consider a sequence of target distributions of increasing dimension

πn(dx1:n) = π⊗n(dx1:n) =

n∏
i=1

π(dxi) =
1

Zn

n∏
i=1

π̃(dxi),

where of course the normalizing constant Zn = Zn is unknown. Let ν(dx) = ν(x)dx, with known density
ν(·), be another distribution on R, absolutely continuous wrt π and similarly define νn := ν⊗n.

We want to estimate the unknown normalizing constant of πn, that is we want to estimate Zn. One
approach, perhaps a bit contrived, is to use Sequential Importance Sampling to construct an estimate

ẐNn as follows: sample N , i.i.d. samples X
(i)
1:n from ν⊗n and compute

ẐNn :=
1

N

N∑
j=1

π̃⊗n
(
X

(j)
1:n

)
ν⊗n

(
X

(j)
1:n

) =
1

N

N∑
j=1

n∏
i=1

π̃(X
(j)
i )

ν(X
(j)
i )

.
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(a) Show that ẐNn is an unbiased estimator of Zn.

(b) Show that the variance of ẐNn is given by

N × var
(
ẐNn

)
= EY∼ν

[
π̃(Y )2

ν(Y )2

]n
− Z2n = EY∼ν

[
π̃(Y )2

ν(Y )2

]n
− EY∼ν

[
π̃(Y )

ν(Y )

]2n

.

(c) The relative variance, that is the variance of ẐNn /Zn is a useful measure of the efficiency of an
estimator, as it measures the variability of an estimator relative to the size of the quantity being
estimated. Show that if π̃/ν is not almost everywhere constant we have

lim
n→∞

1

n
log

[
var

(
ẐNn
Zn

)]
= logEY∼ν

[
π(Y )2

ν(Y )2

]
> 0.

Hint: When is Jensen’s inequality a strict inequality?

(d) How does the number N of Monte-Carlo samples required to estimate Zn efficiently depend on the
time-horizon n? Is this an efficient algorithm?

Answer.

(a) The first part is obvious

E[ẐNn ] =

∫
· · ·
∫
ν⊗n(x1:n)

π̃⊗n(x1:n)

ν⊗n(x1:n)
dx1:n

=

∫
· · ·
∫
π̃⊗n(x1:n)dx1:n = Zn,

by definition.

(b) Since the Monte Carlo samples are i.i.d. the variance of the average is 1/N times the variance
of one sample. To keep notation to a minimum let us write Ẑ for the random variable Ẑn :=
π̃⊗n(Y1:n)/ν⊗n(Y1:n), where Y1:n ∼ ν⊗n, and Ẑ := π̃(Y )/ν(Y ), where Y ∼ ν, Then the variance
of a single sample is then given by,

var
[
Ẑn

]
= E

[
Ẑ2
n

]
− E

[
Ẑn

]2
= E

[
Ẑ2
n

]
− Z2n

=

[∫
ν(dy)

π̃(y)2

ν(y)2

]n
− Z2n

= E[Ẑ2]n − E[Ẑ]2n.

(c) Continuing from above we have

var

[
Ẑn
Zn

]
= E

[
Ẑ2

Z2

]n
− 1.

N var

[
ẐNn
Zn

]
= N

[(
E[Ẑ2]

E[Ẑ]2

)n
− 1

]
.

Let us write

γ :=
E[Ẑ2]

E[Ẑ]2
,
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whence using either Jensen’s inequality inequality it follows that γ ≥ 1. Using the assumption
that π̃/ν is not almost everywhere constant, it follows that Jensen’s inequality is a strict inequality
and therefore γ > 1. Thus

1

n
log
(
N var

[
ẐNn

])
=

logN

n
+

1

n
log (γn − 1) .

For the last term notice that

1

n
log (γn − 1) =

1

n
log

(
γn × γn − 1

γn

)
=

1

n
log (γn) +

1

n
log

(
γn − 1

γn

)
= log γ +

1

n
log
(
1 + γ−n

)
→ log γ,

as n→∞ since γ > 1. Therefore as n→∞, with N fixed,

1

n
log
(
N var

[
Ẑ
])
→ log γ.

(d) From the previous part we can see that the relative variance of ẐNn grows exponentially in the
time horizon n and is proportional to 1/N , that is

var

(
ẐNn
Zn

)
∝ C

N
γn(1+o(1)),

therefore to have an estimator with bounded relative variance for large n we need a number of
samples N proportional to γn.

Exercise 7: Sequential Importance Sampling 2 (Optional)

All notation is the same as in the previous exercise.
In the previous exercise we proved that the estimator of the normalizing constant produced by

sequential importance sampling grows exponentially with the time-horizon, at least in the trivial, i.i.d.
scenario. In this exercise we will use the same algorithm, but we will be estimating the expectation of
a function of the k-th marginal of the state process. That is, for some function f : R → R, that is not
constant almost everywhere, we want to estimate the expectation

πk(f) :=

∫
· · ·
∫
πk(dx1:k)f(xk).

Of course one may point out that πk(f) is simply π(f), but the proposed method is a perfectly valid
approach and is instructive to study the performance of SIS in this simplified, albeit contrived, scenario
as it does capture its performance in more complicated models in the presence of observations.

As in the previous exercise sample N , i.i.d. samples X
(i)
1:n from ν⊗n and compute the following self-

normalized IS estimator, where we now assume that π can be computed exactly rather than up to a
normalizing constant,

π̂Nk (f) :=

N∑
i=1

f
(
X

(i)
k

) wk

(
X

(i)
1:k

)
∑N
j=1 wk

(
X

(j)
1:k

) ,
where

wk(x1:k) =
π⊗k(x1:k)

ν⊗k(x1:k)
=

k∏
l=1

π(xl)

ν(xl)
.
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(a) Using the Law of Large Numbers show that the estimator is consistent, that is show that π̂Nk (f)→
πk(f) as the number of samples N →∞.

(b) The central limit theorem, and Slutsky’s lemma, guarantee that

N1/2
[
π̂Nk (f)− πk(f)

]
→ N (0, σ2

k(f)).

Show that

σ2
k(f) =

(∫
ν(dx)

[
π(x)

ν(x)

]2
)k−1

·
∫
ν(dx)

[
π(x)

ν(x)

]2 [
f(x)−

∫
f(x)π(dx)

]2

.

(c) Using Jensen’s inequality argue that if π/ν is not equal to one almost everywhere, then σ2
k(f) grows

exponentially with k.

Answer.

(a) The first part is trivial as it is a standard normalized importance sampling algorithm, but just
for completeness

π̂Nk (f) =

N∑
i=1

f
(
X

(i)
k

) wk

(
X

(i)
1:k

)
∑N
j=1 wk

(
X

(j)
1:k

)
=

1
N

∑N
i=1 f

(
X

(i)
k

)
wk

(
X

(i)
1:k

)
1
N

∑N
j=1 wk

(
X

(j)
1:k

) .

Using the law of large numbers on the numerator we have

1

N

N∑
i=1

f
(
X

(i)
k

)
wk

(
X

(i)
1:k

)
→
∫
· · ·
∫
ν(⊗k)(x1:k)

π(x1:k)

ν(x1:k)
f(xk)dx1:k

→
∫
· · ·
∫
f(xk)π(dx1:k) = πk(f),

whereas the above replacing f with 1, shows that the numerator converges to 1 by the Law of
Large Numbers. Combining the two limits we get the result.

(b) For the second part we have

N1/2
[
π̂Nk (f)− πk(f)

]
=

 1

N

N∑
j=1

wk

(
X

(j)
1:k

)−1

×
√
N

[
1

N

N∑
i=1

f
(
X

(i)
k

)
wk

(
X

(i)
1:k

)
− πk(f)

]

=

 1

N

N∑
j=1

wk

(
X

(j)
1:k

)−1

× 1√
N

N∑
i=1

wk

(
X

(i)
1:k

) [
f
(
X

(i)
k

)
− πk(f)

]

since πk(f) does not depend on i.

Notice that∫
· · ·
∫
ν(dx1:k)wk(x1:k) [f(xk)− πk(f)] =

∫
· · ·
∫
πk(dx1:k) [f(xk)− πk(f)] = 0,

so that the terms of the numerator have zero mean.
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Therefore, the standard central limit theorem applied to the numerator gives

1√
N

N∑
i=1

wk

(
X

(i)
1:k

) [
f
(
X

(i)
k

)
− πk(f)

]
D−→ N (0, σ2

k(f))

where σ2
k(f) is given by

σ2
k(f) :=

∫
· · ·
∫
ν(dx1:k)w2

k(x1:k) [f(xk)− πk(f)]
2

=

∫
· · ·
∫
ν(dx1:k−1)w2

k−1(x1:k−1)

∫
ν(dxk)

π(xk)2

ν(xk)2
[f(xk)− πk(f)]

2

=

(∫
ν(dx)

[
π(x)

ν(x)

]2
)k−1 ∫

ν(dxk)
π(xk)2

ν(xk)2
[f(xk)− πk(f)]

2
,

since the first k − 1 integrals factorise due to the identities

ν(dx1:k−1) =

k−1∏
j=1

ν(xj)dxj

w2
k−1(x1:k−1) =

k−1∏
j=1

[
π(xj)

ν(xj)

]2

.

(c) It is obvious that ∫
ν(dx)

π(x)

ν(x)
=

∫
π(x)dx = 1.

Thus Jensen’s inequality gives that

γ :=

∫
ν(dx)

[
π(x)

ν(x)

]2

≥
[∫

ν(dx)
π(x)

ν(x)

]2

= 1.

Jensen’s inequality is strict unless the random variable is constant almost surely. In our case
this translates to π/ν not being equal to a constant or π(·) = cν(·). Since π and ν are both
probability densities, the only c possible here is c ≡ 1. We know that π is not identically equal
to ν by the assumption and thus Jensen’s inequality is strict giving γ > 1. This proves that the
asymptotic variance grows like γk−1, that is exponentially with the time-horizon.

Programming Questions

Suppose we our dataset is made of binary observations Y1, . . . , Yn. For instance Yi is 1 if student ”i” has
passed the exam and 0 otherwise. Assume we know p covariates about the students, such as the time
spent studying, the number of classes he attended, the ability to cheat without getting caught, etc. We
call the covariates ”explanatory variables” and store them in a matrix X of size n× p. The probit model
states that for each i = 1, . . . , n,

Yi =

{
1 with probability Φ(XT

i β)

0 with probability 1− Φ(XT
i β)

where Xi is the i-th row of X, Φ is the distribution function of a standard Normal distribution, and
β ∈ Rp is the parameter to infer. Inferring β allows to learn and quantify the effect of each covariate on
the observation.
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1. Generate a synthetic dataset Y from the probit model for an arbitrary value of β and an matrix
X.

(Hint: choose p = 2 and n small, say 50, to make things easier.)

2. Introduce the prior distribution on β:

π(β) = N (0, B)

for a p× p covariance matrix B. Write a function taking a vector β as argument and returning the
log posterior density function evaluated at β.

3. Use it to run a Metropolis-Hastings algorithm and plot the output.

4. Compute the gradient of the log-posterior density from 2.) Use this to implement Hamiltonian
Monte Carlo with leapfrog steps for β, with mass matrix M = B (the covariance of the prior).
Choose the step size ε to be uniformly distributed on some interval [0,m], and the step size L fixed.
Experiment with different choices of m and L to obtain good performance by making sure that the
acceptance rate remains high.

5. For all i = 1, . . . , n, introduce the random variable Zi distributed as N (XT
i β, 1). Compare the law

of 1Zi≥0 with the law of Yi.

6. Use Z to design a Gibbs sampler, alternatively sampling from β given Z, Y and from Z given β, Y .

7. Compare the performance of your Gibbs, HMC and Metropolis-Hastings samplers.
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