
Advanced Simulation Methods
Chapter 7 - Hamiltonian Monte Carlo

In this chapter, we are going to study an MCMC method called Hamiltonian Monte Carlo. This method
is based on Hamiltonian dynamics, and allows efficient exploration of the state space by making large moves.
It is known to be more efficient in high dimensions than Random Walk Metropolis-Hastings and MALA, due
to the fact that it avoids random walk behaviour.

1 Hamiltonian mechanics
Let q ∈ Rd denote the position, p ∈ Rd denote the momentum, U : Rd → R be a continuously differentiable
potential function, and M ∈ Rd×d be a symmetric positive definite matrix. Then Hamilton’s equations are

d

dt
q = M−1p, (1)

d

dt
p = −∇U(q). (2)

In the case when M = mId, these equations correspond to Newtonian mechanics with a non-dissipative
force arising from the potential field U(q). Equations (1)-(2) are termed a Hamiltonian system, which has
Hamiltonian energy

H(q,p) := pTM−1p

2 + U(q) = K(p) + U(q). (3)

An important property of the Hamiltonian dynamics is that the Hamiltonian energy is preserved, since

d

dt
H(q(t),p(t)) = p(t)TM−1 d

dt
p(t) +

(
d

dt
q(t)

)T
∇U(q) = 0. (4)

It is going to be very useful in our analysis to rewrite Hamiltonian equations in their canonical form

d

dt
q = +∇pH(q,p), (5)

d

dt
p = −∇qH(q,p). (6)

It is also going to be convenient to use the notation z :=
(
q
p

)
, then z ∈ R2d. Let J be the canonical

structure matrix
J :=

(
0 Id
−Id 0

)
, (7)

then the canonical Hamiltonian equations (5)-(6) can be rewritten as

d

dt
z = J∇zH(z). (8)

Example 1 (Harmonic oscillator) Let L =
(
ω2 0
0 1

)
, and H(z) = 1

2z
TLz = 1

2ω
2q2 + 1

2p
2, and the

Hamiltonian equations become

d

dt
z = J∇zH(z) = JLz, (9)
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using the particular choice of L, this is equivalent to

d

dt
q = p (10)

d

dt
p = −ω2q, (11)

which corresponds to the harmonic oscillator. In general, (9) can be defined for arbitrary 2d× 2d symmetric
matrix L, and this is called a linear Hamiltonian system.

The following figure illustrates the evolution of the Harmonic oscillator, and the preservation of the
Hamiltonian energy H(q, p) = 1

2ω
2q2 + 1

2p
2, corresponding to an ellipse in the phase space.

2 Symplecticity and other properties
A smooth map Ψ : R2d → R2d is called symplectic if its Jacobian ∇zΨ(z) satisfies that

[∇Ψ(z)]TJ−1∇Ψ(z) = J−1 (12)

for all z in R2d, where J =
(

0 Id
−Id 0

)
is the canonical structure matrix. This satisfies that J−1 = JT .

An important property of symplectic maps is the volume preservation property.

Proposition 1 Symplectic maps are volume preserving.

Proof. It can be shown that the infinitesimal cube [z1, z1 + δ]× . . .× [z2d, z2d + δ] will be mapped by Ψ into
a 2d dimensional parallelepiped with volume |det(∇zΨ(z))|δ2d. Using the product rule for determinants on
the symplectic condition (12), we have

det(∇zΨ(z))2 det(J−1) = det(J−1),

which implies that |det(∇zΨ(z))| = 1 since |det(J−1)| = 1. Hence the infinitesimal volumes are preserved,
and the same property can be obtained for non-infinitesimal volumes by integration.

A key property of Hamiltonian dynamics is that it is symplectic.

Proposition 2 The Hamiltonian flow defined by (8) is symplectic and volume preserving.

Proof. Let Ψt,H(z) denote the flow-map of the Hamiltonian dynamics (8) with Hamiltonian H(z), i.e.
Ψt,H(z(0)) = z(t) for a solution of (8). In order to show the symplecticity of the Hamiltonian dynamics, we
need to understand the behaviour of the Jacobian ∂

∂zΨt,H(z). Now we are going to describe the evolution of
this Jacobian in time. Let z(0) be an initial point, and z(0) = z(0) + δz(0) be another nearby initial point.
Then the differences of two paths of the Hamiltonian dynamics at time t can be written as

δz(t) := z(t)− z(t) = Ψt,H(z(0))−Ψt,H(z(0)) = ∂

∂z(0)Ψt,H(z(0)) · δz(0) + o(δz(0)),
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and by differentiating the right hand side in t, we obtain that

d

dt

[
∂

∂z(0)Ψt,H(z(0))δz(0)
]

= ∂

∂z(0)

(
d

dt
Ψt,H(z(0))

)
· δz(0)

= ∂

∂z(0) (J∇H(z(t))) · δz(0) = ∂

∂z(0) (J∇H(Ψt,H(z(0)))) · δz(0)

= J∇2H(z(t)) ·
[

∂

∂z(0)Ψt,H(z(0))δz(0)
]
.

The above equation describing the evolution of ∂
∂z(0)Ψt,H(z(0)) · δz(0), the infinitesimal distance between

two paths. It is called the variational equation. Let F (t) := ∂
∂z(0)Ψt,H(z(0)) be the Jacobian matrix of

the Hamiltonian flow at time t (for simplicity, the dependence on z(0) is supressed in the notation). Using
the fact that the variational equations hold for every direction δz(0), it follows that this satisfies the matrix
valued variational equation

d

dt
F = J∇2H(z(t))F , (13)

with initial condition F (0) = I2d.
In order to establish that Hamiltonian flow is symplectic, it suffices to verify that (12) holds. In this case

this is equivalent to
F T
t J−1Ft = J−1. (14)

Since F0 = I2d, (14) holds for t = 0. By taking the derivative, and using (13) we obtain that

d

dt
(F T

t J−1Ft) = (J∇2H(z(t))Ft)TJ−1Ft + FtJ
−1J∇2H(z(t))Ft

= F T
t ∇2H(z(t))JTJ−1Ft + F T

t J−1J∇2H(z(t))Ft = 0,

since JTJ−1 = −JJ−1 = −I2d and J−1J = I2d. Hence (14) holds for every t ≥ 0 and the Hamiltonian
flow is symplectic. Since every symplectic flow is volume preserving, the Hamiltonian flow is also volume
preserving.

Finally, the next proposition states the stationary of the target with respect to Hamiltonian flow.

Proposition 3 The distribution π(dz) ∝ exp(−H(z))dz is stationary with respect to the Hamiltonian flow.

Proof. Let the density of π be equal π(z) = exp(−H(z))
C for some normalising constant C. To see that this

result holds, let Z0 ∼ π, and Zt = Ψt,H(Z(0)). Let z = (z1, . . . , zd)T , then for infinitesimally small δ,

P(Zt ∈ [z1, z1 + δ]× . . .× [zd, zd + δ]) = P (Z0 ∈ Ψ−t,H ([z1, z1 + δ]× . . .× [zd, zd + δ]))
= π(Ψ−t,H(z))Vol (Ψ−t,H ([z1, z1 + δ]× . . .× [zd, zd + δ]))

= exp(−H(Ψ−t,H(z)))
C

Vol (Ψ−t,H ([z1, z1 + δ]× . . .× [zd, zd + δ]))

using the preservation of the Hamiltonian, and the volume,

= exp(−H(z))
C

Vol ([z1, z1 + δ]× . . .× [zd, zd + δ]) = π([z1, z1 + δ]× . . .× [zd, zd + δ]),

hence the stationarity is established.
Hamilton’s equations themselves do not define an ergodic Markov chain, as they keep the Hamiltonian

invariant. Let PR be the Markov kernel that resample the momentum according to the Gaussian distribution
with covariance matrix M , and ΨT,H be the Hamiltonian flow-map for time T . Then π is stationary with
respect to the combination PR ·ΨT,H (i.e. first resample momentum, then move according to the Hamiltonian
dynamics). Moreover, it is easy to show that if we choose T to be a random variable chosen independently
at teach time step, then the resulting Markov kernel is a mixture of kernels whose stationary distribution
is π, and therefore it also admits π as a stationary distribution. We call this Markov kernel Randomized
Hamiltonian Monte Carlo with continuous dynamics. The following proposition states some conditions that
guarantee π-irreducibility.
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Proposition 4 Let T be distributed according to νT , which has positive density on an interval [0, τ ] for
some τ > 0. Let K denote the Markov kernel for the position variables on Rd corresponding to sampling
a random momentum p, then running the Hamiltonian dynamics started at (q,p) up to time T sampled
from νT (independently at each step), and finally discarding the momentum variable. Suppose that U is
continuously differentiable on Rd, and satisfies that supq ‖∇2U(q)‖ ≤ L, and infq∈Rd U(q) > −∞. Then K
is strongly ν-irreducible.

In order to show this result, we are going to first show two preliminary lemmas.

Lemma 1 In addition to the conditions of Proposition 4, suppose that M = Id, and that 0 ≤ t ≤ 1
2(L+1)3 .

For any starting point q(0),p(0), let (q(s),p(s))s≥0 be the solution of the Hamiltonian dynamics (1)-(2).
Then the Jacobian of q(t) in terms of the initial momentum p(0) satisfies that

1
2 tId �

∂q(t)
∂p(0) �

3
2 tId,

where � denotes the positive semidefinite order (i.e. A � B means that B −A is positive semidefinite).

Proof. Let F (t) := ∂
∂z(0)Ψt,H(z(0)) denote the Jacobian matrix at time t, then from the evolution equation

(13) it follows that

d

dt
(F − I2d) = J∇2H(z(t))F = J∇2H(z(t))(F − I2d) + J∇2H(z(t))

=
(

0 Id
−∇2U(qt) 0

)
((F (t)− I2d) + I2d). (15)

Using the assumption of the lemma we know that ‖∇2U(qt)‖ ≤ L, hence
∥∥∥∥( 0 Id
−∇2U(qt) 0

)∥∥∥∥ ≤ (L + 1),

and therefore by (15) we have d
dt (‖F − I2d‖ + (L + 1)) ≤ (L + 1)(‖F − I2d‖ + (L + 1)). Using Gronwall’s

lemma, and the fact that F (0) = Id, we have ‖F (t) − I2d‖ + (L + 1) ≤ (L + 1) exp((L + 1)t). Hence for
t ≤ 1

L+1 , we have
‖F (t)− I2d‖ ≤ (L+ 1)(exp((L+ 1)t)− 1) ≤ 2(L+ 1)2t.

We can rewrite (15) as

d

dt

(
F − I2d −

(
0 tId

−
∫ t
s=0∇

2U(qs)ds 0

))
=
(

0 Id
−∇2U(qt) 0

)
(F (t)− I2d),

where
∥∥∥∥( 0 Id
−∇2U(qt) 0

)
(F (t)− I2d)

∥∥∥∥ ≤ 2(L + 1)3t for t ≤ 1
L+1 . Since ∂q(t)

∂p(0) is the upper-right block

matrix of F (t), the above equation implies that ‖ ∂q(t)
∂p(0) − tId‖ ≤

∫ t
s=0 s · 2(L + 1)3ds = (L + 1)3t2, and the

result follows.

Lemma 2 Under the conditions of Proposition 4, and assuming that M = Id, for any q(0),Q ∈ Rd, any
0 < t ≤ τ , if p(0) = Q−q(0)

t , and (q(s),p(s))s≥0 is the solution of the Hamiltonian dynamics (1)-(2), then

‖q(t)−Q‖ ≤ Ct2

for a finite constant C depending only on q, Q, τ and U but independent of t.

Proof. Let H(q(0),p(0)) = U(q(0))+ ‖p(0)‖2

2 denote the initial Hamiltonian, and H(q(s),p(s)) = U(q(s))+
‖p(s)‖2

2 be the current Hamiltonian. Since this is preserved by the Hamiltonian dynamics, for any s ≥ 0, we
have

‖p(s)‖2

2 = U(q) + ‖p(0)‖2

2 − U(q(s)) ≤ ‖p(0)‖2

2 + U(q)− inf
q′∈Rd

U(q′),

‖p(s)‖ ≤
√

2(U(q)− inf
q′∈Rd

U(q′)) + ‖p(0)‖2 ≤
√

2(U(q(0))− inf
q′∈Rd

U(q′)) + ‖p(0)‖.
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Since dq
ds = p(s), we have

‖q(s)− q(0)‖ ≤
∫ s

r=0
‖p(r)‖dr ≤ s ·

(√
2(U(q(0))− inf

q′∈Rd
U(q′)) + ‖p(0)‖

)
.

Hence for any 0 < t ≤ τ , for p(0) = Q−q(0)
t , for any 0 ≤ s ≤ t, we have

‖q(s)− q(0)‖ ≤ D for D := τ
√

2(U(q)− inf
q′∈Rd

U(q′)) + ‖Q− q(0)‖. (16)

Let E := supq:‖q−q(0)‖≤D ‖∇U(q)‖, then using the assumption that supq∈Rd ‖∇2U(q)‖ ≤ L, it follows that
E is finite. Since by the Hamiltonian equations dp

ds = −∇U(q(s)), it follows that for 0 ≤ s ≤ t ≤ τ , we have
‖dpds ‖ ≤ E, and therefore

‖p(s)− p(0)‖ =
∥∥∥∥∫ s

r=0

dp

ds
ds

∥∥∥∥ ≤ ∫ s

r=0

∥∥∥∥dpds
∥∥∥∥ ds ≤ s · E.

Now using the Hamiltonian equations again in q, we have that for 0 ≤ t ≤ τ ,

q(t) = q(0) +
∫ t

s=0
p(s)ds = q(0) +

∫ t

s=0
[p(0) + (p(s)− p(0))]ds

= q(0) + p(0)t+
∫ t

s=0
(p(s)− p(0))ds

using the fact that p(0) = Q−q(0)
t

= Q +
∫ t

s=0
(p(s)− p(0))ds.

Therefore we have

‖q(t)−Q‖ =
∥∥∥∥∫ t

s=0
(p(s)− p(0))ds

∥∥∥∥ ≤ ∫ t

s=0
‖p(s)− p(0)‖ds ≤

∫ t

s=0
s · Eds = E

2 t
2,

hence the claim of the lemma holds for C = E/2.
Proof of Proposition 4. Let ν(q) ∝ exp(−U(q)) be the target distribution, and µ be the multivariate
normal distribution on Rd with mean 0 and covariance matrix M . Assume without loss of generality that
M = Id (the general case follows by a simple modification of this argument).

Our goal is to show that for any starting point q(0), any measurable set A ⊂ Rd with ν(A) > 0, we have
K(q(0), A) > 0. Since we can fill Rd into countably many balls of radius δ (for any δ > 0), we can assume
without loss of generality that A is a subset of a ball of radius δ centered at some point Q ∈ Rd. We will
denote this closed ball by Bδ(Q) = {q ∈ Rd : ‖q −Q‖ ≤ δ}.

Then by Lemma 2, it follows that if t ≤
√
δ√
C

, and

p(0) = p∗ = Q− q(0)
t

,

then q(t) ∈ Bδ(Q).
Let Ψ(p(0)) denote the position (q) component of Ψt(q(0),p(0)) (q(0) is assumed fixed). Ψ maps the

initial momentum p(0) to the position at time t.
It follows from Lemma 1 that for any vector v, we have

‖Ψ(p∗)−Ψ(p∗ + v)‖ =

∥∥∥∥∥
(∫ 1

s=0

∂q(t)
∂p(0)

∣∣∣∣
p(0)=p∗+vs

ds

)
v

∥∥∥∥∥ ≥ t‖v‖
2 .

Therefore, with the choice r = 6δ
t the sphere Sr(p∗) = {p′ ∈ Rd : ‖p′ − p∗‖ = r} satisfies that for any

p′ ∈ Sr(p∗),
‖Ψ(p∗)−Ψ(p)‖ ≥ 3δ.
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Figure 1: Effect of the map Ψ

Since Ψ(p∗) is contained in Bδ(Q), it follows that the map of the ball Br(p(0)) by Ψ will contain the ball
Bδ(Q) (see Figure 1).

Hence for any point in Q′ ∈ Bδ(Q), there is at least one point p′ ∈ Br(p(0)) such that Ψ(p′) = q′.
Denote the set of points in Br(p(0)) that get mapped into the set A by Ψ as Bt (preimage of A). Since
ν(A) > 0, and ν has a density, it follows that Vol(A) > 0, and by Lemma 1, it follows that if 0 < t ≤ 1

2(L+1)3 ,
the determinant of the Jacobian of Ψ on Bt is finite and positive, so we also must have Vol(Bt) > 0, implying
that µ(Bt) > 0 (µ denotes the standard normal distribution on Rd, corresponding to the distribution of the
resampled momentum variable). Since this holds for any t ≤ min

( √
δ√
C
, 1

2(L+1)3

)
, and T ∼ νT has positive

density on [0, τ ], it follows by integration that K(q(0), A) > 0, thus K is strongly ν-irreducible.
In general the Hamiltonian flow cannot be simulated exactly due to the nonlinearity of the ODE. Hence

we are going to approximate it by discretization.

3 Discretizing Hamilton’s equations
We consider 3 simple discretization schemes.
Explicit scheme:

p(t+ ε) = p(t)− ε∇U(q(t))
q(t+ ε) = q(t) + εM−1p(t).

Modified explicit scheme:

p(t+ ε) = p(t)− ε∇U(q(t))
q(t+ ε) = q(t) + εM−1p(t+ ε).

Leapfrog (Störmer-Verlet) scheme

p(t+ ε/2) = p(t)− ε

2∇U(q(t))

q(t+ ε) = q(t) + εM−1p(t+ ε/2).

p(t+ ε) = p(t+ ε/2)− ε

2∇U(q(t+ ε))

The following figure shows these schemes implemented for the 1 dimensional standard Gaussian distri-
bution corresponding to H(p, q) = p2

2 + q2

2 .
As Figure 2 shows, these 3 schemes behave very differently. The first explicit scheme diverges for step

size ε = 0.3. The modified explicit scheme does not diverge, but it also does not tract the true trajectory
closely. The Leapfrog scheme tracks the true trajectory very closely, and it does not diverge.

An important property of these discretizations is that they are symplectic, and hence volume preserving.
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(d) Leapfrog Method, stepsize 1.2

Figure 2: Approximation of Hamiltonian dynamics for H(p, q) = p2

2 + q2

2 by 3 schemes. 20 steps in each case
in black, the true trajectory in grey.

Proposition 5 The above 3 schemes are symplectic, and hence volume preserving.

Proof. First, note that by the chain rule for Jacobians, if Ψ(z) = Ψ1(Ψ2(z)), then∇zΨ(z) = ∇Ψ1(Ψ2(z)))·
∇Ψ2(z)). If Ψ1 and Ψ2 are symplectic, then

[∇Ψ(z)]TJ−1∇zΨ(z) = (∇Ψ2(z))T (∇Ψ1(Ψ2(z)))T J−1∇Ψ1(Ψ2(z)) · ∇Ψ2(z)) = J−1,

so Ψ is also symplectic. By induction, this also holds for the composition of more than two maps. Using
this fact, it suffices to check symplecticity for a single step in the above schemes, modifying only one of p

or q. For example, the step p(t + ε) = p(t) − ε∇U(q(t)) corresponds to the map Ψ(z) =
(

q
p− ε∇U(q)

)
,

which has Jacobian ∇Ψ(z) =
(

Id 0
−ε∇2U(q) Id

)
. Now by direct calculation, one can see that

(∇Ψ(z))TJ−1∇Ψ(z) =
(
Id −ε∇2U(q)
0 Id

)(
0 −Id
Id 0

)(
Id 0

−ε∇2U(q) Id

)
=
(

0 −Id
Id 0

)
= J−1,

hence the symplecticity holds. This can be also checked for the other steps, and hence all 3 schemes are
symplectic. The volume preservation follows by Proposition 1.

4 Hamiltonian Monte Carlo
In this section, we are going to introduce Hamiltonian Monte Carlo, originally proposed in [1]. This is
an MCMC method that samples from a target distribution with density µ(q) ∝ exp(−U(q)) on Rd by
extending the state space and sampling from the distribution π on R2d with density π(z) ∝ exp(−H(z)) =
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exp(−U(q)−K(p)) = exp(−U(q)) exp
(
−pT M−1p

2

)
. From this decomposition, it is clear that the position

and momentum variables are independent.
Let Ψε : R2d → R2d denote the Leapfrog map, and for some L ∈ N, we denote by ΨL

ε the L times
composition of the Leapfrog map. Let N : R2d → R2d denote the map that negates the momentum, i.e.

N

(
q
p

)
=
(

q
−p

)
, and finally PR be the Markov kernel that resamples the momentum component p from

a multivariate Gaussian distribution with covariance matrix M . Hamiltonian Monte Carlo consists of the
iteration of 2 steps,

1. resample the momentum component p, i.e. apply the Markov kernel PR.

2. We propose a new position
(
q∗

p∗

)
= Ψ

(
q
p

)
:= N

(
ΨL
ε

(
q
p

))
by applying L Leapfrog steps and then

flipping the momentum. This new position is accepted with probability

min [1, exp(H(q,p)−H(q∗, p∗))] = min
[
1, exp

(
U(q)− U(q∗) + 1

2p
TM−1p− 1

2(p∗)TM−1p∗
)]

.

(17)

The following proposition shows the invariance of the target distribution for HMC.

Proposition 6 π is invariant with respect to the Markov kernel proposed above. Moreover, π is reversible
with respect to the second step of the Markov kernel.

Proof. Since q and p are independent according to the target distribution π, it is clear that the first
step keeps the target invariant. Let P2 denote the Markov kernel corresponding to the second step (a
combination of a deterministic step and Metropolis-Hastings accept-reject step), then we are going to check
that π is reversible with respect to P2.

We have seen during the previous lectures that in general a Markov kernel K is reversible with respect
to a distribution π on state space X if for every bounded measurable function f : X2 → R, we have∫ ∫

f(x,y)π(dx)K(x, dy) =
∫ ∫

f(x,y)π(dy)K(y, dx). (18)

In our case, P2(x, dy) is non-zero only for y = Ψ(x) and y = x, so we have∫ ∫
f(x,y)π(dx)P2(x, dy) =

∫ ∫
f(x,Ψ(x)) min[1, eH(x)−H(Ψ(x))]π(dx)

+
∫ ∫

f(x,x)
(

1−min[1, eH(x)−H(Ψ(x))]
)
π(dx)

Let y = Ψ(x), then x = Ψ(y) = Ψ(Ψ(x)), and by the volume preserving property of Ψ, we have

π(dy) = π(dx) · exp(−H(y))
exp(−H(x)) = π(dx) · eH(x)−H(y),

and the first part of the above sum can be written∫ ∫
f(x,Ψ(x)) min[1, eH(x)−H(Ψ(x))]π(dx)

=
∫ ∫

f(Ψ(y),y) min[1, eH(Ψ(y))−H(y)]π(dx)

=
∫ ∫

f(Ψ(y),y) min[1, eH(Ψ(y))−H(y)] · eH(y)−H(Ψ(y))π(dy)

=
∫ ∫

f(Ψ(y),y) min[1, eH(y)−H(Ψ(y))]π(dy).

The second part satisfies that∫ ∫
f(x,x)

(
1−min[1, eH(x)−H(Ψ(x))]

)
π(dx)

=
∫ ∫

f(y,y)
(

1−min[1, eH(y)−H(Ψ(y))]
)
π(dy).
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By combining these two equations, we can see that the reversibility condition (18) holds.
In practice, one does not need to flip the momentum at the end of the second step, since it will be

resampled in the first step in the next iteration. This was nevertheless required for showing the reversibility.
The following two examples illustrate the behaviour of Hamiltonian Monte Carlo.

Example 2 In this example, we did some simulations for the simple 2D Gaussian distribution with covari-

ance matrix Σ =
(

1 0.98
0.98 1

)
. We have used mass matrix M = I2, and 25 leapfrog steps per iteration

using stepsize 0.25. Figures 3 and 4 illustrate the behaviour of Hamiltonian Monte Carlo in this example,
and compare it with random walk Metropolis.

−2 −1 0 1 2

−2
−1

0
1

2

Position coordinates

−2 −1 0 1 2

−2
−1

0
1

2

Momentum coordinates

0 5 10 15 20 25

2.
2

2.
3

2.
4

2.
5

2.
6

Value of Hamiltonian

Figure 3: The position, momentum coordinates and the value of the Hamiltonian for 25 Leapfrog steps. As
we can see, the Hamiltonian is kept approximately constant by the Leapfrog steps, hence the acceptance
rate is close to 1.
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Figure 4: Twenty iterations of the random walk Metropolis method (20 updates per iteration) and the Hamil-
tonian Monte Carlo method (20 Leapfrog steps) for a highly correlated 2 dimensional Gaussian distribution.
As we can see, Hamiltonian Monte Carlo is making much larger moves and mixes faster than random walk
Metropolis.

Example 3 In this example, we did some simulations for a 100 dimensional multivariate Gaussian distri-
bution where the components are independent with standard deviations 0.01, 0.02, . . . , 1.00. The parameter
ε was randomly chosen at each iteration uniformly from (0.0104, 0.0156), and we selected L = 150. We
compared HMC with the random walk Metropolis chain, counting 150 Metropolis updates per one iteration
to be fair. The Figure 5 shows the last component (which had the largest standard deviation) for the two
chains.
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Figure 5: The last component in a 100 dimensional Gaussian distribution, random walk Metropolis versus
Hamiltonian Monte Carlo. Hamiltonian Monte Carlo is mixing much faster.

5 Concentration of measure and high dimensional behaviour
As we have seen in the previous examples, HMC had performed much better than random walk Metropolis
in high dimensions. To understand the reason for this, it is important to study the concentration of measure
phenomenon that appears in high dimensions.

Suppose that Z ∼ N(0, Id) is a d dimensional standard normal random vector. Then the Euclidean norm
of Z satisfies that for every t ≥ 0,

P (|‖Z‖ −
√
d| ≥ t) ≤ C exp

(
− t

2

C

)
, (19)

where C is an absolute constant independent of d. This means that with high probability, ‖Z‖ =
√
d+O(1),

i.e. most of the probability is is concentrated in a thin layer around the sphere of radius
√
d. Note that

here H(z) = ‖z‖2

2 , and since H(z) is preserved by the Hamiltonian, Hamiltonian dynamics moves around in
circular arcs. See Figure 6 for an illustration of this.

In general, if the Hessian of the target potential satisfies that µId � ∇2U(x) � LId for some 0 < µ <
L < ∞ (strongly convex and smooth potential), and we let Hmin := infzH(z), then it is possible to show
that

P
(∣∣∣√H(z)−Hmin − E

√
H(z)−Hmin

∣∣∣ ≥ t) ≤ C exp
(
− t

2

C

)
, (20)

for some constant C that depends on µ and L but is independent of the dimension d. Hence the Hamiltonian
is close to constant in the area of the space with high probability density, and therefore Hamiltonian dynamics
can be very efficient in exploring this potentially complicated set automatically. In contrast to this, random
walk Metropolis will need to take small moves of size O(1) to keep acceptance rates reasonably high, and
therefore it takes a long time to explore such high dimensional distributions.
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Figure 6: The density of the distribution π for a 100 dimensional standard Gaussian, when looking at the
first components p1, q1 (other components have been integrated out). The dashed line shows a possible
Hamiltonian path in this case.
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