
Advanced Simulation Methods
Chapter 4 - Elements of Markov Chains Theory

We present a very brief and elementary introduction to the theory of Markov chains. These theoretical
results are crucial to justify Markov chain Monte Carlo methods that will be presented in the following
lectures. Markov chain Monte Carlo are the building blocks of advanced Monte Carlo methods, that
address the problem of approximating integrals in high dimension. A rigorous treatment of this theory
would require measure theoretic concepts, which are beyond the scope of this course. We will thus neglect
these important issues here, and try to preserve the main ideas.

1 Discrete-time Stochastic Processes
A discrete-time X-valued stochastic process is a process where, for each t ∈ N, Xt is a random variable
taking values in some space X. Typically, we will deal with either discrete spaces (such as a finite set like
{1, 2, . . . , d} for some d ∈ N, or a countable set, like the set of integers Z), or continuous spaces (such
as R or Rd for some d ∈ N). The space X is often called the state space. In order to characterize a
discrete-time stochastic process, it is sufficient to know all of its finite dimensional distributions, that is,
the joint distributions of the process at any collection of finitely many times. For a collection of times
(t1, . . . , tn) and a collection of measurable sets of X, (At1 , ..., Atn), the process is associated with the joint
probability

P (Xt1 ∈ At1 , Xt2 ∈ At2 , ..., Xtn ∈ Atn) .

The fact that those probabilities completely define a stochastic process is not obvious, because the
stochastic process is “infinitely long”, i.e. t ∈ N takes infinitely many values. The characterization
by finite-dimensional distributions is called the Kolmogorov extension theorem. In other words, this
theorem allows the definition of a process (Xt)t∈N which is an infinite-dimensional object (because of the
“t ∈ N”) using only finite objects (like the joint probability above), under some consistency conditions
omitted here for simplicity. Thus, to define a stochastic process, all we need to do is to specify these finite
dimensional distributions. We will focus here on the class of stochastic processes called “Markov”, which
are useful in the context of Monte Carlo methods. We will see that their specification only requires an
“initial distribution” and a “transition probability” or “transition kernel”, both of which are conceptually
simple objects.

2 Discrete State Space Markov Chains
2.1 Markov property
Let us first consider discrete state spaces, i.e. |X| is finite or countably infinite. We can assume, without
loss of generality, that the state space X is N. In this context, we can work with the probability of the
process taking a particular value at a particular time t. This contrasts with the case of continuous state
spaces, where a random variable admitting a probability density function with respect to the Lebesgue
measure has zero probability of taking any particular value. For any t ∈ N, we always have the following
decomposition, for a collection of points (x1, . . . , xt) in X,

P(X1 = x1, X2 = x2, ..., Xt = xt) (1)
= P(X1 = x1, X2 = x2, ..., Xt−1 = xt−1)P(Xt = xt|X1 = x1, X2 = x2, ..., Xt−1 = xt−1)

= P(X1 = x1)

t∏
s=2

P(Xs = xs|X1 = x1, ..., Xs−1 = xs−1).
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From this decomposition, we can construct all of the finite dimensional distributions using simply the
sum and product rules of probability. To simplify the process, we can assume that the distribution of
Xs given its “past” (X1, . . . , Xs−1) depends only upon Xs−1; i.e. we have

P(Xs = xs|X1 = x1, ..., Xs−1 = xs−1) = P(Xs = xs|Xs−1 = xs−1). (2)

Stochastic processes for which (2) holds are known as Markov processes, or simply as Markov chains, in
the Monte Carlo literature. We will drop the “discrete-time” phrase from now on, but note that Markov
processes can also be defined in continuous time. The fact that Xt depends only on Xt−1 is often called
the “Markov property”.

When dealing with discrete state spaces, it is often convenient to associate each probability distribu-
tion with a row vector, with non-negative entries and summing to one. Now, given a random variable
X on X, we say that X has distribution µ for some vector µ (with non-negative entries and summing to
one), and we note:

∀x ∈ X P (X = x) = µ(x).

2.2 Homogeneous Markov Chains
Markov chains are called homogeneous when the conditional probabilities that do not depend on the
time index, i.e.

∀x, y ∈ X ∀t, s ∈ N P(Xt = y|Xt−1 = x) = P(Xt+s = y|Xt+s−1 = x). (3)

In this setting, we can introduce the transition matrix K(i, j) = Kij = P(Xt = j|Xt−1 = i). K is also
referred to as the kernel of the Markov chain. If we call µt the distribution of Xt, µt(i) = P (Xt = i),
then by combining (1)-(2)-(3), the joint distribution of the chain over any finite time steps satisfies

P(X1 = x1, X2 = x2, ..., Xt = xt) = µ1(x1)
t∏

s=2

Kxs−1xs .

We can also define Kn with entries Kn(i, j), the matrix of transition from i to j in n steps:

Kn
ij = P(Xt+n = j|Xt−1 = i).

We obtain for any i, j the so-called Chapman-Kolmogorov equation

Km+n
ij =

∑
k∈X

Km
ikK

n
kj .

which proves that indeed Kn is the nth matrix power of K, and hence the notation is consistent with
standard linear algebra. For the marginal laws of Xt, we obtain the expression

µt+1(j) =
∑
i∈X

µt(i)Kij .

If X is finite, this is nothing else than a standard vector-matrix multiplication, hence we rewrite the
equation as

µt+1 = µtK. (4)
Similarly, we obtain µt+n = µtK

n.
To summarize, homogeneous Markov chains can be characterized as follows. First, the distribution

µ0 of X0, called the “initial distribution”, must be specified. Then, the transition kernel K must be
specified, and it characterizes the law of Xt given Xt−1, at any time t. The distribution µ0 and the
transition K completely define the Markov chain (Xt), using the Chapman-Kolmogorov equation above
and the fact that finite-dimensional joint distributions characterize stochastic processes, i.e. Kolmogorov
extension theorem.

Although homogeneous Markov chains are predominantly used in Monte Carlo, there are also popular
techniques such as simulated annealing, adaptive Markov chain Monte Carlo and particle filters which
rely on non-homogeneous Markov chains. These processes are more complex to analyze, hence we will
restrict ourselves to homogeneous chains henceforth.
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2.3 Important Properties
2.3.1 Irreducibility

We review here some of the main concept/properties associated to a Markov chain (Xt)t∈N. We first
consider how states communicate to each other under a given Markov chain transition kernel.

Definition 2.1. (Accessibility). A state y is accessible from a state x, written “x → y”, if

inf {t : P(Xt = y|X1 = x) > 0} < ∞.

Note that this can be rewritten equivalently as inf
{
t : Kt

xy > 0
}
< ∞. In layman’s terms, x → y

means that starting from x, there is a positive probability of reaching y at some finite time in the future,
according to the Markov kernel K.

Definition 2.2. (Communication). Two states x, y ∈ X are said to communicate if and only if x → y
and y → x.

These notions allow the study of the “communication structure” of a Markov chain, i.e. from which
points it is possible to travel to, and back from. We now introduce a concept to describe the properties
of the full state space, or significant parts of it, rather than individual states.

Definition 2.3. (Irreducibility). A Markov chain is said to be irreducible if all the states communicate,
i.e. ∀x, y ∈ X : x → y. Given a probability distribution ν on X, a Markov chain is said to be ν-irreducible
if every state with positive probability under ν communicates with every other such state:

∀x, y ∈ supp (ν) : x → y

where supp(ν) = {x ∈ X : ν(x) > 0}. A Markov chain is said to be strongly irreducible if any state
can be reached from any other state, in only one step of the Markov chain. A Markov chain is said to
be strongly ν-irreducible if all states in supp(ν) may be reached in a single step from any other state in
supp(ν).

This notion is important for the study of Markov chain Monte Carlo methods: indeed a Markov chain
that is ν-irreducible can explore the entire support of ν, rather than being restricted to a subset of it.
Thus, when we will introduce Markov chains to explore a particular distribution of interest π, we will
carefully check whether the chains are π-irreducible.

2.3.2 Properties of states

Another important notion is the notion of periodicity.

Definition 2.4. (Periodicity) For a Markov chain with kernel K, a state x has period d(x) defined
as:

d(x) = gcd {s ≥ 1 : Ks
xx > 0}

where “gcd” denotes the greatest common denominator. If a chain induces a state x of period d(x) > 1,
it is said to have a cycle of length d(x).

Proposition 2.1. All states that communicate have the same period, therefore all states have the same
period if the Markov chain is irreducible.

Proof. Assume that x and y communicate: x → y and y → x. There exist paths of lengths r, s and
t, respectively from x to y, from y to x and from y to y. Hence there exist paths of length r + s and
r+ s+ t from x to x, hence d(x) must divide r+ s and r+ s+ t. Thus d(x) divides their difference, that
is t. As this holds for any t corresponding to a path from y → y then d(x) is a divisor of the length of
any path from y → y: as d (y) is the gcd of all such paths by definition, it follows that d(x) ≤ d(y). By
symmetry, we also have that d(y) ≤ d(x). Therefore d(x) = d(y). ■

The proposition shows that for irreducible Markov chains, we can talk about the period of the chain,
defined as the period of any of its state. Then, the term periodic corresponds to chains with a period
greater than 1, while chains with a period equal to 1 are termed aperiodic.
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We now introduce an additional random quantity which corresponds to the number of times that a
state is visited, if a Markov chain is allowed to run for infinite time:

ηx :=
∞∑
k=1

Ix (Xk) .

We will also adopt the standard convention that, given any function ϕ, Ex (ϕ (X1, X2, ...)) is the expecta-
tion of ϕ under the law of the Markov chain initialized with X1 = x. Similarly, if µ is some distribution
over X, then Eµ (ϕ) is the expectation of ϕ under the law of the process initialized with X1 ∼ µ. Similarly,
Px refers to the probability of the chain conditional on X1 = x, and Pµ is the probability under X1 ∼ µ.

Definition 2.5. (Transience and Recurrence). For a Markov chain, a state x is termed transient
if:

Ex (ηx) < ∞.

Otherwise the state is called recurrent and

Ex (ηx) = ∞.

For irreducible Markov chains, transience and recurrence are properties of the chain itself, rather
than its individual states. if any state is transient (or recurrent) then all states have that property.

Example 2.1. Consider the random walk on Zk, for an integer k ∈ N. It is shown in [6], Section 1.6,
that the random walk is recurrent on Z and Z2 but is transient on Zk for k ≥ 3.

2.3.3 Equilibrium

For Markov chain Monte Carlo methods, we will be particularly interested in Markov kernels admitting
an invariant distribution.

Definition 2.6. (Invariant Distribution). A distribution π is said to be invariant or stationary for
a Markov kernel, K, if πK = π.

The invariant distribution π of a Markov kernel K is thus simply the left eigenvector with unit
eigenvalue. If there exists t such that Xt ∼ π where π is a stationary distribution, then Xt+s ∼ πKs = π
for all s ∈ N, i.e. the Markov chain then keeps the same marginal distribution π forever. A Markov
chain is said to be in its stationary regime once this has occurred.

The very remarkable property of aperiodic, irreducible Markov chains with an invariant distribution
π, is that the marginal distribution of the chain Xt converges to the invariant distribution π. This is
true for any starting state x or starting distribution µ. Hence the invariant distribution is also called
the equilibrium distribution, or limiting distribution. The main result is given in the following theorem,
proven in [6], Section 1.8 (Theorem 1.8.3).

Theorem 2.1. (Convergence to equilibrium). Consider a Markov chain (Xt)t∈N on a discrete space
X that is aperiodic, irreducible and with an invariant distribution π. Let µ be any initial distribution on
X. Then

∀x ∈ X Pµ (Xt = x) −−−→
t→∞

π(x).

This theorem is remarkable in many respects. Note that the convergence occurs for any initial
distribution µ; in other words, the initial distribution is progressively “forgotten” by the chain. Note
also that the theorem implies that the invariant distribution π is unique. For the construction of Markov
chain Monte Carlo methods, we will typically have a specific distribution π in mind, and the goal is
going to construct a Markov chain (and thus its transition kernel), such that its invariant distribution is
precisely π. The “detailed balance” condition is a tool that allows the design of a transition kernel given
a specific invariant distribution π.

Definition 2.7. A Markov kernel K satisfies the detailed balance condition for a distribution π if

∀x, y ∈ X π(x)Kxy = π (y)Kyx. (5)
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We have the following straightforward proposition.

Proposition 2.2. If a Markov kernel K satisfies the detailed balance condition for π, then π is invariant
for K.

Proof. To demonstrate that K is π-invariant, we sum both sides of the detailed balance equation
(5) over x:

∀y ∈ X
∑
x∈X

π(x)Kxy =
∑
x∈X

π(y)Kyx

hence ∀y ∈ X (πK) (y) = π(y)

and, as this holds for all y, then πK = π. ■
This proposition shows that if one finds a Markov kernel K satisfying the detailed balance condition

for π, and if additionally K is aperiodic and irreducible, then we can apply the convergence to equilibrium
theorem, for any starting value or initial distribution.

Finally, another useful property of Markov chain is reversibility, or “time-reversibility”. Essentially,
a reversible Markov chain is a process that behaves similarly when considered “forward in time” or
“backward in time”.

Definition 2.8. (Time-reversal Markov chain). Consider an irreducible Markov chain (Xt)t∈N, with
kernel K and invariant distribution π. Assume that X1 ∼ π, i.e. the chain is started at stationarity.
Define Yt = XT−t for some T ≥ 1. Then (Yt)0≤t≤T is an irreducible Markov chain, with invariant
distribution π and with initial distribution also π, and its transition kernel K̂ is given by

∀x, y ∈ X π(x)Kxy = π (y) K̂yx.

The chain (Yt) is called the time-reversal chain of (Xt) .

Definition 2.9. (Reversible chain)
A irreducible Markov chain (Xt)t∈N, with kernel K and invariant distribution π, is said to be reversible

(with respect to π) if its transition kernel K is equal to the transition kernel K̂ of its time-reversal chain,
in other words, at stationarity we have

∀x, y ∈ X P(Xt = x|Xt+1 = y) = P(Xt = x|Xt−1 = y).

Numerous Markov chains that we will study later on are reversible. Reversibility is typically verified
by checking the detailed balance condition as discussed above.

Proposition 2.3. (Detailed balance implies reversibility). If a Markov chain has a transition
kernel K satisfying the detailed balance condition for some distribution π (as in Eq. (5)), then the chain
is reversible with respect to π.

Proof. We check that

P(Xt = x|Xt+1 = y) =
P(Xt = x,Xt+1 = y)

P(Xt+1 = y)

=
π (x)Kxy

π (y)
=

π (y)Kyx

π (y)
(detailed balance)

= Kyx = P(Xt = x|Xt−1 = y).

■
Beyond convergence to equilibrium, there are many convergence results for Markov chains in the

form of law of large numbers and central limit theorems. Those results will be of primary interest to
assess the consistency and the precision of Markov chain Monte Carlo methods. Before listing some key
convergence results for Markov chains, we describe elements of the theory of Markov chains defined in
continuous (or “general”) state spaces (such as R).
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3 Continuous State Space Markov Chains
3.1 From discrete to continuous spaces
The study of general state space Markov chains is far beyond the scope of this course. In this section,
we will just explain how some of the concepts introduced for discrete state spaces can be extended to
continuous spaces via probability density functions and measures. We will not provide proofs of the
results, but the standard book on this topic is “the Meyn & Tweedie”, as listed in the references.

When facing with continuous state spaces, the main difficulty stems from the fact that the probability
of any continuous random variable taking any particular value is zero. For example, if a random variable
X follows normal distribution, then for any x ∈ R, P (X = {x}) = 0. Hence, we cannot for instance
refer to transition probabilities P (Xt = {y} | Xt−1 = x). The Markov property (2) can still be defined
on a continuous state space, as follows. We say that the process (Xt)t∈N is a Markov chain if for any
measurable set A ⊂ X:

P(Xt ∈ A|X1 = x1, X2 = x2, ..., Xt−1 = xt−1) = P(Xt ∈ A|Xt−1 = xt−1).

It is often convenient to describe the distribution of a random variable X over X in terms of some
probability density function, µ : X → R+ which has the property that, if X ∼ µ, then we have for any
measurable set A,

P (X ∈ A) =

ˆ
A

µ (x) dx.

We will only consider the homogeneous case here but the extension to non-homogeneous Markov chains
is straightforward. For homogeneous chains, we may describe the conditional probabilities of interest as
a kernel function K : X × X → R which has the property that for all measurable sets A ⊂ X and all
x ∈ X:

P(Xt ∈ A|Xt−1 = x) =

ˆ
A

K (x, y) dy := K (x,A) ,

that is conditional on Xt−1 = x, Xt is a random variable which admits a probability density function
y 7→ K (x, y).

Hence for any collection of measurable sets A1, A2, ..., At the following holds:

P(X1 ∈ A1, X2 ∈ A2, ..., Xt ∈ At) =

ˆ
A1×···×At

µ (x1)

t∏
k=2

K (xk−1, xk) dx1 · · · dxt.

We can also define the m-step conditional distributions,

P(Xt+m ∈ A|Xt = xt) =

ˆ
Xm−1×A

t+m∏
k=t+1

K (xk−1, xk) dxt+1 · · · dxt+m

and it is useful to define an m-step transition kernel in the same manner as in the discrete case. Here
matrix multiplication is replaced by a convolution operation but the intuition remains the same; i.e. we
can rewrite the expression above as

P(Xt+m ∈ A|Xt = xt) =

ˆ
A

Km (xt, xt+m) dxt+m =: Km (xt, A) ,

where

Km (xt, xt+m) =

ˆ
Xm−1

t+m∏
k=t+1

K (xk−1, xk) dxt+1 · · · dxt+m−1.

Denoting by µt the density of the marginal distribution of Xt, we obtain

µt+m (y) =

ˆ
X
µt (x)K

m (x, y) dx

and, in terms of sets,

µt+m (A) = P(Xt+m ∈ A) =

ˆ
A

ˆ
X
µt (x)K

m (x, y) dxdy.
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Example 3.1. Consider the following auto-regressive (AR) model

Xt = ρXt−1 + Vt (6)

where Vt
i.i.d.∼ pV (·). This defines a Markov process such that

K (x, y) = pV (y − ρx) .

In particular for pV (v) = N
(
v; 0, τ2

)
, we have

K (x, y) =
1√
2πτ2

exp
(
− 1

2τ2
(y − ρx)

2

)
.

We also have
Xt+2 = ρ (ρXt + Vt+1) + Vt+2 = ρ2Xt + ρVt+1 + Vt+2

and similarly

Xt+m = ρmXt +
m∑

k=1

ρm−kVt+k.

So when pV (v) = N
(
v; 0, τ2

)
, we have

Km (x, y) =
1√
2πτ2m

exp
(
−1

2

(y − ρmx)
2

τ2m

)
(7)

where
τ2m = τ2

m∑
k=1

(
ρ2
)m−k

= τ2
1− ρ2m

1− ρ2
. (8)

Example 3.2. Consider the following model. At time t, with probability α (Xt−1) set

Xt = ρXt−1 + Vt

where Vt
i.i.d.∼ pV (·) and otherwise set Xt := Xt−1. In this case (Xt)t≥1 is still a Markov process but

K (x, y) = α (x) pV (y − ρx) + (1− α (x)) δx (y)

where δx (y) is the Dirac mass located at x. In this scenario, the transition kernel does not admit a
density with respect to the Lebesgue measure, because it has a singular component. A proper measure
theoretic way of writing the transition kernel is

K (x, dy) = α (x) pV (y − ρx) dy + (1− α (x)) δx (dy)

and then we have
P(Xt ∈ A|Xt−1 = x) =

ˆ
A

K (x, dy) .

We simplify the notation by essentially using the (abusive) convention that δx (dy) = δx (y) dy so that
K (x, dy) = K (x, y) dy. In this case, we also use the notation

K (x, {x}) = P(Xt = x|Xt−1 = x).

3.2 Important Properties
We can introduce definitions and properties which fulfill the same role in context of continuous state
spaces as those introduced earlier for discrete state spaces. In particular, we are interested in irreducibil-
ity: we want some way of determining what class of states are “reachable” from one another, and hence
what part of X might be “explored”, with positive probability, starting from a point within such a class.
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Definition 3.1. (Irreducibility). Given a distribution µ over X, a Markov chain is said to be µ-
irreducible if, for all points x ∈ X and all measurable sets A such that µ(A) > 0, there exists some t such
that:

Kt (x,A) > 0.

If this condition holds with t = 1, then the chain is said to be strongly µ-irreducible.

In practice, we will deal with π-irreducible Markov chains, where π is the “target” distribution of
interest. Periodicity for continuous space Markov chains can be introduced as follows.

Definition 3.2. (Periodicity). A µ-irreducible Markov chain with transition kernel K is said to be
periodic, if there exists some partition of the state space, X1, ...,Xd for d ≥ 2, i.e. ∀i ̸= j : Xi ∩ Xj = ∅
and ∪d

i=1Xi = X, with the property

∀i, j, t, s : P (Xt+s ∈ Xj |Xt ∈ Xi) =

{
1 j = i+ s mod s
0 otherwise. .

Otherwise the Markov chain is aperiodic.

A Markov chain with a period d ≥ 2 is such that the chain moves with probability 1 from set X1 to
X2, X2 to X3 ... and Xd−1 to X1 and Xd to X1. Hence the chain will visit a particular element of the
partition with a period d.

We need some way of characterizing how often a continuous space Markov chain visits any particular
region of the state space, in order to define concepts that are analogous to transience and recurrence in
the discrete space setting. Hence we introduce a collection of random variables ηA for any measurable
set A of X, which represent to the number of times that the set A is visited by the chain, i.e.

ηA =
∞∑
k=1

IA (Xk) .

Once again we use Ex to denote the expectation under the law of the Markov chain with initial state x.

Definition 3.3. (Transience and Recurrence). For a µ-irreducible Markov chain, a set A ⊂ X is
recurrent if

∀x ∈ A Ex (ηA) = ∞.

A set A ⊂ X is uniformly transient if there exists some M < ∞ such that:

∀x ∈ A Ex (ηA) ≤ M.

A set A ⊂ X is transient if it may be expressed as a countable union of uniformly transient sets, i.e.:

∃ {Mi ∈ R} ∃ {Bi ⊂ X}∞i=1 : A ⊂ ∪∞
i=1Bi ∀i ∈ N ∀x ∈ Bi Ex (ηBi) ≤ Mi < ∞.

A Markov chain is recurrent if the following two conditions are satisfied:

• the chain is µ-irreducible for some distribution µ;

• for every measurable set A ⊂ X such that µ (A) =
´
A
µ (x) dx > 0, Ex (ηA) = ∞ for every x ∈ A.

The chain is transient if it is µ-irreducible for some distribution µ and the entire space is transient.

As in the discrete setting, in the case of irreducible chains, transience and recurrence are properties
of the chain rather than individual states: all states within the support of the irreducibility distribution
are either transient or recurrent. We next introduce the concept of invariant distribution.

Definition 3.4. (Invariant Distribution). A probability distribution with density π is said to be
invariant or stationary for a Markov kernel K, if

∀y ∈ X
ˆ
X
π (x)K (x, y) dx = π (y) .
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A Markov kernel that admits an invariant probability distribution and that is µ-irreducible for some
µ is said to be positive recurrent. Then, it can be shown that the invariant probability distribution is
unique. A slightly stronger form of recurrence is widely employed in the proof of many theoretical results
which underlie Markov chain Monte Carlo. This form of recurrence is known as Harris recurrence and
may be defined as follows.
Definition 3.5. (Harris Recurrence). A set A ⊂ X is Harris recurrent if Px (ηA = ∞) = 1 for every
x ∈ X. A Markov chain is Harris recurrent if it is µ-irreducible and if every set A such that µ (A) > 0
is Harris recurrent.

The concepts of reversibility and detailed balance are essentially unchanged from the discrete set-
ting. It is necessary to consider integrals with respect to densities rather than sums over probability
distributions, but no fundamental differences arise here. For instance we can introduce reversibility as
follows.
Definition 3.6. (Reversibility). A Markov kernel K is reversible with respect to π if

∀f : B
(
X2 → R

) ˆ ˆ
f(x, y)π(dx)K(x, dy) =

ˆ ˆ
f(y, x)π(dx)K(x, y),

where B
(
X2 → R

)
refers to the bounded functions measurable functions f from X2 to R.

This definition, which makes apparent that the functions (x, y) 7→ f(x, y) and (x, y) 7→ f(y, x) have
the same expectation with respect to two consecutive steps of the Markov chain at stationarity, is another
way of expressing that the Markov chain (at stationarity) has the same law “forward” and “backward”.

The detailed balance condition proves to be useful, as in the discrete setting, to design Markov kernels
with a specific invariant distribution π in mind. The following result illustrates it.
Proposition 3.1. A Markov kernel satisfies the so-called detailed balance condition for some distribution
of density π, if

∀x, y ∈ X : π (x)K (x, y) = π (y)K (y, x) .

The the following holds:
• the distribution π is invariant for the kernel K,

• the chain is reversible with respect to π.
Example 3.3. For the auto-regressive (AR) Gaussian model (6), we can easily check that the detailed
balance condition is satisfied for

π (x) = N
(
x; 0,

τ2

1− ρ2

)
when |ρ| < 1. We can also easily check using (7)-(8) that in this case we have

lim
t→∞

Kt (x, y) = π (y)

so that the distribution of Xt is becoming independent of X1 = x.

4 Selected Convergence Results
The study of Markov chains dates back more than fifty years and comprises an enormous literature. This
section serves only to motivate the material presented in the subsequent chapters; that is, in a nutshell,
Markov chains can indeed be used to approximate integrals.

These theorems are essentially laws of large numbers and central limit theorems, but for Markov
chains instead of independent, identically distributed random variables. They tell us that if we take a
sample average of a function evaluated at the realizations of a Markov chain, then the averages converge
to the integral of the function of interest with respect to the stationary distribution of the Markov chain;
at least under some “regularity conditions”, on the function and on the invariant distribution. Under
some stronger conditions, we can even obtain a rate of convergence.

Let us start with the law of large number, which comes in two flavors. The first tells us that, for most
starting points of the chain, a law of large numbers holds. Under slightly stronger conditions which may
be difficult to prove in practice, the same result holds for all starting points.
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Theorem 4.1. (A Simple Ergodic Theorem). If K is a π-irreducible X-valued Markov kernel with
stationary distribution π, then almost surely (i.e. with probability one), for any integrable function
ϕ : X → R:

lim
t→∞

1

t

t∑
i=1

ϕ (Xi) =

ˆ
X
ϕ (x)π (x) dx

for π-almost all starting values x (i.e. for any x except for some set N such that
´
N π (x) dx = 0).

An outline of the proof of this theorem is provided by (Roberts and Rosenthal, 2004, Fact 5.).

Theorem 4.2. (A Stronger Ergodic Theorem). If K is a π-invariant, Harris recurrent Markov
chain with stationary distribution π, then almost surely, for any integrable function ϕ : X → R:

lim
t→∞

1

t

t∑
i=1

ϕ (Xi) =

ˆ
X
ϕ (x)π (x) dx

for all starting values x.

This is a particular case of Robert and Casella, 2004, p. 241, Theorem 6.63, and a proof of the
general theorem is given there. The same theorem is also presented with proof in Meyn and Tweedie,
1993, p. 433, Theorem 17.3.2. Note that the previous results do not ensure that Xt ∼ π as t → ∞. An
additional condition, aperiodicity, is necessary to ensure this.

Theorem 4.3. Suppose the kernel K is π-irreducible, π-invariant and aperiodic. Then, we have

lim
t→∞

ˆ
X

∣∣Kt (x, y)− π (y)
∣∣ dy = 0

for π−almost all starting value x.

Laws of large numbers for stochastic processes are also called “ergodic theorems”, the most famous
one being Birkhoff ergodic theorem, which generalizes the above theorems. Before stating a central limit
theorem, we mention different definitions of ergodicity.

Definition 4.1. (Geometric Ergodicity). A π-invariant, Harris recurrent Markov chain with sta-
tionary distribution π is geometrically ergodic if there exists a real ρ < 1 and a non-negative function
M : X → R+, such that for all measurable set A,

|Kn (x,A)− π (A)| ≤ M(x)ρn.

Geometric ergodicity is thus about convergence to equilibrium, with a specific geometric rate. The
bound still depends on the starting point x. Uniform ergodicity is a stronger property.

Definition 4.2. (Uniform Ergodicity). A π-invariant, Harris recurrent Markov chain with stationary
distribution π is geometrically ergodic if there exists a real ρ < 1 and a real M > 0, such that for all
measurable set A,

|Kn (x,A)− π (A)| ≤ Mρn.

Under regularity conditions, given e.g. in Jones, 2004, it is possible to obtain a central limit theorem
for the ergodic averages of a Harris recurrent, π-invariant Markov chain, and a function ϕ : X → R which
has at least two finite moments (depending upon the combination of regularity conditions assumed,
it may be necessary to have a finite moment of order 2 + δ). It can be proved that every reversible,
geometrically ergodic, stationary Markov chain satisfies a central limit theorem, which is why geometric
ergodicity was introduced above as an intermediate concept.

Theorem 4.4. (A Central Limit Theorem). For a Harris recurrent, π-invariant Markov chain, and
a function ϕ : X → R satisfying enough regularity conditions,

√
t

[
1

t

t∑
i=1

ϕ (Xi)−
ˆ
X
ϕ (x)π (x) dx

]
D−−−→

t→∞
N
(
0, σ2 (ϕ)

)
,
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where
σ2 (ϕ) = V [ϕ (X1)] + 2

∞∑
k=2

Cov [ϕ (X1) , ϕ (Xk)] .

The variance and covariance in the expression above are with respect to the distribution π of the Markov
chain in its stationary regime.

Example 4.1. For the auto-regressive (AR) Gaussian model (6), we have seen that

π (x) = N
(
x; 0,

τ2

1− ρ2

)
when |ρ| < 1. We can also easily check that in the stationary regime

Cov (X1, Xk) = ρ Cov (X1, Xk−1) = · · · = ρk−1V [X1]

= ρk−1 τ2

1− ρ2
.

Hence we can easily check that the variance in the CLT for ϕ (x) = x is given by

σ2 = V (X1) + 2
∞∑
k=2

Cov (X1, Xk)

=
τ2

1− ρ2

(
1 + 2

∞∑
k=1

ρk

)

=
τ2

1− ρ2
1 + ρ

1− ρ
.
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