SB2.1 Foundations of Statistical Inference Sheet 1 — MT22

Section A

- 1. Let X_1, \ldots, X_n be independent Poisson random variables with means $\mathbb{E}(X_i) = \lambda m_i$, $i = 1, \ldots, n$ where $\lambda > 0$ is unknown and m_1, \ldots, m_n are known constants.
 - (a) Show that the model defines an exponential family with canonical parameter $\theta = \log \lambda$.
 - (b) What is the canonical observation? Find its mean and variance.
 - (c) Find the MLE $\hat{\theta}$ of θ .
 - (d) What can we say about $\mathbb{E}[\widehat{\theta}]$?
 - (e) Show that for any function $T: \mathbb{N} \mapsto \mathbb{R}$ we have that

$$\lim_{\lambda \to 0} \mathbb{E}_{\lambda}[T(\sum_{i=1}^{n} X_i)] = T(0).$$

(f) Conclude that there cannot exist an unbiased estimator of θ .

Section B

2. Let X_1, \ldots, X_n be a random sample from the density

$$f(x;\theta) = e^{-(x-\theta)}, \ x \ge \theta$$

- (a) Show that the MLE $\hat{\theta}$ of θ is the minimum of X_1, \ldots, X_n .
- (b) Show that $\hat{\theta}$ is a sufficient for θ .
- (c) Show that for all $\epsilon > 0$

$$P_{\theta}[|\widehat{\theta} - \theta| > \epsilon] \le e^{-n\epsilon},$$

deduce that $\hat{\theta}$ is consistent in probability and in quadratic mean, that is $\hat{\theta} \to \theta$ in probability and in L^2 (we say that $X_n \to X$ in L^2 if $E[(X_n - X)^2] \to 0$), but that it is a biased estimator of θ with $\mathbb{E}[\hat{\theta}] = \theta + 1/n$. Suggest an unbiased and consistent estimator and find its variance.

3. Let $X = (X_1, \ldots, X_n)$ be an i.i.d. sample from a distribution with density

$$f(x;\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x}, \ x > 0.$$

- (a) Rewrite the density in standard exponential form.
- (b) Find a minimal sufficient statistic for θ , T(X). Find the expected value of the statistic.
- (c) Find the maximum likelihood estimator for θ . Is it unbiased for θ ?
- (d) Show that $\theta^* = (2/n) \sum_{i=1}^n X_i^{-1}$ is an unbiased estimator of θ and find its variance.
- (e) Compute the Fisher information $I_n(\theta)$ of the model and compare the variance of θ^* with $I_n(\theta)$.

[Hint: Recall: The Gamma density with parameters (α, β) is $\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$. If $X \sim \Gamma(a_1, \beta), Y \sim \Gamma(a_2, \beta)$ and independent then $X + Y \sim \Gamma(a_1 + a_2, \beta)$. Mean of $\Gamma(\alpha, \beta)$ is α/β .]

- 4. Let X_1, \ldots, X_n be a sample from $N(\mu, \sigma^2)$.
 - (a) Show that the MLE of σ^2 is

$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

(b) Show that $\hat{\sigma}^2$ has a smaller mean square error than

$$(n-1)^{-1}\sum_{i=1}^{n} (X_i - \bar{X})^2.$$

(c) For which value of a is the MSE of

$$(n+a)^{-1}\sum_{i=1}^{n} (X_i - \bar{X})^2$$

the smallest.

Hint: For (b) and (c) you will need to find $Var(\chi^2_{n-1})$ which is a special case of the variance of a gamma distribution.

- 5. (a) Let Y_1, \ldots, Y_n be a random sample from a Poisson distribution with parameter $\lambda > 0$. One observes only $W_i = \mathbf{1}_{Y_i > 0}$. Compute the likelihood associated with the sample (W_1, \ldots, W_n) and the MLE in λ . Show that it is consistent in probability.
 - (b) Let X_1, \ldots, X_n be a random sample from a truncated Poisson distribution with distribution

$$f(x;\lambda) = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \cdot \frac{\lambda^x}{x!}, \ x = 1, 2, \dots$$

For $i = 1, \ldots, n$ a random variable Z_i is defined by

$$Z_i = X_i$$
 if $X_i \ge 2$ or $Z_i = 0$ if $X_i = 1$

Show that \overline{Z} is an unbiased estimator of λ with efficiency (efficiency is the ratio of the variance to the Cramer-Rao lower bound)

$$\frac{1 - e^{-\lambda}}{1 - \left(\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right)^2}$$

Section C

- 6. (a) (optional bookwork) Let X be a discrete random variable with pmf f(x; θ) with parameter θ ∈ Θ and sample space X ∈ χ. Let T(x) be a function of x. Suppose f(x; θ)/f(y; θ) is not a function of θ if and only if T(x) = T(y). Show that T(x) is minimal sufficient for θ.
 - (b) Let N = N(0, S] be the number of events in a Poisson arrival process of rate λ acting over time s in the interval $0 < s \leq S$. Suppose we observe arrivals in the process at times $X_1, X_2, ..., X_N$, and wish to use these data to estimate λ . Show that N is minimal sufficient for λ (assume the result in (a) holds for any sufficiently regular family of probability distributions).
- 7. A random sample X_1, \ldots, X_n is taken from the Weibull distribution

$$\frac{\beta}{\alpha^{\beta}}x^{\beta-1}\exp\left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\},\;x>0,\alpha>0,\beta>0.$$

- (a) Assuming that β is known, find a sufficient statistic for α .
- (b) Suppose now that α is known. Show that the order statistics $X_{(1)}, \ldots, X_{(n)}$ is sufficient statistic for β , but that no one-dimensional statistic can be sufficient.
- (c) Does the Weibull distribution belong to a 2-parameter exponential family?