SB2.1 Foundations of Statistical Inference
 Sheet 1 - MT22

For Tutors Only - Not For Distribution

Section A

1. Let X_{1}, \ldots, X_{n} be independent Poisson random variables with means $\mathbb{E}\left(X_{i}\right)=\lambda m_{i}$, $i=1, \ldots, n$ where $\lambda>0$ is unknown and m_{1}, \ldots, m_{n} are known constants.
(a) Show that the model defines an exponential family with canonical parameter $\theta=$ $\log \lambda$.
(b) What is the canonical observation? Find its mean and variance.
(c) Find the MLE $\hat{\theta}$ of θ.
(d) What can we say about $\mathbb{E}[\hat{\theta}]$?
(e) Show that for any function $T: \mathbb{N} \mapsto \mathbb{R}$ we have that

$$
\lim _{\lambda \rightarrow 0} \mathbb{E}_{\lambda}\left[T\left(\sum_{i=1}^{n} X_{i}\right)\right]=T(0)
$$

(f) Conclude that there cannot exist an unbiased estimator of θ.

Solution:

(a)

$$
\begin{aligned}
L(\lambda, \mathbf{x}) & =\prod_{1}^{n} e^{-\lambda m_{i}}\left(\lambda m_{i}\right)^{x_{i}} / x_{i} \\
& =\exp \left\{(\log \lambda) \sum_{1}^{n} x_{i}-\lambda \sum_{1}^{n} m_{i}+\sum_{1}^{n} x_{i} \log m_{i}-\sum_{1}^{n} \log \left(x_{i}!\right)\right\}
\end{aligned}
$$

which is in canonical exponential form with $\theta=\log \lambda, B_{1}(x)=\sum_{1}^{n} x_{i}$
(b) The canonical (minimal) sufficient statistic is \bar{X} ($n \bar{X}$ is fine as well). $\mathbb{E}[\bar{X}]=\lambda \bar{m}$. $\sum_{1}^{n} X_{i}$ is Poisson $\left(\lambda \sum_{1}^{n} m_{i}\right)$ so $\operatorname{Var}(\bar{X})=\lambda \bar{m} / n$.
(c) $\ell(\theta)=\mathrm{const}+\theta \sum_{1}^{n} x_{i}-e^{\theta} \sum_{1}^{n} m_{i}, \partial \ell / \partial \theta=\sum_{1}^{n} x_{i}-e^{\theta} \sum_{1}^{n} m_{i}$, so $\widehat{\theta}=\log [\bar{x} / \bar{m}]$, provided $\bar{x}>0$. If $\bar{x}=0$ then $\widehat{\lambda}=0, \widehat{\theta}=-\infty$. As $n \rightarrow \infty$ the probability that $\bar{X}=0$ tends to zero if $\lambda>0$.
(d) In fact, $E[\hat{\theta}]$ does not even exist. This is because $P(\widehat{\theta}=-\infty)=P(\bar{x}=0)>0$.
(e) $\sum X_{i} \sim \operatorname{Poi}\left(\lambda \sum m_{i}\right)$ Without loss of generality assume that $\sum m_{i}=1$ to simplify notations. So we want to prove that if $X \sim \operatorname{Poi}(\lambda)$ under \mathbb{E}_{λ} then

$$
\lim _{\lambda \rightarrow 0} \mathbb{E}_{\lambda}[T(X)]=T(0)
$$

Observe that

$$
E_{\lambda}[T]=T(0) \mathrm{e}^{-\lambda}+\mathrm{e}^{-\lambda} \sum_{k=1}^{\infty} T(k) \frac{\lambda^{k}}{k!} .
$$

Notice that if $\lambda_{1}<\lambda_{2}$ then for $k \geq 1$ we have $\lambda_{1}^{k}<\lambda_{2}^{k}$ and thus we also have

$$
|T(k)| \frac{\lambda_{1}^{k}}{k!} \leq|T(k)| \frac{\lambda_{2}^{k}}{k!}
$$

Now we need to assume that T is integrable at least for one $\lambda_{0}<1$ so that

$$
\mathrm{e}^{-\lambda} \sum_{k=0}^{\infty} \frac{|T(k)| \lambda^{k}}{k!}<\infty
$$

Therefore we have that for $\lambda<\lambda_{0}$

$$
\frac{T(k) \lambda^{k}}{k!}
$$

are dominated by the summable $T(k) \lambda_{0}^{k} / k$!, and for each $k \geq 1, T(k) \lambda^{k} / k!\rightarrow 0$. We apply the dominated convergence theorem to obtain that

$$
\lim _{\lambda \rightarrow 0} \sum_{k \geq 1} T(k) \frac{\lambda^{k}}{k!}=0
$$

and therefore, since $\mathrm{e}^{-\lambda} \rightarrow 1$ as $\lambda \rightarrow 0$, we also have that

$$
\lim _{\lambda \rightarrow 0} \mathrm{e}^{-\lambda} \sum_{k \geq 1} T(k) \frac{\lambda^{k}}{k!}=\lim _{\lambda \rightarrow 0} \sum_{k \geq 1} T(k) \frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}=0 .
$$

Thus

$$
\mathbb{E}_{\lambda}[T] \rightarrow T(0) \quad \text { as } \lambda \rightarrow 0
$$

(f) Notice that since $\theta=\log (\lambda)$, we have that $\theta \rightarrow-\infty$ as $\lambda \rightarrow 0$. Therefore if T is any unbiased estimator, then for any $K>0$ we can find $\epsilon>0$ such that for $\lambda<\epsilon$ $\mathbb{E}_{\lambda}[T]<-K$. But $T(0)>-\infty$ and therefore we arrive at a contradiction.

Section B

2. Let X_{1}, \ldots, X_{n} be a random sample from the density

$$
f(x ; \theta)=e^{-(x-\theta)}, x \geq \theta
$$

(a) Show that the MLE $\hat{\theta}$ of θ is the minimum of X_{1}, \ldots, X_{n}.
(b) Show that $\hat{\theta}$ is a sufficient for θ.
(c) Show that for all $\epsilon>0$

$$
P_{\theta}[|\widehat{\theta}-\theta|>\epsilon] \leq e^{-n \epsilon}
$$

deduce that $\widehat{\theta}$ is consistent in probability and in quadratic mean, that is $\widehat{\theta} \rightarrow \theta$ in probability and in L^{2} (we say that $X_{n} \rightarrow X$ in L^{2} if $E\left[\left(X_{n}-X\right)^{2}\right] \rightarrow 0$), but that it is a biased estimator of θ with $\mathbb{E}[\hat{\theta}]=\theta+1 / n$. Suggest an unbiased and consistent estimator and find its variance.

Solution:

$$
L(\theta ; \mathbf{x})=e^{-\sum_{1}^{n} x_{i}+n \theta} \prod_{i=1}^{n} \mathbb{I}_{\left[x_{i}>\theta\right]}=e^{n \theta} e^{-\sum x_{i}} \mathbb{I}_{\left[\min x_{i} \geq \theta\right]}
$$

Note that X_{1} is just θ plus a mean 1 exponential r.v.
(a) To maximize $L(\theta, x)$ we need to look at the boundaries. Once we do that it is clear that $\widehat{\theta}=\min _{i} X_{i}$ maximizes $L(\theta, \mathbf{x})$.
(b)

$$
L(\theta ; \mathbf{x})=e^{n \theta} \mathbb{I}_{\min \left(x_{i}\right)>\theta} \times e^{-n \bar{x}}
$$

so it factorizes into $f_{1}\left(\min \left(x_{i}\right) ; \theta\right) h(x)$ and $\min \left(x_{i}\right)$ is sufficient. The family is not an exponential family
(c) Writing $Z_{i}=X_{i}-\theta$, the Z_{i} are iid $\operatorname{Exp}(1)$ r.v. Thus $\hat{\theta}=\theta+\min Z_{i}$. Remember that $\min _{i=1, \ldots, n} Z_{i}$ is itself an $\operatorname{Exp}(\mathrm{n})$ r.v.

$$
P(\widehat{\theta}-\theta>\epsilon)=P\left(\min Z_{i}>\epsilon\right)=e^{-n \epsilon}, \epsilon>0
$$

and

$$
P(\widehat{\theta}-\theta<-\epsilon)=0
$$

Hence for all $\epsilon>0$

$$
\lim _{n} P_{\theta}[|\widehat{\theta}-\theta|>\epsilon]=0
$$

and it is consistent in probability. We also have that

$$
E\left[(\hat{\theta}-\theta)^{2}\right]=E\left[\left(\min Z_{i}\right)^{2}\right]=2 / n^{2} \rightarrow 0
$$

as $n \rightarrow \infty$ so it is consistent in quadratic mean.
Finally

$$
E[\hat{\theta}]=\theta+1 / n, V(\hat{\theta})=n^{-2} .
$$

It is not unbiased. An unbiased estimator is $\tilde{\theta}=\hat{\theta}-1 / n$ and its variance is the same as that of $\hat{\theta}$.
3. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be an i.i.d. sample from a distribution with density

$$
f(x ; \theta)=\frac{1}{2} \theta^{3} x^{2} e^{-\theta x}, x>0
$$

(a) Rewrite the density in standard exponential form.
(b) Find a minimal sufficient statistic for $\theta, T(X)$. Find the expected value of the statistic.
(c) Find the maximum likelihood estimator for θ. Is it unbiased for θ ?
(d) Show that $\theta^{*}=(2 / n) \sum_{i=1}^{n} X_{i}^{-1}$ is an unbiased estimator of θ and find its variance.
(e) Compute the Fisher information $I_{n}(\theta)$ of the model and compare the variance of θ^{*} with $I_{n}(\theta)$.
[Hint: Recall: The Gamma density with parameters (α, β) is $\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$. If $X \sim \Gamma\left(a_{1}, \beta\right), Y \sim \Gamma\left(a_{2}, \beta\right)$ and independent then $X+Y \sim \Gamma\left(a_{1}+a_{2}, \beta\right)$. Mean of $\Gamma(\alpha, \beta)$ is α / β.

Solution:

(a)

$$
f(x ; \theta)=\frac{1}{2} \theta^{3} x^{2} e^{-\theta x}=\exp \{-\theta x+3 \log \theta\} \frac{x^{2}}{2}
$$

is in the standard form with $T(x)=x, \eta(\theta)=\theta, B(\theta)=3 \log \theta$ and $h(x)=x^{2} / 2$. It is clear that this is a strictly 1-parameter exponential family.
(b)

$$
L(\theta ; x) \propto \theta^{3 n} e^{-\theta \sum x_{i}} \times \prod x_{i}^{2}
$$

By the factorization theorem (or by standard results about exponential family) \bar{x} is a minimal sufficient statistic for θ. From the hint we can see that $f(x ; \theta)$ is a $\Gamma(3, \theta)$ family and therefore the mean is $3 / \theta$.
(c) $l(\theta)=3 n \log \theta-\theta \sum x_{i}+$ const, $l^{\prime}(\theta)=3 n / \theta-\sum x_{i}$ so $\hat{\theta}=3 / \bar{x}$.

Recall: The Gamma density with parameters (α, β) is $\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$. If $X \sim$ $\Gamma\left(a_{1}, \beta\right), Y \sim \Gamma\left(a_{2}, \beta\right)$ and independent then $X+Y \sim \Gamma\left(a_{1}+a_{2}, \beta\right)$. Mean of $\Gamma(\alpha, \beta)$ is α / β.
$\sum_{1}^{n} X_{i}$ has a Gamma distribution with density

$$
\frac{\theta^{3 n}}{\Gamma(3 n)} x^{3 n-1} e^{-\theta x} x>0
$$

so

$$
\begin{aligned}
\mathbb{E}[\widehat{\theta}] & =3 n \int_{0}^{\infty} \frac{\theta^{3 n}}{\Gamma(3 n)} x^{3 n-2} e^{-\theta x} d x \\
& =3 n \cdot \frac{\theta^{3 n}}{\Gamma(3 n)} \cdot \frac{\Gamma(3 n-1)}{\theta^{3 n-1}} \\
& =\frac{3 n \theta}{3 n-1}
\end{aligned}
$$

Thus $\widehat{\theta}$ is a biased estimate of θ.
(d)

$$
\begin{aligned}
\mathbb{E}\left[X_{i}^{-1}\right] & =\int_{0}^{\infty} \frac{1}{2} \theta^{3} x e^{-\theta x} d x \\
& =\frac{1}{2} \theta
\end{aligned}
$$

so $\theta^{*}=(2 / n) \sum_{1}^{n} X_{i}^{-1}$ is an unbiased estimate of θ. Similarly, from the density, one can show that $\operatorname{Var}\left(\theta^{*}\right)=\theta^{2} / n$.
(e) Fisher's information is $I_{n}(\theta)=-E\left[\frac{\partial^{2}}{\partial \theta^{2}} \ell(\theta)\right]=3 n / \theta^{2}$. To find the variance we compute

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{X_{i}}\right) & =\mathbb{E}\left[X_{i}^{-2}\right]-\mathbb{E}\left[X_{i}^{-1}\right]^{2} \\
& =\int \frac{1}{2} \theta^{3} \mathrm{e}^{-\theta x} x-\left(\frac{\theta}{2}\right)^{2} \\
& =\frac{\theta^{2}}{2}-\frac{\theta^{2}}{4}=\frac{\theta^{2}}{4} .
\end{aligned}
$$

So $\operatorname{Var}\left(\theta^{*}\right)=\theta^{2} / n \geq I_{n}(\theta)=\theta^{2} /(3 n)$.
4. Let X_{1}, \ldots, X_{n} be a sample from $N\left(\mu, \sigma^{2}\right)$.
(a) Show that the MLE of σ^{2} is

$$
\widehat{\sigma}^{2}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

(b) Show that $\widehat{\sigma}^{2}$ has a smaller mean square error than

$$
(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

(c) For which value of a is the MSE of

$$
(n+a)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

the smallest.
Hint: For (b) and (c) you will need to find $\operatorname{Var}\left(\chi_{n-1}^{2}\right)$ which is a special case of the variance of a gamma distribution.

Solution:

(a)

$$
\ell\left(\mu, \sigma^{2}\right)=\text { const }-\frac{n}{2} \log \sigma^{2}-\frac{1}{2} \sum_{1}^{n}\left(x_{i}-\mu\right)^{2} / \sigma^{2}
$$

so

$$
\begin{align*}
\frac{\partial \ell}{\partial \sigma^{2}} & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{1}^{n}\left(x_{i}-\mu\right)^{2} \tag{1}\\
\frac{\partial \ell}{\partial \mu} & =\frac{1}{\sigma^{2}} \sum\left(x_{i}-\mu\right) \tag{2}
\end{align*}
$$

Setting both equal to 0 we get that $\mu_{\text {MLE }}=\bar{x}$, uniformly in σ^{2}, so

$$
\widehat{\sigma}^{2}=n^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

Technically we should also do a second derivative test to verify it's indeed a maximum. Recap from Part A Statistics

$$
\begin{gathered}
\frac{(n-1) S^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2} \\
\widehat{\sigma}^{2}=\frac{n-1}{n} S^{2} \sim \frac{\sigma^{2}}{n} \chi_{n-1}^{2}
\end{gathered}
$$

χ_{r}^{2} has a density

$$
\frac{1}{\Gamma(r / 2) 2^{r / 2}} x^{r / 2-1} e^{-x / 2}, \quad>x>0
$$

which is a $\Gamma(r / 2,1 / 2)$ density with mean $2 \times r / 2=r$ and variance $4 \times r / 2=2 r$.
(b) $\mathbb{E}\left(\widehat{\sigma}^{2}\right)=((n-1) / n) \sigma^{2}, \operatorname{Bias}\left(\widehat{\sigma}^{2}\right)=-\sigma^{2} / n, \operatorname{Var}\left(\widehat{\sigma}^{2}\right)=\left(2(n-1) / n^{2}\right) \sigma^{4}$. Thus

$$
\operatorname{MSE}\left(\widehat{\sigma}^{2}\right)=\operatorname{Var}\left(\widehat{\sigma}^{2}\right)+\operatorname{Bias}\left(\widehat{\sigma}^{2}\right)^{2}=\frac{2 n-1}{n^{2}} \sigma^{4}
$$

Let

$$
S^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sim \frac{\sigma^{2}}{n-1} \chi_{n-1}^{2},
$$

then $\left[S^{2}\right]=\sigma^{2}$, so unbiased. Therefore the MSE is simply the variance and therefore

$$
\operatorname{MSE}\left(S^{2}\right)=\frac{2(n-1)}{(n-1)^{2}} \sigma^{4}=\frac{2}{n-1} \sigma^{4}>\operatorname{MSE}\left(\hat{\sigma}^{2}\right)=\frac{2 n-1}{n^{2}} \sigma^{4} .
$$

(c) Let

$$
\sigma^{* 2}=(n+a)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

A similar calculation to (b) shows that

$$
\operatorname{MSE}\left(\sigma^{* 2}\right)=\left(\frac{2}{n-1} b^{2}+(b-1)^{2}\right) \sigma^{4}
$$

where $b=(n-1) /(n+a)$. The MSE is minimal when

$$
b=\frac{1}{\frac{2}{n-1}+1}, \text { or } a=1
$$

That is the minimal MSE solution is

$$
(n+1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

5. (a) Let Y_{1}, \ldots, Y_{n} be a random sample from a Poisson distribution with parameter $\lambda>0$. One observes only $W_{i}=1_{Y_{i}>0}$. Compute the likelihood associated with the sample $\left(W_{1}, \ldots, W_{n}\right)$ and the MLE in λ. Show that it is consistent in probability.
(b) Let X_{1}, \ldots, X_{n} be a random sample from a truncated Poisson distribution with distribution

$$
f(x ; \lambda)=\frac{e^{-\lambda}}{1-e^{-\lambda}} \cdot \frac{\lambda^{x}}{x!}, x=1,2, \ldots
$$

For $i=1, \ldots, n$ a random variable Z_{i} is defined by

$$
Z_{i}=X_{i} \text { if } X_{i} \geq 2 \text { or } Z_{i}=0 \text { if } X_{i}=1
$$

Show that \bar{Z} is an unbiased estimator of λ with efficiency (efficiency is the ratio of the variance to the Cramer-Rao lower bound)

$$
\frac{1-e^{-\lambda}}{1-\left(\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}\right)^{2}}
$$

Solution:

(a) For the first part, the likelihood function is the folowing: let $w=\left(w_{1}, \ldots, w_{n}\right)$ be the vector of observations and let $S=\sum w_{i}$. Then

$$
L(\lambda, w)=\left(1-e^{-\lambda}\right)^{S} e^{-\lambda(n-S)}=\left(e^{\lambda}-1\right)^{S} e^{-n \lambda}
$$

So that

$$
\ell^{\prime}(\lambda)=S \frac{e^{\lambda}}{e^{\lambda}-1}-n
$$

and solving $\ell^{\prime}=0$ gives us

$$
\hat{\lambda}=-\log \left(1-\frac{S}{n}\right)
$$

Note that we have again the problem that $\hat{\lambda}=\infty$ with positive probability.
Observe that the W_{i} are iid Bernoulli variables with parameter $p=1-e^{-\lambda}$. The MLE estimator for p is well known to be $\hat{p}=S / n$. Notice that $\hat{p}=1-e^{-\hat{\lambda}}$ (or $\hat{\lambda}=-\log (1-\hat{p}))$. This is an example of the invariance of the MLE w.r.t. one-to-one reparametrization.

Notice that $p \mapsto \log (1-p)$ is uniformly continuous on $[0,1-\delta]$ for any $\delta>0$. Suppose first that $\lambda<\infty$, or equivalently that $p=1-\mathrm{e}^{-\lambda}<1-\delta$ for some $\delta>0$. Then there exists a $K=K_{\delta}$ such that

$$
\left|\log (1-p)-\log \left(1-p^{\prime}\right)\right| \leq K_{\delta}\left|p-p^{\prime}\right|, \quad \text { for all } p, p^{\prime} \in[0,1-\delta]
$$

Then we have for any $\epsilon>0$

$$
\begin{aligned}
\mathbb{P}\left[\left|\log \left(1-\hat{p}_{n}\right)-\log (1-p)\right|>\epsilon\right] \leq & \mathbb{P}\left[\left\{\left|\log \left(1-\hat{p}_{n}\right)-\log (1-p)\right|>\epsilon\right\} \cap\left\{\left|\hat{p}_{n}-p\right| \leq \delta / 2\right\}\right] \\
& +\mathbb{P}\left[\left|\hat{p}_{n}-p\right|>\delta / 2\right] \\
\leq & \mathbb{P}\left[\left|\hat{p}_{n}-p\right|>\epsilon / K_{\delta / 2}\right]+o(1)=o(1)
\end{aligned}
$$

by consistency of \hat{p}_{n}.
On the other hand if $\lambda=\infty$, then $p=1$ we have that $S / n=\hat{p}=1=p$ with probability 1 . Therefore $\log (1-\hat{p})=+\infty=\lambda$ with probability 1 . Therefore we have consistency.
(b) For the second part,

$$
f(x ; \lambda)=\frac{e^{-\lambda}}{1-e^{-\lambda}} \frac{\lambda^{x}}{x!}, x=1,2, \ldots
$$

The mean of Z is

$$
\mathbb{E}[Z]=\sum_{x \geq 2} x \frac{e^{-\lambda}}{1-e^{-\lambda}} \frac{\lambda^{x}}{x!}=\frac{e^{-\lambda}}{1-e^{-\lambda}} \sum_{x \geq 2} \frac{\lambda^{x}}{(x-1)!}=\frac{e^{-\lambda}}{1-e^{-\lambda}} \lambda\left(e^{\lambda}-1\right)=\lambda
$$

Therefore $\bar{Z}=\sum Z_{i} / n$ is an unbiased estimator.
Now we want to compute the efficiency. For this we need the Fisher information and the variance of the estimator. Here the estimator is \bar{Z} and the model is the sample $\left(X_{1}, \ldots, X_{n}\right)$. Thus the Fisher information is calculated w.r.t the law of the vector $\left(X_{1}, \ldots, X_{n}\right)$. The Fisher information is additive so that the Fisher information of $\left(X_{1}, \ldots, X_{n}\right)$ is simply $n i_{\lambda}$ where i_{λ} is the Fisher information of a singe X. The loglikelihood

$$
l(\lambda)=-\lambda-\log \left(1-e^{-\lambda}\right)+x \log \lambda-\log x!
$$

and

$$
\begin{aligned}
\frac{\partial l}{\partial \lambda} & =-\frac{1}{1-e^{-\lambda}}+\frac{x}{\lambda} \\
\frac{\partial^{2} l}{\partial \lambda^{2}} & =\frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)^{2}}-\frac{x}{\lambda^{2}}
\end{aligned}
$$

The Fisher information for one observation is (using $E[X]=\lambda /\left(1-e^{-\lambda}\right)$)

$$
\begin{aligned}
i_{\lambda} & =-\mathbb{E}\left(\frac{\partial^{2} l}{\partial \lambda^{2}}\right) \\
& =-\frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)^{2}}+\frac{1}{\lambda^{2}} \frac{\lambda}{1-e^{-\lambda}} \\
& =\frac{1}{\lambda} \cdot \frac{1}{1-e^{-\lambda}}\left[1-\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}\right]
\end{aligned}
$$

To obtain the variance consider

$$
\mathbb{E}[Z(Z-1)]=\sum_{x \geq 2} x(x-1) \frac{e^{-\lambda}}{1-e^{-\lambda}} \frac{\lambda^{x}}{x!}=\frac{e^{-\lambda}}{1-e^{-\lambda}} \sum_{x \geq 2} \frac{\lambda^{x}}{(x-2)!}=\frac{\lambda^{2}}{1-e^{-\lambda}}
$$

Then

$$
\operatorname{Var}(Z)=\frac{\lambda^{2}}{1-e^{-\lambda}}+\lambda-\lambda^{2}=\lambda\left[1+\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}\right]
$$

I have

$$
\begin{aligned}
i_{\lambda} & =-\mathbb{E}\left(\frac{\partial^{2} l}{\partial \lambda^{2}}\right) \\
& =-\frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)^{2}}+\frac{\lambda}{\lambda^{2}} \\
& =\frac{1}{\lambda} \cdot \frac{1}{1-e^{-\lambda}}\left[1-\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\text { Efficiency } & =\left[I_{\lambda} \operatorname{Var}(\bar{Z})\right]^{-1} \\
& =\frac{1-\left(\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}\right)^{2}}{1-e^{-\lambda}}
\end{aligned}
$$

SB2.1 Foundations of Statistical Inference: Sheet 1 (Tutors Only) - MT22

Section C

6. (a) (optional bookwork) Let X be a discrete random variable with pmf $f(x ; \theta)$ with parameter $\theta \in \Theta$ and sample space $X \in \chi$. Let $T(x)$ be a function of x. Suppose $f(x ; \theta) / f(y ; \theta)$ is not a function of θ if and only if $T(x)=T(y)$. Show that $T(x)$ is minimal sufficient for θ.
(b) Let $N=N(0, S]$ be the number of events in a Poisson arrival process of rate λ acting over time s in the interval $0<s \leq S$. Suppose we observe arrivals in the process at times $X_{1}, X_{2}, \ldots, X_{N}$, and wish to use these data to estimate λ. Show that N is minimal sufficient for λ (assume the result in (a) holds for any sufficiently regular family of probability distributions).

Solution:

(a) Break the condition into two parts:
(*) $T(x)=T(y)=t$ implies $f(x ; \theta) / f(y ; \theta)$ is not a function of θ;
$\left({ }^{* *}\right) f(x ; \theta) / f(y ; \theta)$ not a function of θ implies $T(x)=T(y)=t$.
Let $f(x ; \theta)=g(x \mid t(x), \theta) h(t \mid \theta)$ (with no assumption of sufficiency) and suppose $T(x)=T(y)=t$. If $\left(^{*}\right)$ holds then

$$
\frac{f(x ; \theta)}{f(y ; \theta)}=\frac{g(x \mid t, \theta)}{g(y \mid t, \theta)}=c(x, y)
$$

say, with c independent of θ (factors of h cancel). But then

$$
\sum_{x: T(x)=t} g(x \mid t, \theta)=g(y \mid t, \theta) \sum_{x: T(x)=t} c(x, y)
$$

so

$$
g(y \mid t, \theta)=\left[\sum_{x: T(x)=t} c(x, y)\right]^{-1}
$$

which is independent of θ, so T is sufficient for θ in f. If $f(x ; \theta) / f(y ; \theta)$ does depend on θ when $T(x)=T(y)=t$ then c depends on θ and the same reasoning shows T cannot be sufficient, so condition $\left(^{*}\right)$ is necessary for sufficiency. Let $U(x)$ be some sufficient statistic. We must show that T is a function of U, so T is minimal. It is enough to show that $U(x)=U(y)$ implies $T(x)=T(y)$. But $U(x)=U(y)=u$ implies $f(x ; \theta) / f(y ; \theta)$ is not a function of θ, and then $(* *)$ implies $T(x)=T(y)$, so T is minimal sufficient.
(b) The intervals of a Poisson arrival process of rate λ are exponential so $X_{i} \sim \operatorname{Exp}(\lambda)$ likelihood for $i=1,2, \ldots, N$. The probability that the final interval between time $Y=\sum_{i=1}^{N} X_{i}$ and S has no event is the probability that an $\operatorname{Exp}(\lambda)$ random variable exceeds $S-Y$, that is, $\exp (-\lambda(S-Y))$. The likelihood for λ given data $X=$ $\left(x_{1}, \ldots x_{n}\right)$ is therefore

$$
\begin{aligned}
L(\theta ; x) & =\left[\prod_{i=1}^{n} \lambda \exp \left(-\lambda x_{i}\right)\right] \exp (-\lambda(S-Y)) \\
& =\exp (-\lambda S) \lambda^{n}
\end{aligned}
$$

since $(S-Y)+x_{n}+\ldots+x_{1}=S$ and so N is sufficient for λ by the factorization theorem $\left(L=K_{1}(x, \theta) K_{2}(x)\right.$ with $K_{1}(x, \theta)=L$ and $\left.K_{2}=1\right)$. It is minimal sufficient by part (a) since, if $x=\left(x_{1}, \ldots x_{n}\right)$ and $y=y_{1}, \ldots, y_{m}$ then $L(x ; \lambda) / L(y ; \lambda)$ is independent of λ if and only if $n=m$.
7. A random sample X_{1}, \ldots, X_{n} is taken from the Weibull distribution

$$
\frac{\beta}{\alpha^{\beta}} x^{\beta-1} \exp \left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\}, x>0, \alpha>0, \beta>0
$$

(a) Assuming that β is known, find a sufficient statistic for α.
(b) Suppose now that α is known. Show that the order statistics $X_{(1)}, \ldots, X_{(n)}$ is sufficient statistic for β, but that no one-dimensional statistic can be sufficient.
(c) Does the Weibull distribution belong to a 2-parameter exponential family?

Solution:

$$
L(\theta ; \mathbf{x})=\alpha^{-n \beta} \exp \left\{-\alpha^{-\beta} \sum_{1}^{n} x_{i}^{\beta}\right\} \times \beta^{n} \prod_{1}^{n} x_{i}^{\beta-1}
$$

Assuming β is a known constant, this is exponential form in the natural parameter $-\alpha^{-\beta}$. The natural observation $T(x)=n^{-1} \sum_{1}^{n} x_{i}^{\beta}$ is thus a (minimal) sufficient statistic for α if β is known.

We suppose now that α is known. Observe that the order statistic is always sufficient when the observation is an i.i.d. sample (the order in which the observations arrive contains no information).

Notice that a statistic T is minimal sufficient if and only if $T(x)=T(y)$ is equivalent to $f(x ; \theta) / f(y ; \theta)$ being independent of θ. In the case of the Weibull distribution, say
with α known, and n i.i.d. observations, the log-likelihood ratio takes the form

$$
\begin{aligned}
F(\boldsymbol{x}, \boldsymbol{y} ; \beta) & :=\log \frac{f\left(x_{1}, \ldots, x_{n} ; \beta\right)}{f\left(y_{1}, \ldots, y_{n} ; \beta\right)} \\
& =(\beta-1) \sum \log \left(x_{i}\right)-\sum\left(\frac{x_{i}}{\alpha}\right)^{\beta}-(\beta-1) \sum \log \left(y_{i}\right)+\sum\left(\frac{y_{i}}{\alpha}\right)^{\beta}
\end{aligned}
$$

and this should be independent of β. For $\beta=1$ the above implies that $\sum x_{i}=\sum y_{i}$. In addition all the derivatives of the above expression w.r.t. β must vanish. Writing $w_{i}=\log \left(x_{i} / \alpha\right), z_{i}=\log \left(y_{i} / \beta\right)$ we have for $p \geq 2$

$$
\frac{\partial^{p}}{\partial \beta^{p}} F(\beta)=-\sum w_{i}^{p} \mathrm{e}^{\beta w_{i}}+\sum z_{i}^{p} \mathrm{e}^{\beta z_{i}}=0
$$

for all $\beta>0$. Letting $\beta \rightarrow 0$ we obtain then that

$$
\sum w_{i}^{p}=\sum z_{i}^{p},
$$

and therefore all moments of the empirical measures

$$
\sum_{i=1}^{n} \delta_{w_{i}}, \sum_{i=1}^{n} \delta_{z_{i}}
$$

are the same and we can conclude that

$$
\left\{x_{1}, \ldots, x_{n}\right\}=\left\{y_{1}, \ldots, y_{n}\right\} .
$$

Therefore $f(\boldsymbol{x} ; \beta) / f(\boldsymbol{y} ; \beta)$ being independent of θ is equivalent to \boldsymbol{x} being equal to \boldsymbol{y} up to permutation. Therefore the order statistic is minimal sufficient; in particular as n grows so does the dimension of any sufficient statistic. A 2-parameter exponential family admits a 2 -dimensional sufficient statistic independent of the size of the sample (see Corollary 2.3 and the remark thereafter), thus giving us a contradiction.

