SB2.1 Foundations of Statistical Inference

Sheet 1 - MT22

For Tutors Only — Not For Distribution

Section A

- 1. Let X_1, \ldots, X_n be independent Poisson random variables with means $\mathbb{E}(X_i) = \lambda m_i$, $i = 1, \ldots, n$ where $\lambda > 0$ is unknown and m_1, \ldots, m_n are known constants.
 - (a) Show that the model defines an exponential family with canonical parameter $\theta = \log \lambda$.
 - (b) What is the canonical observation? Find its mean and variance.
 - (c) Find the MLE $\hat{\theta}$ of θ .
 - (d) What can we say about $\mathbb{E}[\hat{\theta}]$?
 - (e) Show that for any function $T: \mathbb{N} \mapsto \mathbb{R}$ we have that

$$\lim_{\lambda \to 0} \mathbb{E}_{\lambda} \left[T \Big(\sum_{i=1}^{n} X_i \Big) \right] = T(0).$$

(f) Conclude that there cannot exist an unbiased estimator of θ .

Solution:

(a)

$$L(\lambda, \mathbf{x}) = \prod_{1}^{n} e^{-\lambda m_i} (\lambda m_i)^{x_i} / x_i$$

=
$$\exp\left\{ (\log \lambda) \sum_{1}^{n} x_i - \lambda \sum_{1}^{n} m_i + \sum_{1}^{n} x_i \log m_i - \sum_{1}^{n} \log(x_i!) \right\}$$

which is in canonical exponential form with $\theta = \log \lambda$, $B_1(x) = \sum_{i=1}^{n} x_i$

- (b) The canonical (minimal) sufficient statistic is \bar{X} ($n\bar{X}$ is fine as well). $\mathbb{E}[\bar{X}] = \lambda \bar{m}$. $\sum_{1}^{n} X_{i}$ is Poisson ($\lambda \sum_{1}^{n} m_{i}$) so $\operatorname{Var}(\bar{X}) = \lambda \bar{m}/n$.
- (c) $\ell(\theta) = \text{const} + \theta \sum_{i=1}^{n} x_i e^{\theta} \sum_{i=1}^{n} m_i, \ \partial \ell / \partial \theta = \sum_{i=1}^{n} x_i e^{\theta} \sum_{i=1}^{n} m_i, \text{ so } \hat{\theta} = \log[\bar{x}/\bar{m}],$ provided $\bar{x} > 0$. If $\bar{x} = 0$ then $\hat{\lambda} = 0, \ \hat{\theta} = -\infty$. As $n \to \infty$ the probability that $\bar{X} = 0$ tends to zero if $\lambda > 0$.

(d) In fact, $E[\hat{\theta}]$ does not even exist. This is because $P(\hat{\theta} = -\infty) = P(\bar{x} = 0) > 0$.

(e) $\sum X_i \sim \text{Poi}(\lambda \sum m_i)$ Without loss of generality assume that $\sum m_i = 1$ to simplify notations. So we want to prove that if $X \sim \text{Poi}(\lambda)$ under \mathbb{E}_{λ} then

$$\lim_{\lambda \to 0} \mathbb{E}_{\lambda}[T(X)] = T(0)$$

Observe that

$$E_{\lambda}[T] = T(0)e^{-\lambda} + e^{-\lambda}\sum_{k=1}^{\infty} T(k)\frac{\lambda^k}{k!}$$

Notice that if $\lambda_1 < \lambda_2$ then for $k \ge 1$ we have $\lambda_1^k < \lambda_2^k$ and thus we also have

$$|T(k)|\frac{\lambda_1^k}{k!} \le |T(k)|\frac{\lambda_2^k}{k!}.$$

Now we need to assume that T is integrable at least for one $\lambda_0 < 1$ so that

$$e^{-\lambda} \sum_{k=0}^{\infty} \frac{|T(k)|\lambda^k}{k!} < \infty.$$

Therefore we have that for $\lambda < \lambda_0$

$$\frac{T(k)\lambda^k}{k!}$$

are dominated by the summable $T(k)\lambda_0^k/k!$, and for each $k \ge 1$, $T(k)\lambda^k/k! \to 0$. We apply the dominated convergence theorem to obtain that

$$\lim_{\lambda \to 0} \sum_{k \ge 1} T(k) \frac{\lambda^k}{k!} = 0,$$

and therefore, since $e^{-\lambda} \to 1$ as $\lambda \to 0$, we also have that

$$\lim_{\lambda \to 0} \mathbf{e}^{-\lambda} \sum_{k \ge 1} T(k) \frac{\lambda^k}{k!} = \lim_{\lambda \to 0} \sum_{k \ge 1} T(k) \frac{\lambda^k \mathbf{e}^{-\lambda}}{k!} = 0.$$

Thus

$$\mathbb{E}_{\lambda}[T] \to T(0)$$
 as $\lambda \to 0$

(f) Notice that since $\theta = \log(\lambda)$, we have that $\theta \to -\infty$ as $\lambda \to 0$. Therefore if T is any unbiased estimator, then for any K > 0 we can find $\epsilon > 0$ such that for $\lambda < \epsilon$ $\mathbb{E}_{\lambda}[T] < -K$. But $T(0) > -\infty$ and therefore we arrive at a contradiction.

Section B

2. Let X_1, \ldots, X_n be a random sample from the density

$$f(x;\theta) = e^{-(x-\theta)}, \ x \ge \theta$$

- (a) Show that the MLE $\hat{\theta}$ of θ is the minimum of X_1, \ldots, X_n .
- (b) Show that $\hat{\theta}$ is a sufficient for θ .
- (c) Show that for all $\epsilon > 0$

$$P_{\theta}[|\widehat{\theta} - \theta| > \epsilon] \le e^{-n\epsilon},$$

deduce that $\hat{\theta}$ is consistent in probability and in quadratic mean, that is $\hat{\theta} \to \theta$ in probability and in L^2 (we say that $X_n \to X$ in L^2 if $E[(X_n - X)^2] \to 0$), but that it is a biased estimator of θ with $\mathbb{E}[\hat{\theta}] = \theta + 1/n$. Suggest an unbiased and consistent estimator and find its variance.

Solution:

$$L(\theta; \mathbf{x}) = e^{-\sum_{1}^{n} x_{i} + n\theta} \prod_{i=1}^{n} \mathbb{I}_{[x_{i} > \theta]} = e^{n\theta} e^{-\sum x_{i}} \mathbb{I}_{[\min x_{i} \ge \theta]}$$

Note that X_1 is just θ plus a mean 1 exponential r.v.

(a) To maximize $L(\theta, x)$ we need to look at the boundaries. Once we do that it is clear that $\hat{\theta} = \min_i X_i$ maximizes $L(\theta, \mathbf{x})$.

(b)

$$L(\theta; \mathbf{x}) = e^{n\theta} \mathbb{1}_{\min(x_i) > \theta} \times e^{-n\bar{x}}$$

so it factorizes into $f_1(\min(x_i); \theta)h(x)$ and $\min(x_i)$ is sufficient. The family is not an exponential family

(c) Writing $Z_i = X_i - \theta$, the Z_i are iid Exp(1) r.v. Thus $\hat{\theta} = \theta + \min Z_i$. Remember that $\min_{i=1,\dots,n} Z_i$ is itself an Exp(n) r.v.

$$P(\widehat{\theta} - \theta > \epsilon) = P(\min Z_i > \epsilon) = e^{-n\epsilon}, \ \epsilon > 0$$

and

$$P(\widehat{\theta} - \theta < -\epsilon) = 0$$

Hence for all $\epsilon > 0$

$$\lim_{n} P_{\theta}[|\widehat{\theta} - \theta| > \epsilon] = 0$$

and it is consistent in probability. We also have that

$$E[(\hat{\theta} - \theta)^2] = E[(\min Z_i)^2] = 2/n^2 \to 0$$

as $n \to \infty$ so it is consistent in quadratic mean.

Finally

$$E[\hat{\theta}] = \theta + 1/n, \, V(\hat{\theta}) = n^{-2}.$$

It is not unbiased . An unbiased estimator is $\tilde{\theta} = \hat{\theta} - 1/n$ and its variance is the same as that of $\hat{\theta}$.

3. Let $X = (X_1, \ldots, X_n)$ be an i.i.d. sample from a distribution with density

$$f(x;\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x}, \ x > 0.$$

- (a) Rewrite the density in standard exponential form.
- (b) Find a minimal sufficient statistic for θ , T(X). Find the expected value of the statistic.
- (c) Find the maximum likelihood estimator for θ . Is it unbiased for θ ?
- (d) Show that $\theta^* = (2/n) \sum_{i=1}^n X_i^{-1}$ is an unbiased estimator of θ and find its variance.
- (e) Compute the Fisher information I_n(θ) of the model and compare the variance of θ* with I_n(θ).
 [Hint: Recall: The Gamma density with parameters (α, β) is β^α/Γ(α) x^{α-1}e^{-βx}. If

[Hint: Recall: The Gamma density with parameters (α, β) is $\frac{1}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta \alpha}$. If $X \sim \Gamma(a_1, \beta), Y \sim \Gamma(a_2, \beta)$ and independent then $X + Y \sim \Gamma(a_1 + a_2, \beta)$. Mean of $\Gamma(\alpha, \beta)$ is α/β .]

Solution:

(a)

$$f(x;\theta) = \frac{1}{2}\theta^3 x^2 e^{-\theta x} = \exp\left\{-\theta x + 3\log\theta\right\} \frac{x^2}{2}$$

is in the standard form with T(x) = x, $\eta(\theta) = \theta$, $B(\theta) = 3 \log \theta$ and $h(x) = x^2/2$. It is clear that this is a strictly 1-parameter exponential family.

(b)

$$L(\theta; x) \propto \theta^{3n} e^{-\theta \sum x_i} \times \prod x_i^2$$

By the factorization theorem (or by standard results about exponential family) \bar{x} is a minimal sufficient statistic for θ . From the hint we can see that $f(x;\theta)$ is a $\Gamma(3,\theta)$ family and therefore the mean is $3/\theta$.

(c) $l(\theta) = 3n \log \theta - \theta \sum x_i + \text{const}, \ l'(\theta) = 3n/\theta - \sum x_i \text{ so } \hat{\theta} = 3/\bar{x}.$

Recall: The Gamma density with parameters (α, β) is $\frac{\beta^{\alpha}}{\Gamma(\alpha)}x^{\alpha-1}e^{-\beta x}$. If $X \sim \Gamma(a_1, \beta), Y \sim \Gamma(a_2, \beta)$ and independent then $X + Y \sim \Gamma(a_1 + a_2, \beta)$. Mean of $\Gamma(\alpha, \beta)$ is α/β .

 $\sum_{1}^{n} X_{i}$ has a Gamma distribution with density

$$\frac{\theta^{3n}}{\Gamma(3n)}x^{3n-1}e^{-\theta x} x > 0$$

 \mathbf{SO}

$$\begin{split} \mathbb{E}[\widehat{\theta}] &= 3n \int_0^\infty \frac{\theta^{3n}}{\Gamma(3n)} x^{3n-2} e^{-\theta x} dx \\ &= 3n \cdot \frac{\theta^{3n}}{\Gamma(3n)} \cdot \frac{\Gamma(3n-1)}{\theta^{3n-1}} \\ &= \frac{3n\theta}{3n-1} \end{split}$$

Thus $\hat{\theta}$ is a biased estimate of θ .

(d)

$$\mathbb{E}[X_i^{-1}] = \int_0^\infty \frac{1}{2} \theta^3 x e^{-\theta x} dx \\ = \frac{1}{2} \theta$$

so $\theta^* = (2/n) \sum_{i=1}^{n} X_i^{-1}$ is an unbiased estimate of θ . Similarly, from the density, one can show that $\operatorname{Var}(\theta^*) = \theta^2/n$.

(e) Fisher's information is $I_n(\theta) = -E[\frac{\partial^2}{\partial \theta^2}\ell(\theta)] = 3n/\theta^2$. To find the variance we compute

$$\operatorname{Var}\left(\frac{1}{X_{i}}\right) = \mathbb{E}\left[X_{i}^{-2}\right] - \mathbb{E}\left[X_{i}^{-1}\right]^{2}$$
$$= \int \frac{1}{2}\theta^{3} e^{-\theta x} x - \left(\frac{\theta}{2}\right)^{2}$$
$$= \frac{\theta^{2}}{2} - \frac{\theta^{2}}{4} = \frac{\theta^{2}}{4}.$$

So $\operatorname{Var}(\theta^*) = \theta^2/n \ge I_n(\theta) = \theta^2/(3n).$

- 4. Let X_1, \ldots, X_n be a sample from $N(\mu, \sigma^2)$.
 - (a) Show that the MLE of σ^2 is

$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

(b) Show that $\hat{\sigma}^2$ has a smaller mean square error than

$$(n-1)^{-1}\sum_{i=1}^{n} (X_i - \bar{X})^2.$$

(c) For which value of a is the MSE of

$$(n+a)^{-1}\sum_{i=1}^{n} (X_i - \bar{X})^2$$

the smallest.

Hint: For (b) and (c) you will need to find $Var(\chi^2_{n-1})$ which is a special case of the variance of a gamma distribution.

Solution:

(a)

$$\ell(\mu, \sigma^2) = \text{const} - \frac{n}{2}\log\sigma^2 - \frac{1}{2}\sum_{i=1}^{n} (x_i - \mu)^2 / \sigma^2$$

 \mathbf{SO}

$$\frac{\partial \ell}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{1}^{n} (x_i - \mu)^2 \tag{1}$$

$$\frac{\partial \ell}{\partial \mu} = \frac{1}{\sigma^2} \sum (x_i - \mu). \tag{2}$$

Setting both equal to 0 we get that $\mu_{\text{MLE}} = \bar{x}$, uniformly in σ^2 , so

$$\hat{\sigma}^2 = n^{-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

Technically we should also do a second derivative test to verify it's indeed a maximum. Recap from Part A Statistics

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2_{n-1}$$
$$\widehat{\sigma}^2 = \frac{n-1}{n}S^2 \sim \frac{\sigma^2}{n}\chi^2_{n-1}$$

 χ^2_r has a density

$$\frac{1}{\Gamma(r/2)2^{r/2}}x^{r/2-1}e^{-x/2}, \quad > x > 0$$

which is a $\Gamma(r/2, 1/2)$ density with mean $2 \times r/2 = r$ and variance $4 \times r/2 = 2r$.

(b)
$$\mathbb{E}(\hat{\sigma}^2) = ((n-1)/n)\sigma^2$$
, $\operatorname{Bias}(\hat{\sigma}^2) = -\sigma^2/n$, $\operatorname{Var}(\hat{\sigma}^2) = (2(n-1)/n^2)\sigma^4$. Thus

$$MSE(\hat{\sigma}^2) = Var(\hat{\sigma}^2) + Bias(\hat{\sigma}^2)^2 = \frac{2n-1}{n^2}\sigma^4$$

Let

$$S^{2} = (n-1)^{-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2} \sim \frac{\sigma^{2}}{n-1} \chi_{n-1}^{2},$$

then $[S^2] = \sigma^2$, so unbiased. Therefore the MSE is simply the variance and therefore

$$MSE(S^2) = \frac{2(n-1)}{(n-1)^2} \sigma^4 = \frac{2}{n-1} \sigma^4 > MSE(\widehat{\sigma}^2) = \frac{2n-1}{n^2} \sigma^4.$$

(c) Let

$$\sigma^{*2} = (n+a)^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

A similar calculation to (b) shows that

MSE
$$(\sigma^{*2}) = \left(\frac{2}{n-1}b^2 + (b-1)^2\right)\sigma^4$$

where b = (n - 1)/(n + a). The MSE is minimal when

$$b = \frac{1}{\frac{2}{n-1}+1}$$
, or $a = 1$

That is the minimal MSE solution is

$$(n+1)^{-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$$

- 5. (a) Let Y_1, \ldots, Y_n be a random sample from a Poisson distribution with parameter $\lambda > 0$. One observes only $W_i = \mathbf{1}_{Y_i > 0}$. Compute the likelihood associated with the sample (W_1, \ldots, W_n) and the MLE in λ . Show that it is consistent in probability.
 - (b) Let X_1, \ldots, X_n be a random sample from a truncated Poisson distribution with distribution

$$f(x;\lambda) = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \cdot \frac{\lambda^x}{x!}, \ x = 1, 2, \dots$$

For $i = 1, \ldots, n$ a random variable Z_i is defined by

$$Z_i = X_i$$
 if $X_i \ge 2$ or $Z_i = 0$ if $X_i = 1$

Show that \overline{Z} is an unbiased estimator of λ with efficiency (efficiency is the ratio of the variance to the Cramer-Rao lower bound)

$$\frac{1 - e^{-\lambda}}{1 - \left(\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right)^2}$$

Solution:

(a) For the first part, the likelihood function is the following: let $w = (w_1, \ldots, w_n)$ be the vector of observations and let $S = \sum w_i$. Then

$$L(\lambda, w) = (1 - e^{-\lambda})^S e^{-\lambda(n-S)} = (e^{\lambda} - 1)^S e^{-n\lambda}$$

So that

$$\ell'(\lambda) = S \frac{e^{\lambda}}{e^{\lambda} - 1} - n$$

and solving $\ell' = 0$ gives us

$$\hat{\lambda} = -\log(1 - \frac{S}{n}).$$

Note that we have again the problem that $\hat{\lambda} = \infty$ with positive probability.

Observe that the W_i are iid Bernoulli variables with parameter $p = 1 - e^{-\lambda}$. The MLE estimator for p is well known to be $\hat{p} = S/n$. Notice that $\hat{p} = 1 - e^{-\hat{\lambda}}$ (or $\hat{\lambda} = -\log(1-\hat{p})$). This is an example of the invariance of the MLE w.r.t. one-to-one reparametrization.

Notice that $p \mapsto \log(1-p)$ is uniformly continuous on $[0, 1-\delta]$ for any $\delta > 0$. Suppose first that $\lambda < \infty$, or equivalently that $p = 1 - e^{-\lambda} < 1 - \delta$ for some $\delta > 0$. Then there exists a $K = K_{\delta}$ such that

$$|\log(1-p) - \log(1-p')| \le K_{\delta}|p-p'|$$
, for all $p, p' \in [0, 1-\delta]$.

Then we have for any $\epsilon > 0$

$$\mathbb{P}\left[\left|\log(1-\hat{p}_n) - \log(1-p)\right| > \epsilon\right] \le \mathbb{P}\left[\left\{\left|\log(1-\hat{p}_n) - \log(1-p)\right| > \epsilon\right\} \cap \left\{\left|\hat{p}_n - p\right| \le \delta/2\right\}\right] \\ + \mathbb{P}\left[\left|\hat{p}_n - p\right| > \delta/2\right] \\ \le \mathbb{P}\left[\left|\hat{p}_n - p\right| > \epsilon/K_{\delta/2}\right] + o(1) = o(1)$$

by consistency of \hat{p}_n .

On the other hand if $\lambda = \infty$, then p = 1 we have that $S/n = \hat{p} = 1 = p$ with probability 1. Therefore $\log(1 - \hat{p}) = +\infty = \lambda$ with probability 1. Therefore we have consistency.

(b) For the second part,

$$f(x;\lambda) = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \frac{\lambda^x}{x!}, x = 1, 2, \dots$$

The mean of Z is

$$\mathbb{E}[Z] = \sum_{x \ge 2} x \frac{e^{-\lambda}}{1 - e^{-\lambda}} \frac{\lambda^x}{x!} = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \sum_{x \ge 2} \frac{\lambda^x}{(x - 1)!} = \frac{e^{-\lambda}}{1 - e^{-\lambda}} \lambda(e^{\lambda} - 1) = \lambda$$

Therefore $\bar{Z} = \sum Z_i/n$ is an unbiased estimator.

Now we want to compute the efficiency. For this we need the Fisher information and the variance of the estimator. Here the estimator is \overline{Z} and the model is the sample (X_1, \ldots, X_n) . Thus the Fisher information is calculated w.r.t the law of the vector (X_1, \ldots, X_n) . The Fisher information is additive so that the Fisher information of (X_1, \ldots, X_n) is simply ni_{λ} where i_{λ} is the Fisher information of a singe X. The loglikelihood

$$l(\lambda) = -\lambda - \log(1 - e^{-\lambda}) + x \log \lambda - \log x!$$

and

$$\begin{array}{rcl} \displaystyle \frac{\partial l}{\partial \lambda} & = & \displaystyle -\frac{1}{1-e^{-\lambda}}+\frac{x}{\lambda} \\ \displaystyle \frac{\partial^2 l}{\partial \lambda^2} & = & \displaystyle \frac{e^{-\lambda}}{(1-e^{-\lambda})^2}-\frac{x}{\lambda^2} \end{array}$$

The Fisher information for one observation is (using $E[X] = \lambda/(1 - e^{-\lambda})$)

$$i_{\lambda} = -\mathbb{E}\left(\frac{\partial^{2}l}{\partial\lambda^{2}}\right)$$
$$= -\frac{e^{-\lambda}}{(1-e^{-\lambda})^{2}} + \frac{1}{\lambda^{2}}\frac{\lambda}{1-e^{-\lambda}}$$
$$= \frac{1}{\lambda} \cdot \frac{1}{1-e^{-\lambda}}\left[1 - \frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}\right]$$

To obtain the variance consider

$$\mathbb{E}[Z(Z-1)] = \sum_{x \ge 2} x(x-1) \frac{e^{-\lambda}}{1-e^{-\lambda}} \frac{\lambda^x}{x!} = \frac{e^{-\lambda}}{1-e^{-\lambda}} \sum_{x \ge 2} \frac{\lambda^x}{(x-2)!} = \frac{\lambda^2}{1-e^{-\lambda}}$$

Then

$$\operatorname{Var}(Z) = \frac{\lambda^2}{1 - e^{-\lambda}} + \lambda - \lambda^2 = \lambda \left[1 + \frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}} \right]$$

I have

$$i_{\lambda} = -\mathbb{E}\left(\frac{\partial^{2}l}{\partial\lambda^{2}}\right)$$
$$= -\frac{e^{-\lambda}}{(1-e^{-\lambda})^{2}} + \frac{\lambda}{\lambda^{2}}$$
$$= \frac{1}{\lambda} \cdot \frac{1}{1-e^{-\lambda}} \left[1 - \frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}\right]$$

Efficiency =
$$\left[I_{\lambda} \operatorname{Var}(\bar{Z})\right]^{-1}$$

= $\frac{1 - \left(\frac{\lambda e^{-\lambda}}{1 - e^{-\lambda}}\right)^2}{1 - e^{-\lambda}}.$

Section C

- 6. (a) (optional bookwork) Let X be a discrete random variable with pmf f(x; θ) with parameter θ ∈ Θ and sample space X ∈ χ. Let T(x) be a function of x. Suppose f(x; θ)/f(y; θ) is not a function of θ if and only if T(x) = T(y). Show that T(x) is minimal sufficient for θ.
 - (b) Let N = N(0, S] be the number of events in a Poisson arrival process of rate λ acting over time s in the interval $0 < s \leq S$. Suppose we observe arrivals in the process at times $X_1, X_2, ..., X_N$, and wish to use these data to estimate λ . Show that N is minimal sufficient for λ (assume the result in (a) holds for any sufficiently regular family of probability distributions).

Solution:

(a) Break the condition into two parts:

(*) T(x) = T(y) = t implies $f(x; \theta)/f(y; \theta)$ is not a function of θ ; (**) $f(x; \theta)/f(y; \theta)$ not a function of θ implies T(x) = T(y) = t.

Let $f(x;\theta) = g(x|t(x),\theta)h(t|\theta)$ (with no assumption of sufficiency) and suppose T(x) = T(y) = t. If (*) holds then

$$\frac{f(x;\theta)}{f(y;\theta)} = \frac{g(x|t,\theta)}{g(y|t,\theta)} = c(x,y)$$

say, with c independent of θ (factors of h cancel). But then

$$\sum_{x:T(x)=t} g(x|t,\theta) = g(y|t,\theta) \sum_{x:T(x)=t} c(x,y)$$

 \mathbf{SO}

$$g(y|t,\theta) = \left[\sum_{x:T(x)=t} c(x,y)\right]^{-1}$$

which is independent of θ , so T is sufficient for θ in f. If $f(x;\theta)/f(y;\theta)$ does depend on θ when T(x) = T(y) = t then c depends on θ and the same reasoning shows Tcannot be sufficient, so condition (*) is necessary for sufficiency. Let U(x) be some sufficient statistic. We must show that T is a function of U, so T is minimal. It is enough to show that U(x) = U(y) implies T(x) = T(y). But U(x) = U(y) = uimplies $f(x;\theta)/f(y;\theta)$ is not a function of θ , and then (**) implies T(x) = T(y), so T is minimal sufficient.

(b) The intervals of a Poisson arrival process of rate λ are exponential so $X_i \sim \text{Exp}(\lambda)$ likelihood for i = 1, 2, ..., N. The probability that the final interval between time $Y = \sum_{i=1}^{N} X_i$ and S has no event is the probability that an $\text{Exp}(\lambda)$ random variable exceeds S - Y, that is, $\exp(-\lambda(S - Y))$. The likelihood for λ given data $X = (x_1, ..., x_n)$ is therefore

$$L(\theta; x) = \left[\prod_{i=1}^{n} \lambda \exp(-\lambda x_i)\right] \exp(-\lambda(S - Y))$$
$$= \exp(-\lambda S)\lambda^n$$

since $(S - Y) + x_n + ... + x_1 = S$ and so N is sufficient for λ by the factorization theorem $(L = K_1(x, \theta)K_2(x)$ with $K_1(x, \theta) = L$ and $K_2 = 1$). It is minimal sufficient by part (a) since, if $x = (x_1, ..., x_n)$ and $y = y_1, ..., y_m$ then $L(x; \lambda)/L(y; \lambda)$ is independent of λ if and only if n = m.

7. A random sample X_1, \ldots, X_n is taken from the Weibull distribution

$$\frac{\beta}{\alpha^{\beta}}x^{\beta-1}\exp\left\{-\left(\frac{x}{\alpha}\right)^{\beta}\right\},\;x>0,\alpha>0,\beta>0.$$

- (a) Assuming that β is known, find a sufficient statistic for α .
- (b) Suppose now that α is known. Show that the order statistics $X_{(1)}, \ldots, X_{(n)}$ is sufficient statistic for β , but that no one-dimensional statistic can be sufficient.
- (c) Does the Weibull distribution belong to a 2-parameter exponential family?

Solution:

$$L(\theta; \mathbf{x}) = \alpha^{-n\beta} \exp\{-\alpha^{-\beta} \sum_{1}^{n} x_{i}^{\beta}\} \times \beta^{n} \prod_{1}^{n} x_{i}^{\beta-1}.$$

Assuming β is a known constant, this is exponential form in the natural parameter $-\alpha^{-\beta}$. The natural observation $T(x) = n^{-1} \sum_{i=1}^{n} x_i^{\beta}$ is thus a (minimal) sufficient statistic for α if β is known.

We suppose now that α is known. Observe that the order statistic is always sufficient when the observation is an i.i.d. sample (the order in which the observations arrive contains no information).

Notice that a statistic T is minimal sufficient if and only if T(x) = T(y) is equivalent to $f(x;\theta)/f(y;\theta)$ being independent of θ . In the case of the Weibull distribution, say

with α known, and n i.i.d. observations, the log-likelihood ratio takes the form

$$F(\boldsymbol{x}, \boldsymbol{y}; \beta) := \log \frac{f(x_1, \dots, x_n; \beta)}{f(y_1, \dots, y_n; \beta)}$$
$$= (\beta - 1) \sum \log(x_i) - \sum \left(\frac{x_i}{\alpha}\right)^{\beta} - (\beta - 1) \sum \log(y_i) + \sum \left(\frac{y_i}{\alpha}\right)^{\beta}$$

and this should be independent of β . For $\beta = 1$ the above implies that $\sum x_i = \sum y_i$. In addition all the derivatives of the above expression w.r.t. β must vanish. Writing $w_i = \log(x_i/\alpha), z_i = \log(y_i/\beta)$ we have for $p \ge 2$

$$\frac{\partial^p}{\partial\beta^p}F(\beta) = -\sum w_i^p e^{\beta w_i} + \sum z_i^p e^{\beta z_i} = 0$$

for all $\beta > 0$. Letting $\beta \to 0$ we obtain then that

$$\sum w_i^p = \sum z_i^p,$$

and therefore all moments of the empirical measures

$$\sum_{i=1}^{n} \delta_{w_i}, \sum_{i=1}^{n} \delta_{z_i},$$

are the same and we can conclude that

$$\{x_1,\ldots,x_n\}=\{y_1,\ldots,y_n\}.$$

Therefore $f(\boldsymbol{x};\beta)/f(\boldsymbol{y};\beta)$ being independent of θ is equivalent to \boldsymbol{x} being equal to \boldsymbol{y} up to permutation. Therefore the order statistic is minimal sufficient; in particular as n grows so does the dimension of any sufficient statistic. A 2-parameter exponential family admits a 2-dimensional sufficient statistic independent of the size of the sample (see Corollary 2.3 and the remark thereafter), thus giving us a contradiction.