
SB2.1 Foundations of Statistical Inference

Sheet 3 — MT22

Section A

1. The risks for five decision processes δ1, . . . , δ5 depend on the value of a positive-valued

parameter θ. The risks are given in the table below

δ1 δ2 δ3 δ4 δ5

0 ≤ θ < 1 10 10 7 6 8

1 ≤ θ < 2 8 11 8 5 10

2 ≤ θ 15 11 12 14 14

(a) Which decision procedures are at least as good as δ1 for all θ ?

(b) Which decision procedures are admissible?

(c) Which is the minimax procedure?

(d) Suppose θ has a uniform distribution on [0, 5]. Which is the Bayes procedure and

what is the Bayes risk for that procedure?

Solution:

(a)

R(θ, δ1) ≥ R(θ, δ3) and R(θ, δ4)

for all θ > 0 so δ3, δ4 are at least as good as δ1.

(b) δ1 and δ5 are inadmissible procedures, so δ2, δ3, δ4 are admissible.

(c) The minimax procedure chooses δ to minimize

max
θ

R(θ, δ)

Values of the interior maximum for δ1, . . . , δ5 are 15,11,12,14 and 14, so δ2 is the

minimax solution.
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(d) In the Bayes procedure we minimize∫ 5

0

R(θ, δ) · 1
5
dθ

Values of 5 × the integral are 63,54,51,53, 60 so δ3 is the Bayes procedure. The

Bayes risk is 51/5.
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Section B

2. Consider a vector of observations X with sampling model X|θ ∼ f(·, θ) with θ ∈ R and

a prior distribution with density π(θ). Consider the loss function for estimating θ

L(θ, δ) = h(θ − δ), h(u) = eu − u− 1

(a) Show that for all u ∈ R h(u) ≥ 0 and show that h is a convex function.

(b) Determine the form of the Bayes estimator δ(X) and prove that it is almost surely

unique as soon as ∫
R
[eθ + |θ|]π(θ|x)dθ < +∞

(c) Assume that X = (X1, · · · , Xn) with Xi
iid∼ N (µ, σ2) with prior π(θ) ∝ 1/σ where

θ = (µ, σ2)

Compute the marginal posterior π(µ|X) up to proportionality. Is the Bayes esti-

mator µ̂Bayes under the loss function L(µ, δ) = h(µ− δ) well defined? (here δ is an

estimator of µ)

(d) Now assume that σ is known and that we are using a flat prior for µ. Find the

Bayes estimator.

[Hint: It might be useful to look-up the definition of the inverse Gamma distribution

(see Wikipedia) and of the Student distribution (see Wikipedia ) ]

3. Remember Question 3 in PS2. In order to measure the intensity, θ, of a source of

radiation in a noisy environment a measurement X1 is taken without the source present

and a second, independent measurement X2 is taken with it present. It is known that

X1 is N(µ, 1) and X2 is N(µ + θ, 1), where µ is the mean noise level. In PS2, we

showed that if the prior distribution for µ is N(µ0, 1) while the prior for θ is constant

then the marginal posterior for θ is Gaussian N((2x2 − x1 − µ0)/2, 3/2).

(a) Suppose Y1, Y2 are independent Gaussian random variables with respective means

µ1, µ2 and variances 1. What is the Fisher information matrix for (µ1, µ2)?

(b) Compute Jeffrey’s prior on (µ, θ). Is the posterior proper? [ Hint: it might be

helpful to remember how reparametrization acts on Jeffrey’s prior. See Wikipedia.]

(c) Compute the marginal posterior distribution of θ under Jeffrey’s prior. Hence

derive the Bayes estimator associated to the quadratic loss function and compute

its frequentist risk, the posterior risk and integrated risk.
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4. Let E(a, b) be the distribution from Question 5 on PS2, the shifted exponential with

density
1

b
e−(x−a)/b, x > a

where a ∈ R, b > 0 are parameters. Let X1, . . . , Xn be a random sample from the

distribution E(a, b). [Hint: It might be useful to look-up the definition of the inverse

Gamma distribution (see Wikipedia)

(a) If a is known, derive Jeffrey’s prior on b and compute the posterior mean b̂ . Show

that b̃ = (n− 1)b̂/n is MVUE and attains the Cramer Rao lower bound.

(b) If a is known and an inverse Γ(α, β) prior is chosen for b , find the posterior mean.

Is it an MVUE? Compute the predictive distribution of Xn+1 .

(c) If b is known and a prior density πa on a is considered. Show that the posterior

distribution depends only onX(1) = minXi, compute the posterior mean associated

with the prior π(a) ∝ 1. Show that the posterior is proper and compute it.

(d) We continue to assume the prior π(a) ∝ 1. Show that for z > 0 and all b > 0,

the posterior probability Π(n|a −X(1)| > z
∣∣X1, · · · , Xn) goes to zero as z goes to

infinity uniformly in n. Compute the frequentist risk of â (the posterior mean)

under the quadratic loss.

[ Hint: note that in the expression Π(n|a−X(1)| > z
∣∣X1, · · · , Xn) it is a which is

the random variable since we are conditioning on X1, · · · , Xn]

(e) Optional, not to be marked. Suppose now that both a and b are unknown.

As in PS2, define T1(X) = X(1) and T2(X) =
∑n

i=1Xi − X(1) and show that the

posterior distribution depends only on (T1, T2). Show that the family of priors

π(a|b) ∝ eα(a−β)/b1a<z1 , π(b) ∝ b−m−1e−c/b1b>0

is conjuguate.
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5. Let Xi
ind.∼ N (µi, σ

2) , i ≤ p and denote µ = (µ1, · · · , µp)
T Consider the quadratic loss

function. σ2 is known.

(a) Show that for all real functions h of (X1, · · · , Xn) continuously differentiable and

satisfying

∀j E
(∣∣∣∣ ∂h∂xj

(X)

∣∣∣∣) < +∞, and E[h2(X)] < +∞

we have

E (h(X)(Xj − µj)) = σ2E
(

∂h

∂xj

(X)

)
(b) Find a such that

µ̃JS =

(
1− a∑

j X
2
j

)
X

dominates strictly the maximum likelihood estimator

(c) Denote µ⃗ = (µ1, . . . , µp) the point defined by µj = µ if j ≤ p0 and µj = 0 if j > p0

and show, using Jensen’s inequality that

E

[
1∑
j X

2
j

; µ⃗

]
≥ 1

pσ2 + µ2p0

(d) Deduce that if p0 and µ are fixed

limsupp→+∞R(µ̃JS, µ⃗) < +∞

(e) Why is shrinkage so important when p is large?
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Section C

6. Let X|θ ∼ f(·|θ) with θ ∈ Θ ⊂ Rd . Let π be an improper prior.

(a) Show that

m(x) =

∫
Θ

f(x|θ)π(θ)dθ

is improper as a measure on X .

(b) Assume that X ∈ X where card(X ) < +∞ i.e. X is finite. Show that there exists

x ∈ X such that ∫
Θ

P [X = x|θ]π(θ)dθ = +∞
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7. Let (X1, · · · , Xn)
iid∼ f(·|θ), θ ∈ Θ where f(·|θ) is a canonical exponential family

f(x|θ) = w(x)eθ
TB(x)−D(θ), Θ ⊂ Rd

Let π be a prior density on Θ with respect to Lebesgue measure.

(a) Let (X1, · · · , Xn)
iid∼ f(·|θ), θ ∈ Θ where f(·|θ) is a canonical exponential family

f(x|θ) = w(x)eθ
TB(x)−D(θ), Θ ⊂ Rd

Let π be a prior density on Θ with respect to Lebesgue measure.

(b) Show that the posterior distribution of θ depends only on Tn =
∑n

i=1 B(Xi). Show

that this result holds true outside exponential family if Tn is any sufficient statistics

for θ.

(c) Let E(a, b) be the distribution of the shifted exponential with density

1

b
e−(x−a)/b, x > a

where a ∈ R, b > 0 are parameters. Let X1, . . . , Xn be a random sample from the

distribution E(a, b).

(i) If a is known, derive Jeffrey’s prior on b and compute the posterior mean b̂ .

Show that b̃ = (n− 1)b̂/n is MVUE and attains the Cramer Rao lower bound.

(ii) If a is known and a Gamma(α, β) prior is chosen on 1/b , find the posterior

mean. Is it an MVUE? Compute the predictive distribution of Xn+1 .

(iii) If b is known and a prior density πa on a is considered. Show that the posterior

distribution on b depends only on X(1) = minXi, compute the posterior mean

associated with the prior π(a) ∝ 1. Show that the posterior is defined and

compute it.

(iv) Show that for all X(1) and all b > 0 Π(n|a − X(1)| > z|X1, · · · , Xn) goes to

zero as z goes to infinity uniformly in n. Do we have a Bernstein von Mises

property as described in the lectures? Compute frequentist risk of a and â (the

posterior mean) under the quadratic loss.

(v) Suppose now that both a and b are unknown. Define T1(X) = X(1) and

T2(X) =
∑n

i=1Xi−X(1) and show that the posterior distribution depends only

on (T1, T2). Show that the family of priors

π(a|b) ∝ eα(a−β)/b1a<z1 , π(b) ∝ b−m−1e−c/b1b>0

is conjuguate.

Show that the posterior distribution of θ depends only on Tn =
∑n

i=1B(Xi). Show

that this result holds true outside exponential family if Tn is any sufficient statistics

for θ.
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